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Abstract. We use MCMAS-X to verify authentication properties in the TESLA secure stream pro-
tocol. MCMAS-X is an extension to explicit and deductive knowledge of the OBDD-based model
checker MCMAS a verification tool for multi-agent systems.

1. Introduction

Model checking has traditionally been used for the verification of reactive systems whose properties
are specified in one of the many variants of temporal logic. But autonomous and open systems, such
as multi-agent systems [27] are best described and reasonedabout by richer formalisms whose study
is often pursued in frameworks studied in Artificial Intelligence (AI). One of the richer logics used
in AI for this task is epistemic logic, or logic for knowledge[8], often combined with temporal logic
[18, 10, 19, 16]. Epistemic logic has been shown useful in themodelling of a variety of scenarios
from robotics, communication, etc., all sharing the need torepresent formally the knowledge of the
agents. Also of great interest is the use of temporal-epistemic formalisms to represent and analyse
formally security protocols. While the original BAN logic [6] lacked computational grounding, more
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recent attempts [11, 17] provide a full trace-based semantics to interpret the epistemic modalities as well
as standard temporal modalities. Key to these approaches isthe use of not only a modality for implicit
knowledge, representing the knowledge that can be ascribedto a principal from an external point of view,
but also one for explicit knowledge [8, 23, 15], representing knowledge the agent has immediate access
to (for instance facts present in the agent’s internal database).

While model checkers for standard temporal (implicit) knowledge have recently been made avail-
able [9, 21, 13], they currently do not support explicit knowledge and derivable notions and so their
applicability to an “epistemically-oriented” verification of authentication protocols has not been pursued
yet1.

The aim of this research note is twofold: first we present a model checker that supports modalities
for explicit and deductive knowledge; second we report on the use of these techniques to validate the
correctness of TESLA [22], a protocol for secure real-time streaming.

The work presented here builds upon our earlier analysis of TESLA[17] and our engineering of MC-
MAS [13], a symbolic model checker for multi-agent systems. Therest of the paper is organised as
follows. In Section 2 we present syntax and semantics of the logic formalism used throughout the paper.
In Section 3 we briefly present MCMAS-X. In Section 4 we introduce the TESLA protocol and in Sec-
tion 5 we model check some of its key properties. We conclude in Section 6 by discussing experimental
results.

2. A Temporal Epistemic Logic

We shortly present the syntax and semantics of TDL [17], a multi-modal temporal epistemic logic with
security-specialised primitives; we assume familiarity with the intuitive meaning of basic cryptographic
primitives like keys, nonces, pseudo-random functions, andMAC functions. This section summarises
material in [17].

Syntax. We begin with the definition ofmessages, which constitute a base for the security-specialised
part of TDL.

Assume the following disjoint sets: a setK = {k1, k2, . . .} of symmetric and asymmetric keys, a
setN of nonces, a setT = {t1, t2, . . .} of plain-texts, and a setF of commitments to keys defined by
{f(k) | k ∈ K wheref : K → {0, 1, . . .} is a pseudo-random function}; the commitment to a keyk is
an integer value that is computed by applying a pseudo-random functionf to keyk. It is assumed that
f−1 cannot be computed fromf , so the keyk cannot be computed from the commitment tok. The set
of messagesM is defined by the following grammar:

m := t | k | n | f(k) | m · m | {m}k | MAC(k,m)

wheret ∈ T, k ∈ K, n ∈ N, f(k) ∈ F, m is a generic message, andMAC : K × M → {0, 1, . . .} is
a message authentication codefunction. Again, we assume that the inverse ofMAC cannot be computed
(so the keyk cannot be inferred from theMAC value).

We writem · m′ for the concatenation ofm andm′, {m}k for the encryption ofm with the keyk,
andMAC(k,m) for the message authentication code ofm andk. We assume that the setK is closed under
inverses, i.e., for a given keyk ∈ K there is an inverse keyk−1 ∈ K such that{{m}k}k−1 = m. If

1Anonymity protocols (such as the dining cryptographers) can successfully be analysed by using implicit knowledge only
[9, 26, 12].



the cryptosystem uses symmetric keys, thenk = k−1; in a public cryptosystemk andk−1 are different.
We also define asubmessagebinary relation⊑ on M as the smallest reflexive and transitive relation
satisfying the following conditions: (1)m ⊑ m · m′, (2) m ⊑ m′ · m, (3) m ⊑ {m}k.

Let PV be a set of propositional variables,AG a finite set of agents,p ∈ PV , i ∈ AG, andm ∈ M.
The setWF(TDL) of well-formed TDL formulae is defined by the following grammar:

ϕ := p | hasi(m) | senti(m) | receivedi(m) | fakedi(m) | droppedi(m) |
¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕUϕ) | A(ϕUϕ) | Kiϕ | Xiϕ | Aiϕ

The termshasi(m), senti(m), receivedi(m), droppedi(m), andfakedi(m) are security-specialised
propositional variables, which, as one would expect, are read as “agenti has messagem”, “ agenti sent
messagem”, “ agenti received messagem”, “ agenti dropped messagem, and “agenti faked message
m”, respectively. The propositionhasi(m) means that agenti is in explicit possession of message
m. The meaning of “explicit possession” depends on the application, the capabilities of the principals,
and the protocol the principals are running. The interpretation of temporal and epistemic operators is
standard. We use the shortcutDiα to representE(KiαUXiα). The formulaDiα is read as “agenti may
deduceα (by some computational process)”. For more details we refer to [17, 15]. The other temporal
modalitiesAG,EG,AF,EF can be defined as abbreviations of the ones above as standard.

Interpreted Systems. In this section we briefly summarise the multi-agent framework [8], over
which a semantics for TDL will be given. In particular, we will focus on a specific class of multi-agent
systems appropriate to modelling security protocols. These are message-passing systems in which one
or more of the agents is an adversary controlling the communication channel.

A multi-agent system (MAS) consists of an environment andn agents, each of which is in some
particular local state at a given point in time. We assume that an agent’s local state encapsulates all the
information the agent has access to, and the local states of the environment describe information that is
relevant to the system but that is not included in any local agent’s state; the environment can be viewed
as just another agent, as we will do here.

Given the security setting, we assume that the local state ofan agent is a sequence of events of
the form (e0, . . . , em), wheree0 is the initial event, and fori ∈ {1, . . . ,m}, ei is a term of the form
sent(i,m) or recv(m), wherem is a message andi is an agent. The termsent(i,m) stands for the
agent has sent messagem to agenti. Similarly the termrecv(m) represents that the agent has received
messagem. Note that inrecv(m) the sender is not specified. This is because the receiver willnot in
general be able to determine the sender of a message he has received.

A multi-agent system is not a static entity. Its computations are usually defined by means of runs
[8]. Thus, in these settings, aninterpreted systemfor a multi-agent system is defined as a set of all
possible runs together with a valuation function for the propositional variables of the language under
consideration. We interpret TDL on an extension of interpreted systems augmented to include awareness
sets; for more details we refer to [8, 17].

Definition 2.1. (Interpreted system)
Let AG be a finite set ofn agents, and let each agenti ∈ AG be associated with a set of local states
Li, and the environment be associated with a set of local statesLe. An interpreted systemis a tuple
M = (S, T,∼1, . . . ,∼n,V, A1, . . . , An) such thatS ⊆

∏n
i=1 Li×Le is a set of global states,T ⊆ S×S

is a serial (temporal) relation onS, for each agenti ∈ AG, ∼i⊆ S × S is an equivalence (epistemic)
relation defined by:s ∼i s′ iff li(s

′) = li(s), whereli : S → Li is a function that returns the local state



of agenti from a global state,V : S → 2PV is a valuation function, andAi : Li → 2WF(TDL) is an
awareness function assigning a set of formulae to each state, for eachi ∈ AG.

Awareness sets represent facts (expressed as TDL formulae)an agent is aware of at a given state; we
refer to [8, 17] for more details.

Satisfaction.A pathin M is an infinite sequenceπ = (s0, s1, . . .) of global states such that(si, si+1) ∈
T for eachi ∈ IN. For a pathπ = (s0, s1, . . .), we takeπ(k) = sk. By Π(s) we denote the set of all the
paths starting ats ∈ S.

Definition 2.2. (Satisfaction)
LetM be an interpreted system,s a state, andα, β TDL formulae. The satisfaction relation|=, indicating
truth of a formula in M at states, is defined inductively as follows:
(M, s) |= p if p ∈ V(s),

(M, s) |= ¬α if (M, s) 6|= α,

(M, s) |= α ∨ β if (M, s) |= α or (M, s) |= β,

(M, s) |= EXα if (∃π ∈ Π(s))(M, π(1)) |= α,

(M, s) |= E(αUβ) if (∃π ∈ Π(s))(∃m ≥ 0)[(M, π(m)) |= β and(∀j < m)(M, π(j)) |= α],

(M, s) |= A(αUβ) if (∀π ∈ Π(s))(∃m ≥ 0)[(M, π(m)) |= β and(∀j < m)(M, π(j)) |= α],

(M, s) |= Xiα if (M, s) |= Kiα and(M, s) |= Ai(α),

(M, s) |= Aiα if α ∈ Ai(li(s)),

(M, s) |= Kiα if (∀s′ ∈ S) (s ∼i s′ implies(M, s′) |= α).

Note that sinceDiα is a shortcut forE(KiαUXiα), as defined on page 3, we have that(M,s) |= Diα iff
(M,s) |= E(KiαUXiα).

Henceforth, we will only consider models with a fixed interpretation for the security-specialised
propositional variablessenti(m) andreceivedi(m); in particular, we take|= to be defined for these
propositions as follows:
(M, s) |= senti(m) if (∃m′ ∈ M)(∃j ∈ AG) such thatm ⊑ m′ andsent(j, m′) ∈ li(s),

(M, s) |= receivedi(m) if recv(m) ∈ li(s).
We leave the definitions of the other security-specialised propositions open; their interpretation will

depend on the protocol under consideration. They are not needed for the analysis of TESLA presented
below.

Let M be an interpreted system. We say that a TDL formulaϕ is valid onM or M is a model forϕ
(written M |= ϕ), if M,s |= ϕ for all statess ∈ S.

3. The model checkersMCMAS and MCMAS-X

3.1. Overview ofMCMAS

MCMAS is a symbolic model checker developed for the automatic verification of multi-agent systems.
In particular, MCMAS permits the verification of specifications involving time, knowledge, correct be-
haviour, and strategies of agents. MCMAS employs the formalism of interpreted systems and its extension
[8, 26] as the underlying semantics for all these operators.

MCMAS reduces the problem of model checking a formula on a model to the problem of compar-
ing two Ordered Binary Decision Diagrams (OBDDs, see [5] for more details) representing appropriate



Agent SampleAgent

Lstate = {s0,s1}; -- the local states

Lgreen = {s0,s1}; -- the "correct" local states

Action = {a1,a2}; -- actions

Protocol:

s0: {a1}; -- the actions permitted in a local state

s1: {a1, a2};

end Protocol

Ev:

-- the evolution function lists (on the right) the conditions

-- causing a transition to the local state on the left.

s1 if (Lstate=s0 and Action=a1 and AnotherAgent.Action=a7);

s0 if (Lstate=s1 and Action=a1);

end Ev

end Agent

Figure 1. An agent’s definition using ISPL.

Boolean formulae. The idea behind OBDD-based model checking is to represent the set of states[[ϕ]]
satisfyingϕ as a Boolean formula built recursively on the structure ofϕ. The Boolean formula repre-
senting[[ϕ]] is encoded as an OBDD and this is compared to the OBDD representing the Boolean formula
encoding the set of reachable states ofM . If these are equal, then it is the case thatϕ holds inM .
OBDDs are used because they offer an efficient and compact representation for most Boolean formu-
lae. MCMAS supports not only temporal logic but also epistemic logic [8], ATL [1], and modalities for
correctness/violation [14].

An input to MCMAS is a program written in ISPL (Interpreted Systems Programming Language)
representing all possible evolution of the system under analysis. ISPL is an SMV-like programming
language for the description of interpreted systems. An ISPL program contains a list of agents, each of
which is declared by reserved keywords:

Agent <AgentID> <AgBody> end Agent

where<AgentID> is any string uniquely identifying an agent, and<AgBody> contains the declarations of
the local states, the actions, the protocols, and the evolution function for the agent. Following the agents’
declaration, an ISPL file includes sections to declare the set of initial states, the evaluation function,
and the set of formulae to be verified. Figure 1 reports the definition of a simple agent; we refer to the
documentation available [25] for more details about the ISPL language.

MCMAS is available under the terms of the GNU General Public License (GPL) and it has been
compiled on a number of platforms. MCMAS is run either from the command line, a graphical interface
or a web interface, and it accepts various input parameters to inspect and fine-tune its performance.

3.2. MCMAS-X: an extensions ofMCMAS

MCMAS-X extends MCMAS to support the verification of the operatorsXi,Ai, andDi (see Section 2).The
verification of the additional operators is performed by applying the same methodologies used for epis-
temic operators. Specifically, given an interpreted systemM , let [[ϕ]] denote the set of global states ofM



Agent SampleAgent

Lstate = {s0,s1,s2,s3};

Lgreen = {s0,s1,s2};

Action = {a1,a2,a3};

Protocol:

[...]

end Protocol

Ev:

[...]

end Ev

-- This is the new additional section for Awareness

Aware:

s0 : {p1,p2}; -- SampleAgent is aware of p1 and p2 in s0

s1 : {p2}; -- ... and of p2 in s1

end Aware

end Agent

Figure 2. An agent’s definition using ISPL in MCMAS-X.

is whichϕ holds. By the definition of satisfiability given in Section 2,we have:

[[Ai(ϕ)]] = {s ∈ S|ϕ ∈ Ai(li(s))}.

Using standard procedures (e.g., see [7, 26]) the definitionof [[Ai(ϕ)]] can be re-casted in terms of
OBDDs, and this definition can be inserted in the recursive procedure presented in [26] to compute the
set[[ϕ]] for any TDL formulaϕ. The sets of states[[Xi(ϕ)]] and[[Di(ϕ)]] can similarly be expressed using
OBDDs.

We have implemented software procedures to perform the computation of these sets automatically in
a tool called MCMAS-X (Model Checking eXplicit knowledge), available for download [24].

MCMAS-X extends MCMAS’s syntax in two ways: first, it supports the verification of all the formulae
introduced in Section 2; second, it augments the description of an agent with the definition of the function
Ai. This latter step is achieved by introducing the new keywords

Aware: <definitions> end Aware

as exemplified in Figure 2. In this example, the agentSampleAgent is aware of propositionsp1 andp2
in local states0, and of propositionp2 in local states1 (notice that, following the definitions of Section 2
no consistency checks are made when defining awareness sets).

4. TheTESLA protocol

In this section we introduce thetimed efficient stream loss-tolerant authentication(TESLA) protocol
[22]. TESLA provides secure authentication of the source of each packetin multicast or broadcast data
streams. Five schemes of the protocol exist; each assumes a single sender (S) broadcasting a continuous
stream of packets to receivers (R) acting independently of one another; below we will describe the first
variant of the TESLA protocol, and we will take into consideration one receiver only.



In order to provide security, in TESLA it is assumed that: (1) the sender and the receiver must be
loosely time-synchronised; this can be done via a simple two-message exchange using, for example,
the NTP protocol [20]; (2) the protocol must be bootstrappedthrough a regular data authentication sys-
tem; this can be done using any secure session initiation protocol; (3) the protocol uses cryptographic
primitives includingMAC values and pseudo-random functions (PRFs);MAC is computed by amessage
authentication codefunction that takes as input a message and a secret key, whereas PRF providescom-
mitmentsto keys. It is assumed thatS andR know the PRF as well as the message authentication code
function to be used in the session.

Following [2, 4], we now outline a TESLA scheme assuming that the protocol uses one pseudo-
random function only, the participants are initially synchronised,R knows the disclosure schedule of the
keys, andS sends packets at regular intervals that are agreed withR during the synchronisation process.
More details are in [22].

Assuming thatS has a digital signature key pair, with private keyk−1
S

and public keykS known to
R, and thatR chooses a random and unpredictable nonce, the initialn steps, forn > 1, of the protocol
for one sender and one receiver are the following:
( -1) R→ S : nR

(0) S→ R : {f(k1), nR}
k−1

S

(1) S→ R : P1 · MAC(k1, P1), for P1 = t1 · f(k2)

(2) S→ R : P2 · MAC(k2, P2), for P2 = t2 · f(k3) · k1

. . .

(n) S→ R : Pn · MAC(kn, Pn), for Pn = tn · f(kn+1) · kn−1

As one can see from the above, with the exception of the two initial packets, which are used to
bootstrap the broadcasting process, and the third packet that contains only the messaget1 to be delivered,
a commitmentf(k2) to the key to be used to encode theMAC of the next packet, and theMAC(k1, P1) of
the first packet, each packet contains: (1) the messageti to be delivered; (2) acommitmentf(ki+1) to
the key to be used to encode theMAC of the next packets; (3) the keyki−1 that was used to encode the
MAC of the previous sent packet; (4) theMAC(ki, Pi) of the current packet.

TESLA guarantees, among others, the following security property: “ the receiver does not accept
any message unless it was actually sent by the sender”. We verify this and other properties by means
of MCMAS-X in the next section. We have checked other variants of the TESLA protocol in a similar
fashion but, given the procedure is similar, we only report here on the one above.

5. TheTESLA protocol and MCMAS-X

In the section we model check the TESLA protocol by means of MCMAS-X. To do this we define and en-
code an interpreted systemM = (S, T,∼S,∼R,∼I,V, AS, AR, AI) representing TESLA’s executions.
Given our state space needs be finite we set a limitn to the number of packets that can be broadcast
during one session; obviously this assumption does not affect the analysis as no attack depends on the
number of broadcasted packets.

As defined in Section 4, the TESLA protocol involves two participants: a sender (S) and a receiver
(R), communicating through an unreliable channel that is under complete control of an intruder (I ). In
the interpreted system framework it is convenient to see theprincipals as agents, and the intruder as the



environment. While specifying the agents (i.e., defining a set of local states, a set of actions, a protocol,
and an evolution function), we assume thatS has all the information he needs to compose a packet, i.e.,
he has a complete set of messagesMS ⊆ M. We also assume thatMS constitutesS’s initial database
that remains accessible to him throughout the run. Moreover, we assume thatI has all the information
needed to compose well-formed packets, withMI ⊆ M such thatMI ∩ MS = ∅, and we assume that
MI can grow during the run. We work with a Dolev-Yao intruder in control of the channel and able to
encrypt and decrypt messages if he has the appropriate key. We assume the intruder sends (resends and
fakes) well-formed packets only, i.e., any packet containsa message body, a key commitment, a key,
and an appropriateMAC value. Finally, we assume thatS, R, andI use a shared PRF and a shared MAC
function,R andI know the public key ofS, S andI begin with disjoint sets of keys, and thatR knows
the precise schedule of packets, and that this information is incorporated into the first packetP0, which
cannot be dropped or faked.

We introduce the following sets of local states forS, R andI , respectively:

LS = {[·], [recv(nR)], [sent(R, P0)]} ∪ {[sent(R, Pi−1), sent(R, Pi)] | 0 < i ≤ n}
∪{[sent(R, Pi−1), sent(R, Pi), sent(R, Pi+1)] | 0 < i ≤ n}.

LR = {[·], [sent(S, nR)], [stop], [recv(P0)]} ∪ {[recv(P0), recv(P2)]}∪
{[recv(Pi), recv(Pi+1)] | 0 ≤ i ≤ n} ∪ {[recv(P0), recv(P ′

1), recv(P2)]}∪
{[recv(Pi−1), recv(Pi), recv(Pi+1)] | 0 < i ≤ n}∪
{[recv(Pi−1), recv(Pi), recv(Pi+2)] | 0 < i ≤ n}∪
{[recv(Pi), recv(Pi+1), recv(P ′

i+2)] | 0 ≤ i ≤ n}∪
{[recv(P0), recv(P ′

1)]} ∪ {[recv(P0), recv(P ′
1), recv(P ′

2)]}.

LI = {[·], [recv(nR)], [recv(P0)]} ∪ {[recv(Pi), recv(Pi+1)] | 0 ≤ i ≤ n}∪
{[recv(Pi−1), recv(Pi), recv(Pi+1)] | 0 < i ≤ n}∪

{[recv(P0), recv(P1), send(R, P ′
1)]}∪

{[recv(P0), recv(P1), send(R, P ′
1), recv(P2)]}∪

{[recv(P0), recv(P1), send(R, P ′
1), recv(P2), send(R, P ′

2)]}∪
{[recv(Pi−1), recv(Pi), recv(Pi+1), send(R, P ′

i+1)] | 0 < i ≤ n}.

and the following sets of actions, performed in compliance with the description in Section 4:

• ActS = {λ} ∪ {sendPi, acceptPi | 0 < i ≤ n},

• ActR = {λ, nonce, stop} ∪ {acceptPi | 0 < i ≤ n},

• ActI = {λ} ∪ {dropPi, fakePi, acceptPi | 0 < i ≤ n}.

The intuitive meaning ofS’s local states is the following:[·] representsS’s initial state in the pro-
tocol; [recv(nR)] represents the message sent byR in order to establish communication;[sent(R, P0)]
represents the fact thatShas just sent packetP0 to R; [sent(R, Pi−1), sent(R, Pi)] and[sent(R, Pi−1),
sent(R, Pi), sent(R, Pi+1)] represent the fact thatShas sent packetsPj , wherej ≤ i+1 and0 < i ≤ n.
With regards toS’s actions, actionλ is the null-action,sendPi stands forS sending packetPi, and
acceptPi represents thatS recognises packetPi as accepted by the receiver.

R’s local states above stand for the following:[·] representsR’s initial state in the protocol;
[sent(S, nR)] represents the fact thatR has just sent the noncenR to S and is waiting for packets;



[stop] represents the fact thatR has just stopped collecting packets;[recv(P0)], [recv(P0), recv(P2)],
[recv(Pi), recv(Pi+1)], [recv(Pi−1), recv(Pi), recv(Pi+2)] and [recv(Pi−1), recv(Pi), recv(Pi+1)]
represent the packetsR has received fromS; [recv(P0), recv(P ′

1)], [recv(P0), recv(P ′
1), recv(P ′

2)],
[recv(P0), recv(P ′

1), recv(P2)], and[recv(Pi), recv(Pi+1), recv(P ′
i+2)] represent the faked packetsR

has received. As regards toR’s actions,acceptPi representsR accepting packetPi as authentic; the
other action names have intuitive correspondences.

For what concernsI , [·] representsI ’s initial state in the protocol;[recv(nR)] stands forI ’s state fol-
lowing the interception ofR’s initial message toS; [recv(P0)], [recv(Pi), recv(Pi+1)] and[recv(Pi−1),
recv(Pi), recv(Pi+1)] represent the packets intercepted byI ; [recv(P0), recv(P1), send(R, P ′

1)],
[recv(P0), recv(P1), send(R, P ′

1), recv(P2)], [recv(P0), recv(P1), send(R, P ′
1), recv(P2), send(R,

P ′
2)], and[recv(Pi−1), recv(Pi), recv(Pi+1), send(R, P ′

i+1)] represent the packets intercepted byI and
their faked versions. The actionacceptPi denotes the fact that intruder is not able to fake or drop the
packetPi; dropPi (respectivelyfakePi) encodes the action ofI dropping (respectively faking) packet
Pi.

We have now defined the set of states and set of actions for the multi-agent system representing
TESLA, so we can describe how the protocol evolves. In the multi-agents settings this is defined by
means of an evolution functiont : S × Act → 2LS×LR×LI , whereAct ⊆ ActS × ActR × ActI and
S ⊆ (LS × LR × LI). The functiont gives the transition relationT ; namely, for all thes, s′ ∈ S,
(s, s′) ∈ T if there exists anact ∈ Act such thatt(s, act) = s′. We do not report here the full evolution
function for TESLA; this can be found in [17].

To finalise the description of the interpreted systemM for TESLA, we have to define a valuation
functionV : S → 2PV and the awareness functionsAX : LX → 2WF(TDL), for X ∈ {S,R, I}. We
first introduce the following setPV of propositional variables:

PV = {hasR(m), sentS(m), receivedR(m), droppedI(m), fakedI(m) | m ∈ M}.

We defineV : S → 2PV as follows:
• hasR(ti) ∈ V(s) if there exist packetsPi−1, Pi and Pi+1 such thatf(ki) ⊑ Pi−1, ti ⊑ Pi,

ki ⊑ Pi+1, recv(Pi−1) ∈ lR(s), recv(Pi) ∈ lR(s) andrecv(Pi+1) ∈ lR(s),

• sentS(m) ∈ V(s) if there exists packetPi such thatm ⊑ Pi andsent(R, Pi) ∈ lS(s), for any
m ∈ MS,

• receivedR(m) ∈ V(s) if recv(m) ∈ lR(s), for anym ∈ MS ∪ MI,

• droppedI(m) ∈ V(s) if recv(m) 6∈ lR(s) andrecv(m) ∈ lI(s), for anym ∈ MS,

• fakedI(m) ∈ V(s) if there exist packetsPj such thatm ⊑ Pj andsend(R, Pj) ∈ lI(s), for any
m ∈ MS ∪ MI.

For R we take the following awareness functionAR : LR → 2WF(TDL). Let l ∈ LR andα be a
TDL formula. Then,α ∈ AR(l) if:

• α = receivedR(m) andrecv(m) ∈ l andm ∈ MS ∪ MI,

• α = fakedI(m) andl = [stop] andm ∈ MS ∪ MI,

• α = droppedI(m) andl = [stop] andm ∈ MS,

• α = hasR(m) and (recv(m) ∈ l or∃m′ such thatm ⊑ m′ andrecv(m′) ∈ l) andm ∈ MS∪MI.



For X ∈ {S, I}, the awareness functionAX : LX → 2WF(TDL) is the following: for anyl ∈ LX ,
AX(l) = ∅.

To generate automatically the above interpreted system representing TESLA we developed a program
in C++ that for an inputn of packets used generates the corresponding ISPL code (see Figure 3) to be
used with MCMAS-X. In this way we can automatically produce not just one but a number of instances
of the protocol. This helps us evaluate the performance of MCMAS-X.

Agent Receiver

Lstate={empty,send_s_nr,stop,recv_p0,recv_p0_recv_p1,recv_p0_recv_p2,...};

Action = {nothing,nonce,stop,accept_p1,accept_p2}; Protocol:

empty : {nonce}; recv_p0 : {nothing};

send_s_nr : {nothing}; stop : {stop};

recv_p0_recv_p2 : {stop}; recv_p0_recv_p1 : {nothing};

end

Protocol Ev:

stop if ((Lstate=stop and Action=stop and Sender.Action=nothing and

Intruder.Action=nothing) or (Lstate=recv_p0_recv_p2 and Action=stop

and Sender.Action=nothing and Intruder.Action=nothing) or ...);

...

end Ev Aware:

recv_p0 : {received_r_p0,has_r_p0};

recv_p0_recv_p1 : {received_r_p0,received_r_p1,has_r_p0,has_r_p1};

recv_p0_recv_p2 : {received_r_p0,has_r_p0,received_r_p2,has_r_p2};

...

end Aware

end Agent

Figure 3. A fragment ofR’s definition in the ISPL format forn = 2.

Given the interpreted systemM of TESLA as defined above, we now set out to check by means of
MCMAS-X all the properties examined in [17]. First we would like to establish whether or not TESLA

satisfies the desired security property:“the receiver does not accept any message unless it was actually
sent by the sender”, i.e., whether or notM is a model for the following TDL formula: for any0 < i < n,

hasR(ti) ⇒ (sentS(Pi−1) ∧ sentS(Pi) ∧ sentS(Pi+1)). (1)

Next we would like to check whether or not TESLA satisfies the stronger property“the receiver does
not accept any message unless he knows that it was actually sent by the sender”. This is expressed by
the following TDL formula: for any0 < i < n,

hasR(ti) ⇒ KR(sentS(Pi−1) ∧ sentS(Pi) ∧ sentS(Pi+1)). (2)

Further, we would like to check whether TESLA meets the following properties: (3)“it is always
the case that the receiver does not accept any message unlesshe knows that it was actually sent by the
sender”. (4) “the principals know about the presence of the intruder”. (5) the receiver is able to check
the source of messages, i.e.,“if a packet is faked, then the receiver would deduce this”. (6) “if the



receiver receives some packetsPi−1, Pi, andPi+1 with a messageti ⊑ Pi, and he does not acceptti,
then he knows that at least one of the packets was not sent by the intended sender”. In other words, if a
packet was indeed faked, the receiver is able to deduce this fact. (7)“if the intruder drops a packet, the
receiver will deduce this fact”.

The properties above can be expressed in a temporal-epistemic language by means of the formulae
below.

AG(hasR(ti) ⇒ KR(sentS(Pi−1) ∧ sentS(Pi) ∧ sentS(Pi+1))) (3)

KSEF (sentS(Pi) ∧ ¬receivedR(Pi)) (4)

fakedI(Pi) ⇒ DR(fakedI(Pi)) (5)

(receivedR(Pi−1) ∧ receivedR(Pi) ∧ receivedR(Pi+1) ∧ ¬hasR(ti)) ⇒ (6)
(

KR(¬sentS(Pi−1) ∨ ¬sentS(Pi) ∨ ¬sentS(Pi+1))∧

(DR(fakeI(Pi−1)) ∨ DR(fakeI(Pi)) ∨ DR(fakeI(Pi+1)))
)

AG(droppedI(Pi) ⇒ DR(droppedI(Pi)) (7)

All formulae above were successfully verified by MCMAS-X thereby demonstrating the correctness
of the protocol.

6. Experimental results and conclusions

We have employed the ISPL generator defined in the previous section to create a number of instances
of the TESLA protocol, from 5 to 320 steps. We have verified all formulae above for all steps analysed,
demonstrating the correctness of TESLA with respect to the specifications above. While process alge-
bras [4] and Lynch-Vaandrager automata [2] have previouslybeen used to analyse TESLA, our results
specifically demonstrate its correctness with respect to the temporal epistemic specifications above.

MCMAS-X uses OBDDs to verify the properties. Consequently most of the computational time spent
by the model checker is used to construct a symbolic representation of the model for the system. Ta-
ble 1 reports some experimental results obtained using a MacBook Pro equipped with a 2.1GHz Intel
processor, 2GBytes of RAM, running Mac OS X 10.4.6. The first column reports the number of packets,
the second column contains the time required for the verification, while the third and the fourth column
provide information about space requirements. In particular, column three lists the number of variables
required to encode the example: from this value the size of the model can be deducted. The size of the
model can also be estimated by evaluating the number of localstates and actions required (see Section 4),
as follows:

• The number of local states forS is 3 + 2n, and the number of actions is1 + 2n (wheren is the
number of steps of the protocol.

• The number of local states forR is 8 + 4n, and the number of actions is3 + n.

• The number of local states forI is 4 + 4n, and the number of actions is1 + 3n.



Therefore, the size of the model is in the order ofn15, obtained by multiplying the number of local states
(with an additional power of two for “next” variable), by thenumber of actions. The number of Boolean
variables required to encode this model is the logarithm in base two of the size of model as computed
above. For instance, 85 Boolean variables are required whenn = 200, corresponding to a model of size
285 ≈ 4 · 1025.

N. of packets Time (sec) N. of BDD variables Memory (bytes)

5 2 40 4612376

10 3 48 4737832

20 8 55 5644888

50 25 67 6562280

100 38 76 9572968

150 77 82 9191848

200 92 85 10674616

250 110 91 11481224

320 190 91 15703560

Table 1. Experimental results.

Figure 4. Experimental results.

Figure 4 depicts all the experimental results for time and memory requirements. The oscillating
behaviour of the memory requirements shown in the figure is generated by the heuristic techniques
employed in the construction of OBDDs (a similar behaviour was observed for a different example in
[12]). Nevertheless, an increasing trend is evident, especially for time requirements (dotted line).



Another factor which may impact the results is the kind of heuristics employed by MCMAS-X for
variable reordering. Currently, we adopt the default reordering methods provided by [13], which is
triggered only when the OBDDs reach a certain size. Moreover, we do not partition the transition relation
but we treat it as a monolithic OBDD. We leave the issue of partitioning, variable grouping, and variable
reordering open for future investigation.

Given that no other model checker is available to verify explicit knowledge we cannot offer a direct
comparison of the results above. Note though that on their own they do seem entirely adequate. Obvi-
ously, other specialised model checkers exist to verify temporal only properties (or simply reachability)
for security protocols, notably AVISPA [3], but given the different emphasis in the two approaches it
would not seem appropriate to compare experimental results.
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