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ABSTRACT
We present an axiomatisation for an extension of a temporal
epistemic logic with an epistemic “reset” operator defined on
the intersection between epistemic and temporal relations.
Additionally we show the logic has the finite model property,
hence it is decidable.
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1. INTRODUCTION
Modal logics provide a formal framework to specify and

reason about computations in distributed and multi-agent
systems. In particular, interpreted systems [6] provide a for-
mal Kripke-style semantics to reason about different states
of knowledge of the agents. On this semantics, different con-
cepts of knowledge have been explored, from implicit [11]
to distributed, common, deductive, algorithmic knowledge,
etc. All these logics are normally seen as formal specification
languages for representing agents’ knowledge.

A number of works have recently appeared in the litera-
ture relating to model checking techniques [4] for verifying
automatically that a multi-agent system satisfies a partic-
ular temporal epistemic specification [13, 19, 9, 20]. While
model checking presents some documented advantages over
theorem proving, the core difficulty of the approach is the
“state explosion problem”, i.e. the fact the model represent-
ing the system grows very quickly to a size which is difficult
to manage even when encoded symbolically.
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Bounded model checking [2] and other SAT-based ap-
proaches attempt to ease this problem by performing ag-
gressive depth-first search on appropriate restricted submod-
els. This technique has been shown to be quite effective in
temporal-epistemic logic as well [19, 21], but a key prob-
lem is that an epistemic modality defined on equality of
local states (as in interpreted systems) forces to consider
states reachable from any possible branch from the initial
state, thereby limiting the advantages of the techniques. It
is sometimes useful though, to reason about epistemic prop-
erties of agents that result from a “reset” operation, i.e., to
reason about the knowledge regarding the future from the
current time, as if a pruning of the model was performed at
that instant and only the submodel generated by that point
(as initial state) were to be considered. This happens, for
instance, when different instances of the same property are
checked a number of times over the same run, such as safe
receipt of a stream of bits.

In this paper we introduce an epistemic modality Ri (for
“reset”) that intrinsically incorporates the concept of reset-
ting the model at the point where the modality is consid-
ered. This is equivalent to assuming that the agents are
able to distinguish (i.e., to remove from their epistemically
indistinguishable set of accessible states) the current state
from states in the past and from states belonging to a differ-
ent computational branch from the one that terminated in
the state under evaluation. Alternatively, one can see this
modality as expressing standard implicit knowledge but un-
der the assumption the system enjoys a particular form of
perfect recall [18], so that the agent would be able to recog-
nise states with the same prefix. Representing perfect recall
or even weaker variants of it is particularly costly in terms of
model checking as the size of local states grows rapidly with
time. The alternative that this operator suggests is to use
a standard semantics but evaluate the Ri on the intersec-
tion of the epistemic relation for agent i with the reflexive
transitive closure of the temporal relation.

Although our research is inspired by efficient implemen-
tations of model checking algorithms for epistemic temporal
logic, in this paper we focus on the metalogical properties
of the resulting logic and leave for the future the coding
of specialised verification algorithms and data structures.
Specifically, in Section 2 we present syntax and semantics.
In Section 3 we exemplify the formalism to the bit trans-
mission problem. Section 4 is devoted to the construction of
the underlying machinery to prove the main results of the
paper. Sections 5 and 6 present this main results, namely a
decidability theorem and a completeness proof for the logic;



these follow the schema of the completeness and decidability
proof in [10] which we extend to deal with the logic presented
here. Section 7 contains conclusions and final remarks.

2. SYNTAX AND SEMANTICS
Here we give a syntax and semantics of a temporal epis-

temic logic L with an operator that is defined in terms of
the intersection of the transitive reflexive closure of a se-
rial temporal relation and the standard epistemic relation
(which is an equivalence relation); the temporal part of L
corresponds to the well-known CTL [3], and the epistemic
part is the logic S5n [6].
Syntax. Let PV be a set of propositional variables con-
taining the symbol ⊤, which stands for the logical constant
TRUE, Ag a finite set of agents, p ∈ PV and i ∈ Ag. The
language L is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ) | Kiϕ | Riϕ

In the above, the operators E and A denote path quan-
tifiers with the following meaning “for some computation
path” and “for all the computation paths”, respectively; the
operators X and U are the path operators read as “at the
next step” and “until”, respectively; the operator Ri is read
as “following a reset operation agent i knows”, and Ki rep-
resents the standard epistemic modality, read as “agent i
knows”. The remaining Boolean and temporal operators
can be defined in a usual way.

Let ϕ and ψ be L formulae. We say that ψ is a subformula
of ϕ and write ψ ∈ Sub(ϕ) if either (a) ψ = ϕ; or (b) ϕ is of
the form ¬α, EXα, Kiα, or Riα, and ψ is a subformula of α;
or (c) ϕ is of the form α ∧ β, E(αUβ), or A(αUβ) and ψ is
a subformula of either α or β. Further, we define the length
of a formula ϕ to be the number of symbols (parentheses,
propositional variables and connectives, modal operators) of
which it consists.
Semantics. Traditionally, the semantics of temporal epis-
temic logics is given on interpreted systems, defined as fol-
lows [6].

Definition 1 (Interpreted system). Given a set of
of agents Ag = {1, . . . , n}, consider:
• L1, . . . , Ln to be the countable sets of local states for the

agents and Le a set of local states for the environment;
Any element in S ⊆ L1×· · ·×Le is called a global state.

• P1 : L1 → 2Acti , . . . , Pn : Ln → 2Actn a set of protocols
for the agents and Pe : Le → 2Acte a protocol for the
environment where Acti (respectively, Acte) is a set of
actions for agent i (respectively, the environment);

• τ : S ×Act1× . . . Actn×Acte → S a transition function
for the system;

• V : S 7→2PV is an interpretation for the atoms in PV.
The tuple IS = (S, τ,V) is called an interpreted system. IS
is the class of all interpreted systems; we refer to [6] for
more details on the above.

We interpret the language L on models below.

Definition 2 (Model). Given a set of agents Ag, a
model is a tuple M = (S,T, {∼i}i∈Ag ,V, {⊓i}i∈Ag), such
that S is a countable set of states; T ⊆ S × S is a serial
relation on S; for each agent i ∈ Ag, ∼i⊆ S × S is an
equivalence relation; V : S 7→2PV is a valuation function that

assigns to each state a set of proposition variables that are
assumed to be true at that state; and ⊓i =∼i ∩ T

∗ for each
i ∈ Ag, where T ∗ denotes the reflexive and transitive closure
of T . We call F = (S, T, {∼i}i∈Ag, {⊓i}i∈Ag) a frame.

A path in M is an infinite sequence π = (s0, s1, . . .) of
states such that (si, si+1) ∈ T for each i ∈ {0, 1, . . .}. For a
path π = (s0, s1, . . .), we take π(i) = si. By Π(s) we denote
the set of all the paths starting at s ∈ S.

Definition 3 (Satisfaction). Let M be a model, s a
state, and α, β ∈ L. The satisfaction relation |=, indicating
truth of a formula in model M at state s, is defined induc-
tively as follows:

(M, s) |= p iff p ∈ V(s),
(M, s) |= ¬α iff (M, s) 6|= α,
(M, s) |= α ∧ β iff (M, s) |= α and (M, s) |= β,
(M, s) |= EXα iff (∃π ∈ Π(s))(M,π(1)) |= α,
(M, s) |= E(αUβ) iff (∃π ∈ Π(s))(∃m≥0)[(M,π(m)) |= β

and (∀0≤j<m)(M,π(j)) |= α],
(M, s) |= A(αUβ) iff (∀π ∈ Π(s))(∃m≥0)[(M,π(m)) |= β

and (∀0≤j<m)(M,π(j)) |= α],

(M, s) |= Kiα iff (∀s′ ∈ S) (s ∼i s
′ implies (M, s′) |= α),

(M, s) |= Riα iff (∀s′ ∈ S) (s ⊓i s
′ implies (M, s′) |= α).

Satisfaction for the Boolean and temporal operators as
well as the epistemic modality Ki is standard. The formula
Riα holds at state s in a model M if α holds in all the
states that are reachable from s via temporal relation T
and they are in the i − th epistemic relation with s. In
other words, (M, s) |= Riα means that in the state s agent
i knows α under assumption that he does not consider as
possible states that do not belong to the future of s.

We also say that ϕ is valid in M (written M |= ϕ), if
M, s |= ϕ for all states s ∈ S, and that ϕ is satisfiable in M ,
if M, s |= ϕ for some state s ∈ S. Further, we say that ϕ is
valid (written |= ϕ), if ϕ is valid in all the models M , and
that ϕ is satisfiable if it is satisfiable in some model M . In
the latter case M is said to be a model for ϕ.

The models as defined here can also be used to interpret
formulae on interpreted systems (Definition 1) directly. To
do so we need to associate a model to every interpreted
system.

Definition 4 (Generated models). Given an inter-
preted system IS = (S, τ,V) a model MIS for IS is a tu-
ple M = (S, T, {∼i}i∈Ag,V, {⊓i}i∈Ag) such that S is the
set of global states; T is defined by sTs′ iff there exist ac-
tions act1 ∈ ACT1, . . . , actn ∈ ACTn, acte ∈ ACTe such
that τ (s, act1, . . . , actn, acte) = s′; for any i ∈ Ag s ∼i s

′

iff li(s) = li(s
′), where li : S → Li is the function return-

ing the local state of agent i given a global state s; V is an
interpretation for the proposition variables; for any i ∈ Ag
⊓i =∼i ∩T

∗.

We say that a formula φ is true (respectively, valid) on
an interpreted system IS if φ is true (respectively, valid) on
the generated model.

Definition 5. A formula φ is valid on the class of inter-
preted systems IS if φ is valid on any model generated from
any IS ∈ IS.

It is of note that we can show the following which will be
useful for the completeness proof.



Lemma 1. For any model M there exists an interpreted
system IS such that, the generated model of IS is isomorphic
to M .

Proof. The proof follows the same construction given in [15,
16].

3. THE BIT TRANSMISSION PROBLEM
In this section we present an example regarding the use

of the operator Ri defined in this paper. In particular we
analyse a variant of the bit transmission problem (BTP), a
well-known example in reasoning about knowledge [6].

Imagine we have two processes, a sender S and a receiver
R, which communicate over a possibly faulty communication
line. S wants to send a finite stream of bits to R. They fol-
low this protocol: S immediately starts sending the bit to
R, and continues to do so until it receives an acknowledge-
ment from R. R does nothing until it receives the bit; from
then on it sends acknowledgements of receipt to S. When S

receives an acknowledgement, it stops sending the “old” bit
to R, and performs a reset operation, thereby giving a sign
to R that a new bit will be sent1. Then, S starts sending the
new bit and the cycle repeats. We apply the L formalism to
model and reason about the above scenario.

Let us begin by building a model M = (S,T,∼S ,∼R

,V,⊓S ,⊓R) for the BTP. There are three active compo-
nents in the scenario: agents S and R, and a communi-
cation channel represented by an environment E. Each of
these can be modelled by considering their respective local
states. For S, it is enough to consider five possible local
states. They represent the value of the bit that S is at-
tempting to transmit, and whether or not S has received
an acknowledgement or an end signal from R. We thus
have: LS = {0, 1, 0-ack, 1-ack, end}. Let n > 0 be the
maximal length of the stream of bits to be sent. We con-
sider LR = {xjy | x ∈ {0-ack, 1-ack}, y ∈ {0, 1}, 0 < j ≤
n} ∪ {xj | x ∈ {0-ack, 1-ack}, 0 < j ≤ n} ∪ {ǫ}. R’s local
state is ǫ if R has received no bits from S. R’s local state is
0 (respectively 1) if the received bit is 0 (respectively 1). R’s
local state is k1-ack. . . kj-ack (respectively k1-ack. . . kj-ack
k) for k1, . . . , kj , k ∈ {0, 1} and j ≤ n, if the stream of bits
he received is k1 . . . kj (respectively k1 . . . kjk) and S has
performed j reset actions. For E it is enough to consider a
singleton: LE = {·}.

The following sets of actions are available to the agents:
ActS = {sendbit , reset, λ}; ActR = {sendack , sendend, λ},
where λ stands for no action. The actions ActE for the envi-
ronment correspond to the transmission of messages between
S and R on the unreliable communication channel. We will
assume that the communication channel can transmit mes-
sages in both directions simultaneously and independently.
The set of actions for E is ActE = {↔, →, ←, −}, where
↔ represents the action in which the channel transmits any
message successfully in both directions, → that it transmits
successfully from S to R but loses any message from R to
S, ← that it transmits successfully from R to S but loses
any message from S to R, and − that it loses any messages
sent in either direction.

The protocols the agents are running are defined as fol-
lows: PS(0) = PS(1) = {sendbit}, PS(0-ack) = PS(1-ack)
1For simplicity we assume that resets are communicated
with no faults; an acknowledgement-based protocol could
be introduced for resets without violating the properties we
show below.

= {reset}, PS(end) = {λ}, PR(ǫ) = PR(k1-ack . . . kj-ack) =
{λ}, PR(k1-ack . . . kj−1-ack kj) = {sendack}, PR(k1-ack . . .
kn−1-ack kn) = {sendend}, PE(·) = {↔, →,←, −}, where
k1, . . . , kj , kn ∈ {0, 1} and j < n.

The evolution of the BTP is defined by means of an evo-
lution function t : (LS × LR × LE) × Act → 2LS×LR×LE ,
where Act is a subset of ActS ×ActR ×ActE . It is straight-
forward to infer a definition of this function from the infor-
mal description of the scenario we considered above together
with the local states and protocols defined above; the func-
tion t not only determines the set of reachable global states
S ⊆ LS × LR × LE , but it also gives us the transition rela-
tion T . Namely, for all states s, s′ ∈ S, (s, s′) ∈ T iff there
exists act ∈ Act such that t(s, act) = s′.

To complete the description of M for BTP, we intro-
duce the set of propositional variables: PV = {ack} ∪
{jBit = 0, jBit = 1, resetj | 0 < j ≤ n}, and we define
the valuation function V : S 7→2PV as:
• ack ∈ V(s) if lS(s) = 0-ack or lS(s) = 1-ack,

• jBit = 0 ∈ V(s) if lR(s) = (k1 . . . kj . . . kk) and (kj = 0
or kj = 0-ack) for 0 < j ≤ k ≤ n,

• jBit = 1 ∈ V(s) if lR(s) = (k1 . . . kj . . . kk) and (kj = 1
or kj = 1-ack) for 0 < j ≤ k ≤ n,

• resetj ∈ V(s) if lR(s) = (k1 . . . kj . . . kk) and kk 6∈ {0, 1}
for 0 < j ≤ k ≤ n.

Let us consider the following property (⋆): “whenever a
fresh bit has been sent, S knows that whenever he receives
an acknowledgement, R knows the value of that bit”. One
can try to express this property with the following CTLK
formula, for 0 < j ≤ n:

AG[resetj ⇒ AGKS(ack⇒
(KR(jBit = 0) ∨KR(jBit = 1)))]

But one can check that the above formula is not valid in M .
The problem is that a bit received before a reset may account
for the receiver’s knowledge about the current bit. What we
need to do is to express explicitly that past states should not
be considered in S’s accessible states, following the reset
operation. The epistemic modality Ri enables us not to
include past states, and can be used to capture this intuition.
Indeed, property (⋆) can be formalised by the following L
formula:

AG[resetj ⇒ AGRS(ack⇒
(KR(jBit = 0) ∨KR(jBit = 1)))]

It can be checked manually that this formula is valid in M .

4. FINITE MODEL PROPERTY
We now focus on proving that the language L has the finite

model property (FMP); recall a logic has the FMP if any sat-
isfiable formula is also satisfiable in a finite model. To prove
this normally a quotient (or “filtration”) is constructed, and
then it is shown that the resulting finite structure is still a
model for the formula in question. This technique, for ex-
ample, has been used in [8, 17] to prove that PDL and a
temporal deontic logic have FMP, respectively.

For some logics (in particular for L) the quotient con-
struction yields a quotient structure that is not a model;
however, it still contains enough information to be unwound
into a genuine model. In this specific case; to prove FMP for
L, we follow [5], where a combination of the filtration and
unwinding technique has been applied to prove the FMP
for CTL. We begin with providing definitions of two auxil-
iary structures: a Hintikka structure for a given L formula,



and the quotient structure for a given model. We follow the
constructions and the scheme of the proofs presented in [10].

Definition 6 (Hintikka structure). Let ϕ ∈ L, and
Ag be a set of agents. A Hintikka structure for ϕ is a tu-
ple H = (S, T, {∼i}i∈Ag ,L, {⊓i}i∈Ag) such that S is a set
of states, T is a serial binary relations on S, ∼i and ⊓i are
binary relations on S, and L : S 7→2L is a labelling function
assigning a set of formulae to each state such that ϕ ∈ L(s)
for some s ∈ S. Moreover, L satisfies the following condi-
tions:
H.1. if ¬α ∈ L(s), then α 6∈ L(s)

H.2. if ¬¬α ∈ L(s), then α ∈ L(s)

H.3. if (α ∧ β) ∈ L(s), then α ∈ L(s) and β ∈ L(s)

H.4. if ¬(α ∧ β) ∈ L(s), then ¬α ∈ L(s) or ¬β ∈ L(s)

H.5. if E(αUβ) ∈ L(s), then β ∈ L(s) or
α ∧ EXE(αUβ) ∈ L(s)

H.6. if ¬E(αUβ) ∈ L(s), then ¬β ∧ ¬α ∈ L(s) or
¬β ∧ ¬EXE(αUβ) ∈ L(s)

H.7. if A(αUβ) ∈ L(s), then β ∈ L(s) or
α ∧ ¬EX(¬A(αUβ)) ∈ L(s)

H.8. if ¬A(αUβ) ∈ L(s), then ¬β ∧ ¬α ∈ L(s) or
¬β ∧ EX(¬A(αUβ)) ∈ L(s)

H.9. if EXα ∈ L(s), then (∃t ∈ S)((s, t) ∈ T and α ∈ L(t))

H.10. if ¬EXα ∈ L(s), then (∀t ∈ S)((s, t) ∈ T implies
¬α ∈ L(t))

H.11. if E(αUβ) ∈ L(s), then (∃π∈Π(s))(∃n≥0)(β ∈ L(π(n))
and (∀j<n)α ∈ L(π(j)))

H.12. if A(αUβ) ∈ L(s), then (∀π∈Π(s))(∃n≥0)(β ∈ L(π(n))
and (∀j<n)α ∈ L(π(j)))

H.13. if Kiα ∈ L(s) and s ∼i t, then α ∈ L(t)

H.14. if ¬Kiα ∈ L(s), then (∃t ∈ S)(s ∼i t and ¬α ∈ L(t))

H.15. if Kiα ∈ L(s), then α ∈ L(s)

H.16. if s ∼i t then Kiα ∈ L(s) iff Kiα ∈ L(t)

H.17. if s ∼i t and s ∼i u and Kiα ∈ L(t), then both α ∈
L(u) and Kiα ∈ L(u)

H.18. if Riα ∈ L(s) and (s ⊓i t), then α ∈ L(t)

H.19. if ¬Riα ∈ L(s), then (∃t ∈ S)(s ⊓i t and ¬α ∈ L(t))

H.20. if Riα ∈ L(s), then α ∈ L(s)

H.21. if Riα ∈ L(s) and (s ⊓i t), then Riα ∈ L(t)

H.22. if Kiα ∈ L(s), then Riα ∈ L(s)

H.23. if AGα ∈ L(s), then Riα ∈ L(s)

Note that, intuitively, rule H16 corresponds to transitivity
and symmetry for the relations associated with the epistemic
modality, while rules H14, H15, and H17 correspond, respec-
tively, to seriality, reflexivity and Euclideaness. Rules H19,
H20 and H21 correspond, respectively, to seriality, reflexiv-
ity, and transitivity for the relation of the “reset” operator.
A consequence of such a definition of the Hintikka structure
is the following:

Lemma 2 (Hintikka’s Lemma for L). ϕ ∈ L is sat-
isfiable (i.e., ϕ has a model) if and only if there is a Hintikka
structure for ϕ.

Proof. It is easy to check that if M = (S, T, {∼i}i∈Ag ,V,
{⊓i}i∈Ag) is a model for ϕ then the tuple H = (S, T,
{∼i}i∈Ag,L, {⊓i}i∈Ag) with L defined by α ∈ L(s) if
(M, s) |= α, for all s ∈ S, is a Hintikka structure for ϕ.

Conversely, suppose that H = (S, T, {∼i}i∈Ag,L,
{⊓i}i∈Ag) is a Hintikka structure for ϕ. Let M = (S, T,
{∼′

i}i∈Ag,V, {⊓
′
i}i∈Ag), where each ∼′

i is the reflexive, sym-
metric and transitive closure of ∼i; each ⊓′

i is reflexive, se-
rial, and transitive closure of ⊓i; V : S → 2PV is defined
by V(s) = {p | p ∈ L(s)}. We now show by induction on
the structure of formulae that if ψ ∈ Sub(ϕ), then ψ ∈ L(s)
implies M, s |= ψ and ¬ψ ∈ L(s) implies M, s |= ¬ψ.

1. The propositional case as well as all the temporal ones
can be shown in similar way to [10].

2. ψ is of the form Kiβ. Suppose that Kiβ ∈ L(s). We
have to show that (M, s) |= Kiβ. It suffices to show
that (M, t) |= β for all states t such that s ∼′

i t. But
since ∼′

i is the reflexive, symmetric and transitive closure
of ∼i, if s ∼′

i t then there exist n ≥ 0 and a sequence
s0, . . . , sn of states such that s = s0, t = sn and either
sj ∼i sj+1 or sj+1 ∼i sj for all j ∈ {0, . . . , n− 1}. Thus,
since Kiβ ∈ L(s) and s = s0, we have that Kiβ ∈ L(s0).
Now, since either s0 ∼i s1 or s1 ∼i s0 by rule H16, we
have that Kiβ ∈ L(s1). So, by the simple induction on
j = 0, . . . , n−1 and rule H16, we have that Kiβ ∈ L(sn).
Since sn = t, we have that Kiβ ∈ L(t). Thus by rule
H15 we have that β ∈ L(t). So, by induction we have
that (M, t) |= β. Since the above holds for an arbitrary t
such that s ∼′

i t we can conclude that (M, s) |= Kiβ.
Now, suppose that ¬Kiβ ∈ L(s). By rule H14, there
exists a state t such that s ∼i t and ¬β ∈ L(t). Since
∼i⊆∼

′
i, and given that by induction we have that (M, t) |=

¬β, we must have (M, s) |= ¬Kiβ.

3. ψ is of the form Riβ. This can be shown similarly to the
case above by using H19−H21.

Now we proceed to define the quotient structure for a
given model M . The quotient construction depends on an
equivalence relation on states of M of a finite index, there-
fore we first have to provide such a relation. We define
it with respect to the Fischer-Ladner closure of a formula
ϕ ∈ L (denoted by FL(ϕ)) that is defined by: FL(ϕ) =
CL(ϕ) ∪ {¬α | α ∈ CL(ϕ)}, where CL(ϕ) is the smallest
set of formulae that contains ϕ and satisfies the following
conditions: (a) if ¬α or EXα or Kiα or Riα ∈ CL(ϕ), then
α ∈ CL(ϕ); (b) if α ∧ β ∈ CL(ϕ), then α, β ∈ CL(ϕ); (c)
if E(αUβ) ∈ CL(ϕ), then α, β,EXE(αUβ) ∈ CL(ϕ); (d) if
A(αUβ) ∈ CL(ϕ), then α, β,¬EX(¬A(αUβ)) ∈ CL(ϕ).

Denote the size of a set A by Card(A). Then, note that
for a given formula ϕ ∈ L, FL(ϕ) is a finite set of formulae.
In particular, it can be shown by induction on the length of
ϕ that Card(FL(ϕ)) ≤ 2 · |ϕ|.

Definition 7 (Quotient structure). Let ϕ∈L, M
=(S,T,{∼i}i∈Ag ,V,{⊓i}i∈Ag) be a model for ϕ, and ↔F L(ϕ)

a binary relation on S defined by s ↔F L(ϕ) s
′ if (∀α ∈

FL(ϕ))((M, s) |=α iff (M, s′) |=α). Moreover, let [s] = {w∈
S | w↔F L(ϕ) s}. The quotient structure of M by ↔F L(ϕ)

is defined as M↔FL(ϕ)
= (S′, T ′, {∼′

i}i∈Ag, L
′, {⊓′

i}i∈Ag),

where S′ = {[s] | s ∈ S}, T ′ = {([s],[s′]) ∈ S′×S′ | (∃w ∈
[s])(∃w′∈ [s′]) s.t. (w,w′)∈T}, ∼′

i is a transitive closure of
{([s], [s′]) ∈ S′×S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) s.t. (w,w′) ∈∼i},

L
′ : S′ 7→2F L(ϕ) is defined by: L

′([s]) = {α ∈ FL(ϕ) |



(M, s) |= α}, and ⊓′
i is a transitive closure of {([s], [s′]) ∈

S′ × S′ | (∃w ∈ [s])(∃w′ ∈ [s′]) s.t. (w,w′) ∈ ⊓i}.

Note that the set S′ is finite as it is the result of collaps-
ing states satisfying formulae that belong to the finite set
FL(ϕ). In fact we have Card(S′) ≤ 2Card(F L(ϕ)). Note
also that the relation T ′ is serial, ∼′

i is reflexive, symmet-
ric and transitive (i.e., it is an equivalence relation), ⊓′

i is
serial, reflexive, and transitive. Further, since L is an ex-
tension of CTL, the resulting quotient structure may not be
a model. In particular, similarly to Theorem 3.6 [5], the
following lemma holds:

Lemma 3. The quotient construction does not preserve
satisfiability of formulae of the form A(αUβ), where α, β ∈
L. In particular, there is a model M for A(⊤Up) with p ∈
PV such that M↔FL(A(⊤Up))

is not a model for A(⊤Up).

Although M↔FL(ϕ)
may not be a model, it satisfies an-

other important property, which allows us to view it as a
pseudo-model; it can be unwound into a proper model that
can be used to show that L has the FMP property. To
make this idea precise, we introduce the following auxiliary
definitions.

An interior (respectively frontier) node of a directed acyclic
graph (DAG)2 is one which has (respectively does not have)
a successor. The root of a DAG is the node (if it exists)
from which all other nodes are reachable. A fragment M ′ =
(S′, T ′, {∼′

i}i∈Ag ,L
′, {⊓′

i}i∈Ag) of a Hintikka structure H =
(S, T, {∼i}i∈Ag, L, {⊓i}i∈Ag) is a structure such that (S′, T ′)
generates a finite DAG, in which the interior nodes satisfy
H1-H10 and H13-H23, and the frontier nodes satisfy H1-
H8, andH13-H23. GivenM = (S, T, {∼i}i∈Ag,L, {⊓i}i∈Ag)
and M ′ = (S′, T ′, {∼′

i}i∈Ag,L
′, {⊓′

i}i∈Ag), we say that M
is contained in M ′, and write M ⊆ M ′, if S ⊆ S′, T =
T ′ ∩ (S×S), ∼i=∼

′
i ∩(S×S), L = L

′|S, ⊓i = ⊓′
i ∩ (S×S).

Definition 8 (Pseudo-model). A pseudo-model M =
(S, T, {∼i}i∈Ag,L, {⊓i}i∈Ag) for ϕ∈L is defined in the same
manner as a Hintikka structure for ϕ in Definition 6, ex-
cept that condition H12 is replaced by the following condi-
tion H12′: for all s∈ S, if A(αUβ)∈ L(s), then there is a
fragment (S′,T ′,{∼′

i}i∈Ag ,L
′,{⊓′

i}i∈Ag)⊆M such that: (a)
(S′, T ′) generates a DAG with root s; (b) for all frontier
nodes t ∈ S′, β ∈ L

′(t); (c) for all interior nodes u ∈ S′,
α ∈ L

′(u).

It can be proven that the following lemma holds.

Lemma 4. Let ϕ ∈ L, FL(ϕ) be the Fischer-Ladner clo-
sure of ϕ, M = (S, T, {∼i}i∈Ag ,V, {⊓i}i∈Ag) a model for ϕ,
and M↔FL(ϕ)

= (S′, T ′, {∼′
i}i∈Ag,L, {⊓

′
i}i∈Ag) the quotient

structure of M by ↔F L(ϕ). Then, M↔FL(ϕ)
is a pseudo-

model for ϕ.

Now we can prove the main claim of the section, i.e., the
fact that L has the finite model property (FMP).

Theorem 1. Let ϕ ∈ L. Then the following are equiva-
lent: (1) ϕ is satisfiable; (2) There is a finite pseudo-model
for ϕ; (3) There is a Hintikka structure for ϕ.

2Recall that a directed acyclic graph is a directed graph
such that for any node v, there is no nonempty directed
path starting and ending on v.

Proof. (1) ⇒ (2) follows from Lemma 4. To prove
(2) ⇒ (3) it is enough to construct a Hintikka structure
for ϕ by “unwinding” the pseudo-model for ϕ. This can be
done in the same way as is described in [5] for the proof of
Theorem 4.1. (3)⇒ (1) follows from Lemma 2.

5. DECIDABILITY
Let FL(ϕ) be the Fischer-Ladner closure of ϕ ∈ L. We

define ∆ ⊆ FL(ϕ) to be maximal if for every formula α ∈
FL(ϕ), either α ∈ ∆ or ¬α ∈ ∆. Note that maximal sets
may be inconsistent.

Theorem 2. There is an algorithm for deciding whether
any formula of L is satisfiable.

Proof. Given a formula ϕ ∈ L, we will construct a finite
pseudo-model for ϕ. We proceed as follows.

1. Build a structure M0 = (S0, T 0, {∼0
i }i∈Ag ,L

0, {⊓0
i }i∈Ag)

for ϕ as follows: S0 = {∆ | ∆ ⊆ FL(ϕ) with ∆ maximal
and satisfying the rulesH1-H8,H15, H20}; T 0 ⊆ S0×S0

is a relation such that (∆1,∆2) ∈ T 0 iff ¬EXα ∈ ∆1

implies that ¬α ∈ ∆2 for any α ∈ L; for each agent
i ∈ Ag, ∼0

i⊆ S
0×S0 is a relation such that (∆1,∆2) ∈∼

0
i

iff {α | Kiα ∈ ∆1} ⊆ ∆2; for all ∆ ∈ S0, L
0(∆) = ∆; for

each agent i ∈ Ag, ⊓0
i ⊆ S

0×S0 is the relation such that
(∆1,∆2) ∈ ⊓

0
i iff {α | Riα ∈ ∆1} ⊆ ∆2.

Note that M0 satisfies conditions H1-H8, H15, H20, by
construction. It can also be checked that M0 satisfies
H10, H13, and H18 (because of the definition of T 0, ∼0

i

and ⊓0
i respectively).

2. Test the structure M0 for fulfilment of the properties H9,
H11, H12′, H14, H16, H17, H19, H21, H22, and H23
by repeatedly applying the following deletion rules until
no more states in M0 can be deleted.
H9 Delete any state which has no T 0-successors.

H11-H12’ Delete any state ∆1 ∈ S
0 such that either E(αUβ) ∈

∆1 or A(αUβ) ∈ ∆1 and there does not exist a frag-
ment M ′′ ⊆ M0 such that: (i) (S′′, T ′′) is a DAG
with root ∆1; (ii) for all frontier nodes ∆2 ∈ S′′,
β ∈ ∆2; (iii) for all interior nodes ∆3 ∈ S

′′, α ∈ ∆3.

H14 Delete any state ∆1 ∈ S0 such that ¬Kiα ∈ ∆1,
and ∆1 does not have any ∼0

i successor ∆2 ∈ S0

with ¬α ∈ ∆2.

H16 Delete any state ∆1 ∈ S
0 such that ∆1 ∼

0
i ∆2 and

Kiα ∈ ∆1 and ¬Kiα ∈ ∆2.

H17 Delete any state ∆1 ∈ S
0 such that ∆1 ∼

0
i ∆2 and

∆1 ∼
0
i ∆3 and α ∈ ∆2 and Ki¬α ∈ ∆3

H19 Delete any state ∆1 ∈ S
0 such that ¬Riα ∈ ∆1, and

∆1 does not have any ⊓0
i successor ∆2 ∈ S0 with

¬α ∈ ∆2.

H21 Delete any state ∆1 ∈ S
0 such that ∆1 ⊓

O
i ∆2 and

Riα ∈ ∆1 and ¬Riα ∈ ∆2.

H22 Delete any state ∆ ∈ S0 such that Kiα ∈ ∆ and
Riα ∈ ∆.

H23 Delete any state ∆ ∈ S0 such that AGα ∈ ∆ and
Riα ∈ ∆.

We call the above the decidability algorithm for L.
Note that the algorithm terminates since S0 is finite.

Claim 1. Let M = (S, T, {∼i}i∈Ag,L, {⊓i}i∈Ag) be the
resulting structure of the algorithm. The formula ϕ ∈ L is
satisfiable iff ϕ ∈ s, for some s ∈ S.



Proof. In order to show the right-to-left implication of the
above property, note that either the resulting structure is a
pseudo-model for ϕ, or S = ∅ (this can be shown inductively
on the structure of the algorithm). So, if ϕ ∈ s for some
s ∈ S, ϕ is satisfiable by Theorem 1.

Conversely, if ϕ is satisfiable, then there exists a model
M∗ such that M∗ |= ϕ. Let M∗

↔FL(ϕ)
= M ′ = (S′,T ′,

{∼′
i}i∈Ag,L

′,{⊓′
i}i∈Ag) be the quotient structure of M∗ by

↔F L(ϕ). By Lemma 4 we have that M ′ is a pseudo-model
for ϕ. By the definition of L

′ in the quotient structure, L
′(s)

is maximal with respect to FL(ϕ) for all s ∈ S′. Now, let
M ′′ = (S′′,T ′′,{∼′′

i }i∈Ag ,L
′′,{⊓′′

i }i∈Ag) be the structure de-
fined by step 1 of the decidability algorithm, and f : S′ 7→S′′

a function defined by f(s) = L
′(s). The following hold:

(a) If (s, t) ∈ T ′, then (f(s), f(t))∈ T ′′;
Proof (via contradiction): Let (s, t) ∈ T ′ and (f(s), f(t)) 6∈
T ′′. By the definition of T ′′ we have that ¬EXα ∈ f(s)
and α ∈ f(t). Then, by the definition of f , we have that
¬EXα ∈ L

′(s) and α ∈ L
′(t). So, by the definition of L

′

in the quotient structure we have that M∗, s′ |= ¬EXα
for any M∗ state s′ in the class s and M∗, t′ |= α a for
any M∗ state t′ in the class t. Thus (s′, t′) is not in T
(where T is the relation in M∗) for any such s′, t′, and
thus (s, t), is not in T ′.

(b) If (s, t) ∈∼′
i, then (f(s), f(t)) ∈∼′′

i ;
Proof (via contradiction): Let (s, t) ∈∼′

i and (f(s), f(t))
6∈∼′′

i . By the definition of ∼′′
i we have that Kiα ∈ f(s)

and α 6∈ f(t). Then, by the definition of f , we have that
Kiα ∈ L

′(s) and α 6∈ L
′(t).

So, by the definition of L
′ in the quotient structure we

have that M∗, s′ |= Kiα for any M∗ state s′ in the class
s and M∗, t′ |= ¬α a for any M∗ state t′ in the class t.
Thus (s′, t′) is not in ∼i (where ∼i is the relation in M∗)
for any such s′, t′, and thus (s, t), is not in ∼′

i.

(c) if (s, t) ∈ ⊓′
i, then (f(s), f(t)) ∈ ⊓′′

i ;
Proof (via contradiction): Let (s, t) ∈ ⊓′

i and (f(s), f(t)) 6∈
⊓′′

i . Then, by the definition of ⊓′′
i we have that Riα ∈

f(s) and α 6∈ f(t). By the definition of f , we have that
Riα ∈ L

′(s) and α 6∈ L
′(t). So, by the definition of L

′ in
the quotient structure we have that M∗, s′ |= Riα for any
M∗ state s′ in the class s and M∗, t′ |= ¬α a for any M∗

state t′ in the class t. Thus (s′, t′) is not in ⊓i (where ⊓i

is the relation in M∗) for any such s′, t′, and thus (s, t),
is not in ⊓′

i.
Thus, the image of M ′ under f is contained in M ′′, i.e.,

M ′ ⊆M ′′. It remains to show that if s ∈ S′, then f(s) ∈ S′′

will not be eliminated in step 2 of the decidability algorithm.
This can be checked by induction on the order in which
states of S′′ are eliminated. For instance, assume that s ∈
S′, and A(αUβ) ∈ f(s). By the definition of f , we have
that A(αUβ) ∈ L

′(s). Now, since M ′ is a pseudo-model, by
Definition 8 we have that there exists a fragment rooted at s
that is contained in M ′ and it satisfies propertyH12′. Thus,
since f preserves the above condition (a), we have that there
exists a fragment rooted at f(s) that is contained in M ′′ and
it satisfies property H12′. This implies that f(s) ∈ S′′ will
not be eliminated in H12′ step of the decidability algorithm.
Other cases can be proven similarly. Therefore, it follows
that for some s ∈ S we have ϕ ∈ L(s).

6. A COMPLETE AXIOMATIC SYSTEM
An axiomatic system consists of a collection of axioms

schemes and inference rules. An axiom scheme is a rule for
generating an infinite number of axioms. An inference rule
has the form “from formulae ϕ1, . . . , ϕm infer formula ϕ”.
We say that ϕ is provable (written ⊢ ϕ) if there is a se-
quence of formulae ending with ϕ, such that each formula is
either an instance of an axiom, or follows from other prov-
able formulae by applying an inference rule. We say that a
formula ϕ is consistent if ¬ϕ is not provable. A finite set
{ϕ1, . . . , ϕm} of formulae is consistent exactly if and only if
the conjunction ϕ1 ∧ . . . ∧ ϕm of its members is consistent.
A set F of formulae is a maximally consistent set if it is con-
sistent and for all ϕ 6∈ F , the set F ∪{ϕ} is inconsistent. An
axiom system is sound (respectively complete) with respect
to the class of models, if ⊢ ϕ implies |= ϕ (respectively if
|= ϕ implies ⊢ ϕ).

Let i ∈ Ag. We define the following axiomatic system:
PC. All substitution instances of classical tautologies.

T1. EX⊤ T2. EX(α ∨ β)⇔ EXα ∨ EXβ

T3. E(αUβ)⇔ β ∨ (α ∧ EXE(αUβ))

T4. A(αUβ)⇔ β ∨ (α ∧AXA(αUβ))

KKi
. (Kiα∧Ki(α⇒ β))⇒ Kiβ 5Ki

. ¬Kiα⇒ Ki¬Kiα

KRi
. (Riα ∧ Ri(α⇒ β))⇒ Riβ 4Ki

. Kiα⇒ KiKiα

TRi
. Riα⇒ α 4Ri

. Riα⇒ RiRiα

I1. Kiα⇒ Riα I2. AGα⇒ Riα

R1. From α and α⇒ β infer β R2. From α infer Kiα

R3. From α⇒ β infer EXα⇒ EXβ

R4. From γ ⇒ (¬β ∧ EXγ) infer γ ⇒ ¬A(αUβ)

R5. From γ ⇒ (¬β∧AX(γ∨¬E(αUβ))) infer γ ⇒ ¬E(αUβ)

Theorem 3. The axiomatic system above is sound and
complete with respect to the class of models of Definition 2,
i.e., |= ϕ iff ⊢ ϕ, for any formula ϕ ∈ L.

Proof. This proof is an in [10], we simply extend the claims
to cover all cases here.

Soundness can be checked inductively as standard. For
completeness, we show that any consistent formula ϕ is sat-
isfiable. To do this, we first consider the structure M =
(S, T, {∼i}i∈Ag,L, {⊓i}i∈Ag) for ϕ as defined in step 1 of
the decidability algorithm. We then execute step 2 of the
algorithm, obtaining a pseudo-model for ϕ. Crucially we
show below that if a state s ∈ S is eliminated at step 2 of
the algorithm, then the formula ψs =

V

α∈s α is inconsis-
tent. Observe now that for any α ∈ FL(ϕ) we have ⊢ α ⇔
W

{s | α ∈ s and
ψs is consistent} ψs. In particular, ⊢ ϕ⇔

W

{s | ϕ ∈ s and
ψs is consistent} ψs.

Thus, if ϕ is consistent, then ψs is consistent as well for some
s ∈ S. It follows by Claim 1 of Theorem 2 that this par-
ticular s is present in the pseudo-model resulting from the
execution of the algorithm. So, by Theorem 1, ϕ is satisfi-
able. Note that pseudo-models share the structural proper-
ties of models, i.e., their underlying frames have the same
properties.

It remains to show that if a state s ∈ S is eliminated at
step 2 of the algorithm then the formula ψs is inconsistent.
Before we do it, we need some auxiliary claims.

Claim 2. Let s ∈ S and α ∈ FL(ϕ). Then, α ∈ s iff
⊢ ψs ⇒ α.

Proof. (’if’). Let α ∈ s. By the definition of S, we have
that any s in S is maximal. Thus, ¬α 6∈ s. So, ⊢ ψs ⇒ α.

(’only if’). Let ⊢ ψs ⇒ α. So, since s is maximal we have
that α ∈ s.



Claim 3. Let s, t ∈ S, both of them be maximal and
propositionally consistent, and s ∼i t (respectively s ⊓i t).
If α ∈ t, then ¬Ki¬α ∈ s (respectively ¬Ri¬α ∈ s).

Proof. [By contraposition] Let α ∈ t and ¬Ki¬α /∈ s. Then,
since s is maximal we have that Ki¬α ∈ s. Thus, since
s ∼i t, we have that ¬α ∈ t. This contradicts the fact that
α ∈ t, since t is propositionally consistent; The same proof
applies to Ri.

Claim 4. Let s ∈ S be a maximal and consistent set of
formulae and α such that ⊢ α. Then α ∈ s.

Proof. Suppose α 6∈ s and ⊢ α. Since s is maximal then
¬α ∈ s. So ¬α∧ψs is consistent where ψs =

V

β∈s β. So

by definition of consistency we have that 6⊢ ¬(¬α∧ψs), so
6⊢ α∨¬ψs. But we have ⊢α∨ψs, so this is a contradiction.

We now show, by induction on the structure of the decid-
ability algorithm for L, that if a state s ∈ S is eliminated at
step 2 of the decidability algorithm, then ⊢ ¬ψs.

Claim 5. If ψs is consistent, then s is not eliminated at
step 2 of the decidability algorithm for L.

Proof.

H9 Let EXα ∈ s and ψs be consistent. By the same rea-
soning as in the proof of Claim 4(a) in [5], we conclude
that s satisfies H9. So s is not eliminated.

H11-H12’ Let E(αUβ) ∈ s (respectively A(αUβ) ∈ s) and sup-
pose s is eliminated at step 2 because H11 (respec-
tively H12′) is not satisfied. Then ψs is inconsistent.
The proof showing that fact is the same as the proof
of Claim 4(c) (respectively Claim 4(d)) in [5].

H14 Let ¬Kiα ∈ s and ψs be consistent. Consider the set
S¬α = {¬α} ∪ {β | Kiβ ∈ s}. We will show that S¬α

is consistent. Suppose that S¬α is inconsistent. Then,
⊢ β1 ∧ . . . ∧ βm ⇒ α, where βj ∈ {β | Kiβ ∈ s} for
j ∈ {1, . . . ,m}. By rule R2 we have ⊢ Ki((β1 ∧ . . . ∧
βm)⇒ α). By axioms KKi

and PC we have ⊢ (Kiβ1∧
. . . ∧ Kiβm) ⇒ Kiα. Thus, since each Kiβj ∈ s for
j ∈ {1, . . . ,m} and s is maximal and propositionally
consistent, we have Kiα ∈ s. This contradicts the fact
that ψs is consistent. So, S¬α is consistent.
Now, we have to show that S¬α can be extended to a
maximal set that is in S0. To show this, as standard,
we first construct a sequence t0, t1, . . . of L - consistent
sets as follows. Because L is a countable language, let
ψ1, ψ2, . . . be an enumeration of the formulae in L.
Let t0 = S¬α ∪ {CL(β) | β ∈ S¬α}, and inductively
construct the rest of the sequence by taking ti+1 =
ti ∪ {ψi+1} if this set is L - consistent and satisfies
rules: H1−H8, H10, H13 H15, H18, and H20, and
otherwise by taking ti+1 = ti. It is easy to see that
each set in the sequence t0, t1, . . . is L - consistent
and satisfies rules: H1 − H8, H10, H13 H15, H18,
and H20, Let t =

S∞

i=0 ti. Each finite subset of t must
be contained in tj for some j, and thus must be L -
consistent and satisfies the adequate rules. It follows
that t itself is L - consistent and satisfies the adequate
rules, so t is in S0. We claim that t is maximal. For
suppose ψ ∈ L and ψ 6∈ t. Since ψ is a formula in
L, it must appear in our enumeration, say as ψk. If
tk ∪ {ψk} were L - consistent, then our construction
would not guarantee that ψk ∈ tk+1, and hence ψk ∈ t.
Because ψk = ψ 6∈ t, it follows that tk ∪ {ψ} is not L

- consistent. Hence t ∪ {ψ} is also not L - consistent.
It follows that t is a maximal L - consistent set.
It follows that S¬α is contained in some maximal set t
that is in S0. So by the definition of S¬α we have that
¬α ∈ t, and by the definition of ∼i in M we have that
s ∼i t. Thus, s satisfies H14, and it is not eliminated
by step H14 of the decidability algorithm.

H16 Suppose that ψs is consistent and s is eliminated at
step (H16) of the decidability algorithm. Then, we
have that s ∼i t, Kiα ∈ s and ¬Kiα ∈ t. Thus, since s
and t are maximal and propositionally consistent, by
Claim 4 we have that ¬KiKiα ∈ s. By axiom 4Ki and
Claim 5 we have that Kiα ⇒ KiKiα ∈ s. So, since
Kiα ∈ s we have that KiKiα ∈ s. So s is inconsistent.
Therefore s cannot be eliminated at step (H16) of the
decidability algorithm.

H17 Suppose that s is consistent and it is eliminated at
step (H17) of the decidability algorithm. Thus, we
have that s ∼i t, s ∼i u, α ∈ t, and Ki¬α ∈ u. So,
since s ∼i t, α ∈ t, s and t are maximal and proposi-
tionally consistent, by Claim 4 we have that ¬Ki¬α ∈
s. Since s is maximal and consistent, by axiom 5Ki

and Claim 5, we have that ¬Ki¬α ⇒ Ki¬Ki¬α ∈ s.
Therefore, we have that Ki¬Ki¬α ∈ s. Thus, since
s ∼i u, we have that ¬Ki¬α ∈ u. But this is a contra-
diction given that Ki¬α ∈ u and u is propositionally
consistent. So s is inconsistent. Therefore s cannot be
eliminated at step (H17) of the decidability algorithm.

H19 Let ¬Riα ∈ s and ψs be consistent. Consider the
set S¬α = {¬α} ∪ {β | Riβ ∈ s}. We will show
that S¬α is consistent. Suppose that S¬α is incon-
sistent. Then, ⊢ β1 ∧ . . . ∧ βm ⇒ α, where βj ∈ {β |
Riβ ∈ s} for j ∈ {1, . . . ,m}. By rule R2 we have
⊢ Ki((β1 ∧ . . . ∧ βm) ⇒ α). By axioms KKi

and PC
we have ⊢ (Kiβ1∧ . . .∧Kiβm)⇒ Kiα. By axiom I1 we
have that ⊢ (Riβ1 ∧ . . . ∧ Riβm) ⇒ Riα. Thus, since
each Riβj ∈ s for j ∈ {1, . . . ,m} and s is maximal
and propositionally consistent, we have Riα ∈ s. This
contradicts the fact that ψs is consistent. So, S¬α is
consistent. Now, we have to show that S¬α can be
extended to a maximal set that is in S0. This can be
done in the same way as in H14 case. So, we can now
say that S¬α is contained in some maximal set t and
thus ¬α ∈ t. By the definitions of ⊓i in M and S¬α

we have that s⊓i t. Thus, s satisfies H19, and it is not
eliminated by step H19 of the decidability algorithm.

H21 Suppose that ψs is consistent and s is eliminated at
step (H21) of the decidability algorithm. Then, we
have that s ⊓i t, Riα ∈ s and ¬Riα ∈ t. Thus, since
s and t are maximal and propositionally consistent,
by Claim 4 we have that ¬RiRiα ∈ s. By axiom 4Ri

and Claim 5 we have that Riα⇒ RiRiα ∈ s. So, since
Riα ∈ s we have that RiRiα ∈ s. So ψs is inconsistent.
Therefore s cannot be eliminated at step (H21) of the
decidability algorithm.

H22 Suppose that ψs is consistent and s is eliminated at
step (H22) of the decidability algorithm. Then, we
have Kiα ∈ s and ¬Riα ∈ s. By axiom I1, since
Kiα ∈ s we have that Riα ∈ s. So ψs is inconsistent.
Therefore s cannot be eliminated at step (H22) of the
decidability algorithm.



H23 Suppose that ψs is consistent and s is eliminated at
step (H23) of the decidability algorithm. Then, we
have AGα ∈ s and ¬Riα ∈ s. By axiom I2, since
AGα ∈ s we have that Riα ∈ s. So ψs is inconsistent.
Therefore s cannot be eliminated at step (H23) of the
decidability algorithm.

We have now shown that only states s with ψs inconsistent
are eliminated. This ends the completeness proof.

Given the above we have the following.
Corollary 1. The axiomatic system above is sound and

complete with respect to the class of interpreted systems.
Proof. We need to show that if φ is valid on the class of
all interpreted systems it is provable in the axiom system.
Suppose φ is not provable, then ¬φ is consistent in the axiom
system. By Theorem 3 ¬φ has a model M . But then by
Lemma 1 there is an interpreted system IS whose generated
model is isomorphic to M . But then by definition IS does
not satisfy ¬φ and so ¬φ is not satisfied in the whole class
of interpreted systems.

7. CONCLUSIONS
In this paper we have shown completeness and decidability

of a logic which includes CTL, epistemic operators and a
further modality, defined on the intersection between the
temporal and the epistemic relation, expressing knowledge
under the assumption of being able to distinguish the future
of a time instant.

As it is known, the standard canonical model technique
cannot normally be used for providing axiomatisations for
modalities that are defined on intersections of relations. Still
intersections can be axiomatised by ad-hoc techniques; for
instance see distributed knowledge [7, 12] and dynamic knowl-
edge [1]. We were unable to replicate the use of these tech-
niques for the logic in hand and used, instead, the basic
schema of [5] used there for axiomatising plain CTL.

Our motivation for studying the reset operator is also
rather practical. When studying temporal/epistemic prop-
erties of multi-agent systems scenario by using model check-
ing [20, 19] it is often the case that the agents are able to
distinguish the past from the present. In such cases, because
of efficiency to be gained in model checking optimisations,
it is efficient to have epistemic operators that “forget about
the past” such as the one presented in this paper. Given
we now understand the behaviour of such operator we plan
to investigate possible extensions of an open source model
checker for knowledge and time such as [14, 9] to evaluate
experimentally the performance speed-up it offers.

Acknowledgements: The authors are grateful to one
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