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ABSTRACT
We explore the problem of specification and verification of
compliance in agent based Web service compositions. We
use the formalism of temporal-epistemic logic suitably ex-
tended to deal with compliance/violations of contracts. We
illustrate these concepts using a motivating example where
the behaviours of participating agents are governed by con-
tracts. The composition is specified in OWL-S and mapped
to our chosen formalism. Finally we use an existing sym-
bolic model checker to verify the example specification whose
state space is approximately 221 and discuss experimental
results.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model check-
ing; H.3.5 [Online Information Services]: Web-based
services

General Terms
Verification

Keywords
Web services, Model checking, compliance, epistemic logic.

1. INTRODUCTION
Web services (WS) are one of the leading paradigms un-

derlying application integration and consequently are driv-
ing the current IT efforts in the provision of solutions for
business and services. While a system made of few and lo-
calised services may only interact in a small number of ways,
when several subsystems are able to coordinate in an open
environment the end result may be much less predictable.
Certain components may fail, others may be incapacitated
to provide the services in the expected timeline and oth-
ers still may have to adopt a policy of prioritisation among
the requests that are being received. In this context the
paradigm of multi-agent systems (MAS) serves as a useful
metaphor for reasoning about the services provided by “au-
tonomous components acting rationally to maximise their
own design objectives” [14]. Indeed the W3C consortium [1]
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suggested that “A web service is an abstract notion that
must be implemented by a concrete agent. The agent is
the concrete piece of software or hardware that sends and
receives messages.”

In this context while the designer of the system as a whole
cannot guarantee an ideal outcome for the service composi-
tion — since he or she has no overall control over it — he
may still wish to establish verifiable mechanisms to create
an incentive in the agents to carry out transactions in a way
that is more likely to create an overall positive outcome.
One such mechanisms is service level agreements (SLAs).
SLAs are rules representing agreed level of service provision
to be supplied by the agents when interactions are invoked
within certain parameters. For example, a certain SLA may
prescribe that all requests from a client are to be answered
within 1 min whenever they are requested from 9am to 5pm
and within 3 mins from 5pm to 9am. While monitoring and
identifying responsibilities in the violation of SLAs is a non-
trivial problem whenever service inter dependencies exist, it
is well recognised that SLAs can act as a basic regulatory
mechanism and may help engineers in predicting the aver-
age behaviour of the system. There certainly is an increasing
emphasis on reasoning about SLAs in software engineering
and in the implementation of platforms supporting them.

Although SLAs are useful, they can represent only basic
agreements of service provision. Applications running com-
plex, human-like activities require more general and sophis-
ticated declarative specifications certifying legal-like agree-
ments among the parties. These mechanisms should not
only describe the intended timeline for the provision of ser-
vices but would also have to specify obligations, permissions
of states and/or actions in a variety of functioning circum-
stances including those coming into force as a result of cer-
tain agents not performing “as expected”. A useful concept
from the legal domain in this sense is the one of contract
as found in human societies. Contracts are legally binding
agreements regulating the behaviours between the parties.
Should a contract be broken by one of the parties, “legal
remedies” may be applicable in the form of penalties, ad-
ditional rights to some other party, and possibly additional
penalties with respect to third parties. Hence, contracts are
a useful concept to govern and regulate MAS and agent im-
plementations of WS. A key characteristic of them is that
they may still be broken. In this setting system engineers
may be interested in investigating what behaviours the MAS
implements when all agents are fulfilling their contracts, but
also, and perhaps more importantly, what properties the
system exhibits when some of the agents are violating their



contracts in certain or other ways. Particularly, one may
want to check if some really unwanted behaviours may result
following certain violations or whether the system provides
certain elements of regimentation thereby avoiding them.

The points above bring us to consider the issue of verifi-
cation of MAS implementing WS. Verification of WS is an
active topic of research (e.g., see [12,16]). However it has so
far been concerned with checking safety and liveness prop-
erties only. However when WS are phrased as a contract-
regulated MAS there are other properties that seem worth
studying, such as various notions of correctness/violations
of the contracts during a run, the evolution of the agents’
knowledge about themselves, the contracts and the expected
peers’ behaviours, etc.

There is a tradition in the MAS community to use rich
logic-based languages to analyse the behaviour of agents in
the system. In particular, not only is temporal logic used
but also, among others, epistemic (to reason about knowl-
edge of the processes), deontic (to reason about obligation
of the processes), cooperation (to reason about strategies of
the agents), and other modalities. These logic-based lan-
guages can be used to specify formally and unambiguously
the behaviour of the system. Recent developments in the
verification of MAS via model checking techniques [2,11,15]
permit the verification of not only plain temporal languages
but also a variety of modalities describing the informational
and intentional state of the agents. The above leads us to
believe that verifying contract-based WS implemented by
MAS is a worthwhile programme of research. In this paper
we set out to conduct an exercise in modelling WS as MAS
and analyse them by means of concept-rich, yet fully-formal
specification languages. We also report on how an exist-
ing symbolic model checker can be used to verify such rich
specifications. As a first step in the direction highlighted
above we do not represent the contracts explicitly. Instead
we focus on the resulting correctness of the states of exe-
cution of the agents with respect to the contracts that are
currently active at the time. This colouring of states is the
result of the interpretation of the relevant active contracts
with respect to the executions of the agents.

The rest of the paper is organised as follows. In Section 2
we introduce the trace-based semantics of interpreted sys-
tems and discuss various notions of violations. Section 3 in-
troduces a motivating example, including part of its OWL-
S specification, and some of its key properties. Section 4
presents the formalisation of the example in ISPL and re-
sults obtained from verifying the example using MCMAS.
We conclude in Section 5 also comparing our results to ex-
isting work.

2. TEMPORAL DEONTIC INTERPRETED
SYSTEMS

We introduce here a formalism to express notions per-
taining to the temporal evolution of MAS, the knowledge
of agents in the system as well as the correctness and vio-
lations of states and runs with respect to a predetermined
set of contracts regulating the interaction among the agents.
Intuitively we would like to be able to express specifications
capable of expressing:

• what properties are brought about by a run of the
system in which no agents violates any of his contracts,

• what properties hold true if some of the agents violate
(part of) their contracts,

• what knowledge the agents have about the consequences
of some other agents violating some of their contracts
and how this knowledge evolves over time.

These can serve as intuition, but we refer to Section 3 for
concrete examples.

Although some preliminary attempts to introduce contract-
modelling languages are being put forward we were not able
to identify one that would suit our intention of performing
automatic verification. As a consequence we will not model
the contracts themselves but we will simply use a flag reflect-
ing whether or not the agent in question is at that time in
compliance (respectively in violation) of the set of contracts
applicable to them. Clearly there is scope for further work
in this direction. Further note that we do not discuss the
issue of contract negotiation here. We assume all contracts
have been negotiated at the beginning of the execution of
MAS. Contract negotiation does generate interesting issues
but we are not able to discuss them here.

2.1 Semantics
We model a MAS as composed of a set of agents and

environment. We assume that each agent is implementing a
web service providing particular functionalities. We follow
the interpreted system model [4] and assume that at any
given time each agent in the system is in a particular local
state. This local state can be a state of compliance with
respect to the agent’s contracts or of violation. We will call
the former allowed (or green) states, and disallowed (or red)
the latter.

Each agent has a repertoire of actions available; the action
selection mechanism is given by the notion of local protocol,
effectively a function giving the set of possible actions that
may be performed when in a given local state. The system
evolves by means of transitions from a collection of (instan-
taneous) local states to another following the execution of
actions for all the agents in the system.

The notions of entitlement, penalty, etc., given by compli-
ance with respect to a given set of contracts is incorporated
in the notions of protocol and transition. This will be ex-
emplified in the example of the next section.

For the above purposes we adopt the model of deontic
interpreted systems [8] as extended to temporal models as
in [10]. Formally, we assume a set of agents A = {1, . . . , n}
and an environment e.

To each agent i we associate a set of instantaneous local
states Li and a set Le to the environment. For each agent
i we assume the set of local states is partitioned into two
subsets Li = Gi ∪ Ri: Gi represents green (or ideal) local
states, Ri represent the red (or non-ideal). Intuitively Gi

represent states of compliance with respect to the contract
the agent i is subjected to, whereas Ri represents states of
violation.

To represent the instantaneous configuration of the whole
MAS at a given time we use the notion of global state. A
global state s ∈ S is a tuple s = (l1, . . . , ln, le) where each
component li ∈ Li represents the local state an agent i is
in (these may be either a green or a red state), together
with the environment state. The set of all global states
S ⊆ L1 × · · · ×Ln ×Le is a subset of the Cartesian product
of all local states and the local states for the environment.



I ⊆ S is a set of initial states for the system.
The formal model we use accounts for the temporal evolu-

tion of the system. To do this we further assume that each
agent i has a repertoire of actions ACTi at his disposal, sim-
ilarly the environment. It is assumed null ∈ ACTi for each
agent i where null is the null action. Actions are selected
by means of action selection mechanisms local to the agents;
this is formalised by protocol functions Pi : Li → 2Acti for
any i ∈ A. In other words Pi(li) represents the actions that
may be performed in the state li (irrespective as to whether
li is a red or green state). Some of these actions will lead
to green states for the agent, others to red ones. A tuple
(a1, . . . , an, ae) in which every component represents the ac-
tion carried out by an agent (the environment for the last
component) is called a joint action.

The evolution of the system is given by locked transitions
for all the agents and the environment. The model assumes
that each agent moves from local state to local state at each
time tick. The transitions between local states depend on
which actions have been performed by all agents in the sys-
tem. So an agent’s action may affect another agent’s result-
ing next state. Although this is not enforced in the seman-
tics, in any concrete example we will impose that the colour
of the resulting target state will be green or red depending
on the local action the agent himself has performed; if nec-
essary we can have two copies for a certain local state, one
green and one red, to differentiate outcomes depending on
the agent’s latest action and the ones of the rest of the sys-
tem. Formally, for each agent we assume a local transition
function τi : Li×Act1× . . .×Actn×Acte → Li defining the
local state for agent i resulting from a local state and and a
joint action.

Local transitions may be combined together (the model
checker presented later will do precisely this) to give a joint
transition function τ : S ×Act1 × . . .× . . . Actn ×Acte → S
giving the overall transition function for the system. We
write (s, s′) ∈ T if τ(s, a1, . . . , an, ae) = s′ for some joint
action (a1, . . . , an, ae).

We introduce paths as standard to give an interpretation
to a branching time language. A path π = (s0, s1, . . . , sj) is
a sequence of possible global states such that (si, si+1) ∈ T
for each 0 ≤ i ≤ j. For a path π = (s0, s1, . . .), we take
π(k) = sk.

Definition 2.1 (Models) A model M = (S, I, T,∼1, . . . ,
∼n, h) is a tuple such that:

• S ⊆ L1×, . . . × Ln × Le is the set of global states for
the system,

• I ⊆ S is a set of initial states for the system,

• T is the temporal relation for the system defined as
above,

• For each agent i ∼i is an epistemic indistinguishably
relation defined by (l1, . . . , ln, le) ∼i (l′1, . . . , l

′
n, l

′
e) if

li = l′i.

• h : P → 2S is an interpretation for the set of proposi-
tional atoms P .

The above models allow us to interpret a temporal epis-
temic language. The relation T will be used to interpret
temporal operators whereas ∼i will be used to interpret epis-
temic modalities as standard [4].

2.2 Syntax
Our formal language is a multi-modal logic including oper-

ators for branching time, epistemic operators and specialised
local variables expressing correctness and violations. We will
see that by combining local propositions for violations and
correctness with temporal and epistemic operators we can
express a variety of notions of compliance.

Definition 2.2 (Syntax) The syntax of the specification
language is given by the following BNF syntax:

φ ::= p|gi(i ∈ A)|¬φ|φ ∧ ψ|Kiφ|EXφ|EFφ|EφUψ|EGφ.

In the above definition, p is an atomic proposition and gi

is an i-local atomic proposition expressing that “agent i is
presently in compliance (with respect to a set of contracts)”.
We use gi as we will often say that in this case “agent i is
in a green state”. We sometimes write ri for ¬gi expressing
that “agent i is presently not in compliance”, or “agent i is
in a red state”. The formula EGφ stands for “there exists a
path accessible from the present state in which φ holds glob-
ally”, i.e., φ holds in every future state in at least a path;
EFφ stands for“there exists a path in which φ holds at some
future state”; EXφ stands for “φ holds in the next state in
at least one path accessible from the present state”; EφUψ
stands for “there exists at least one path where ψ holds at
some point in the future and φ holds in all states until then”.
Kiφ means that “agent i knows φ”. For examples and in-
terpretation of the temporal epistemic fragment we refer to
specialised literature on the subject [4].

We can now interpret our logical language.

Definition 2.3 (Satisfaction) Satisfaction for a formula
φ in a model M at a global state s = (l1, . . . , ln, le), denoted
as (M, s) |= φ, is defined recursively as follows:

• (M, s) |= p iff s ∈ h(p);

• (M, s) |= gi iff li ∈ Gi;

• (M, s) |= ¬φ iff (M, s) 6|= φ;

• (M, s) |= φ ∧ ψ iff (M, s) |= φ and (M, s) |= ψ;

• (M, s) |= EXφ iff there exists a path π starting at s
such that (M,π(1)) |= φ.

• (M, s) |= EGφ iff there exists a path π starting at s
such that (M,π(k)) |= φ for all k ≥ 0;

• (M, s) |= EφUψ iff there exists a path π starting at s
such that for some k ≥ 0 (M,π(k)) |= ψ and (M,π(j)) |=
φ for all 0 ≤ j < k;

• (M, s) |= Kiφ iff for all possible global states s′ if s ∼i

s′ then (M, s′) |= φ.

The other connectives, such as AX, AG, AF and AU ,
are defined via the above as standard [3]. For example,
AXφ = ¬EX(¬φ).

The definition of satisfaction above is standard in tempo-
ral epistemic logic and only extends the literature by adding
propositional constants gi for compliance of agent i. There
are clear correspondences between these and what is dis-
cussed in [9].

Often we are interested in establishing whether a model
M representing a whole system satisfies a specification φ,
represented as M |= φ. In this case we will check whether
(M, s) |= φ for all s ∈ I.



2.3 Expressivity
We now formalise various notions of behavioural compli-

ance with respect to a set of contracts by using the semantics
above. There are many dimensions of possible investigation
here: compliance may be local or global, it may hold for por-
tions or for the whole length of a path, etc. We only focus
on some of these here.

Compliance. We begin by analysing the notion of local
compliance of agent i over a whole path. In particular we
can distinguish between possible local compliance over the
whole path (“there exists a path in which agent i is always in
a green state”) and inevitable local compliance (“in all paths
agent i will always be in full compliance”). The former can
be expressed in the syntax above by

EGgi

and the latter by

AGgi.

The above allows us to specify easily the consequence of
full local compliance. For instance, if we need to express
that “whenever agent i is in compliance the state of affairs
φ holds in the system,” we could state:

AG(gi → φ).

Should we need to refer to states resulting from more than
one agent being in compliance we can obviously take the
conjunction of the respective gi. For instance

AG(
^

i∈A′

gi → φ)

represents the fact that φ holds true whenever all agents in
A′ ⊆ A are in compliance.

By allowing A′ to grow to represent the whole set of agents
we can refer to “full global compliance”

AG(
^
i∈A

gi → φ)

representing “whenever all agents in the system are in com-
pliance φ holds.”

We can combine the above with knowledge modalities. For
example we may want to express that an agent i knows that
as long as agent j is in compliance a certain state of affairs is
always reachable in some way, expressible by Ki(AG(gj →
EXφ)). Obviously more complex specifications are possible.

Consequences of violations. In addition to the above,
we may be interested in what consequences arise should one
agent not be in compliance. For instance we may wish to
express the fact that following a violation by agent i a certain
state of affairs hold indefinitely and that all other agents
know this. This is expressible by the formula

AG(¬gi → AGφ) ∧
^
j 6=i

Kj(AG(¬gi → AGφ)).

Most often we are interested in the notion of “recovery”.
Following a local violation, perhaps there is a way in the
system for the agent to recover (often contracts prescribe
penalties to be payable following certain violations). This is
expressible as:

AG(¬gi → EFgi).

In the language above we also can easily express that all
agents always know this:

AG(
^
i∈A

KiAG(¬gi → EFgi)).

Similar formulas may be introduced regarding recovery for
global violations as well.

The above are only some examples of the possibilities of
the language. We analyse a concrete WS example in the next
section and analyse it in Section 4 in view of the above.

3. A MOTIVATING CASE STUDY
In this section we present a composition of services which

are composed as per a pre-defined contract, negotiated be-
tween services. Note that we use the notion of contracts
only as an illustrative mechanism to exemplify the concepts
of correctness and violations. We do not go into details or
formalise the intricacies of each of the processes in the com-
position.

In our example the participating agents or services, as
illustrated in Figure 1, are: a principal software provider
(PSP ), a software provider (SP ), a software client (C), an
insurance company (I), a testing agency (T ), a hardware
supplier (H) and a technical expert (E).

Client

Principal 
software
provider

Software
Provider

Hardware 
Supplier

Testing 
Agency

Insurance

Technical
Expert

Figure 1: Interaction between various partners in
the composition.

The high-level workflow of the composition can be de-
fined as follows: Client C wants to get a software developed.
The software is to be deployed on hardware supplied by H.
To deploy the software, the technical expert E is needed.
Components of the software are provided by different soft-
ware providers. We consider two software providers here:
PSP and SP . The components need to be integrated by
the providers before the software is delivered to C.

The software integration is carried out by PSP when SP
sends its component to PSP . PSP and SP twice update
each other and C about the progress of the software develop-
ment. If the client would like some changes in the software
he can request them before the second round of updates.
Any change suggested by the client after the second up-
date is considered a violation and the client is charged a
penalty. The client can recover from this violation by pay-
ing the penalty or by withdrawing the request for changes.
If PSP and SP do not send their updates as per schedule,
this is also considered a violation and they are charged a
penalty. Every update is followed by a payment in part by
the client C to the PSP . Payment to SP is handled by
PSP and is done once the software is deployed successfully.



PSP integrates the components and sends the integrated
component to T for testing. Results from testing are made
available to all the parties, i.e., PSP , SP and C. If the test
fails, the components are revised and tested again. Compo-
nents can be revised twice. If the third test fails C always
cancels the contract with PSP . If the testing succeeds, C
invokes I to get the software insured. C then invokes H to
order the hardware. Finally C invokes E to get the software
deployed. If the software cannot be deployed then the hard-
ware and the components have to be re-evaluated. Compo-
nents can be revised twice. If the third test fails C always
cancels the contract with PSP and H.

From the above scenario it can be seen that contracts
between services can be usefully employed to illustrate the
notion of correctness in behaviour. Any deviation from the
behaviour identified in the contract is considered a violation.
The contract might in some cases also specify mechanisms
for recovering from violations. Keeping this in perspective
we require that before the composition can be realised, con-
tracts are established and negotiated between the different
parties involved.

The contract between various parties can be violated in
many ways. Table 1 illustrates informally some of the con-
ditions under which some local violations may occur.

Agent Violation condition Recovery
1 PSP - does not send mes-

sages to SP and/or C
in the first and/or sec-
ond run of update.

pay penalty charge

2 - does not send pay-
ment to SP .

no

3 SP - does not send update
messages to PSP or
C.

pay penalty charge

4 - does not send its
components to PSP .

no

5 C - request changes after
second update.

pay penalty charge or
withdraw changes

6 - does not send the
payment to PSP .

no

7 T - does not send the
testing report to C,
PSP and/or SP .

no

8 H - does not deliver the
hardware system to C.

no

9 - ignores the deploy-
ment failure.

no

10 E - does not deploy the
software on the hard-
ware system.

no

11 I - does not process the
claim of C.

no

Table 1: Agents and their violation conditions. .

3.1 Specifying the “Client” as an OWL-S ser-
vice

Although several standards are now available for the speci-
fication of services and their composition, we use OWL-S [13]
below.

While verifying behaviour of services for contract com-
pliance, it is crucial to verify these conditions. Using the
techniques proposed in our framework, we can easily model
the pre and post conditions using the input language of the
model checker below and thus facilitate their verification.

In OWL-S a service is identified as a process which has
properties defined in terms of IOPR (inputs, outputs, pre-
conditions and results). Processes can be atomic or com-
posite. Since in this paper, our objective is to model and
verify correctness of behaviour and its violations, we do not
emphasise on the process description capabilities of OWL-S
and present only a high level representation of the composi-
tion.

In our example the client C is a composite process. We
assume the contracts to have been negotiated and be active
at the beginning of the run. The process is a composition of
the following sub processes:
SoftwareUpdates, TestResults, SoftwareReceipt,
SoftwareInsurance, HardwareOrder, SoftwareDeployment.
Each of these processes can be further defined as being
atomic or composite depending on the choice of granular-
ity in process description, i.e., black, grey, or white box.
One possible composition of these processes for the parent
client process is as illustrated in Figure 2. Specifying infor-

Client

Contract
Negotiation

Software
Updates

Test
Results

Software
Receipt

Software
Insurance

Hardware
Order

Software
Deployment

Figure 2: Composition of services for the “Client”.

mally, the client monitors updates for the software, receives
the test results and then receives the software. These pro-
cesses are performed in sequence followed by the parallel ex-
ecution of insuring the software and ordering the hardware
(spilt+join). Finally the software is deployed.

As an example we specify “SoftwareUpdates” in detail.
As illustrated in Figure 3, the process SoftwareUpdate is
composed of the following sub processes:

ReceiveFirstUpdate, RequestChanges,
AcceptFirstUpdate, ReceiveSecondUpdate,
RequestFurtherChanges, ReceivePenaltyMessage,
AcceptSecondUpdate, PayPenalty, WithdrawChanges

Processes ReceiveFirstUpdate, ReceiveSecondUpdate and
ReceivePenalty are composite processes composed using
the “choice” control construct while the other processes are
atomic. The client receives the first update following which
he can request changes or accept the update. This is followed
by the second update. If the client requests any changes to
the software at this stage, he is required to pay the penalty.
This is considered as violation. By withdrawing the request
or by paying the penalty the agent may recover from this vi-
olation. Note that this behaviour is in accordance with the
workflow defined earlier and forms a part of the contract
between PSP and C.



Software
Updates

ReceiveFirstUpdate

RequestChanges

ReceiveSecondUpdate

RequestFurtherChanges

ReceivePenalty

AcceptSecondUpdate

AcceptFirstUpdate

PayPenalty WithdrawChanges

Figure 3: Composition of services for “SoftwareUp-
dates”.

The IOPRs for the process are the computed IOPRs for
the individual atomic processes. We specify some snippets of
the SoftwareUpdate process using the presentation syntax
of OWL-S.

define composite process SoftwareUpdate

( inputs: (firstUpdate - xsd:string

firstUpdateStatus - xsd:boolean

changes - xsd: string

UpdateStatus - xsd:boolean

furtherChanges - xsd: string

penalty - xsd:string

withdrawNotice - xsd:string)

preconditions :( hasContract(contractID)

& receivedFirstUpdate(firstUpdateStatus)

& hasChanges(firstUpdateStatus, changes)

& receivedSecondUpdate(secondUpdateStatus)

& hasFurtherChanges(secondUpdateStatus,furtherChanges)

& receivedPenaltyMessage(penalty))

outputs:( firstUpdateStatus - xsd:boolean

changes - xsd: string

secondUpdateStatus - xsd:boolean

furtherChanges - xsd:string

withdrawReceipt - xsd:string)

results :(

hasFurtherChanges(secondUpdateStatus,furtherChanges)

|-> output(penalty - xsd:string)

hasReceivedPenaltyMessage() and paidPenalty(penalty)

|-> output(penaltyReceipt -xsd:string)

hasReceivedPenaltyMessage() and withdrawChanges()

1-> output(withdrawChanges))

{ perform ReceiveFirstUpdate;

perform RequestChanges;?

perform AcceptFirstUpdate;

perform ReceiveSecondUpdate;

perform RequestFurtherChanges;?

perform AcceptSecondUpdate;

perform ReceivePenaltyMessage;

perform PayPenalty;?

perform WithdrawChanges;}

4. ANALYSIS AND VERIFICATION
As we show below, properties specifying behavioural cor-

rectness can be verified using MCMAS [7]. Implemented in
C++ and based on OBDD technique, MCMAS is a model
checker developed particularly for multi-agent systems to
verify CTL, epistemic, deontic and ATL formulae. The pro-
cedure of verifying properties is briefly described as follows:
A system and its properties are fed to MCMAS in the for-
mat of ISPL [7], the input language of MCMAS. The ISPL
file is parsed using standard tools, and parameters such as
agent names and states, are stored in temporary lists. The
lists are traversed to build the OBDDs for the verification
algorithm. An OBDD representing the set of states in which
a specification formula holds is computed. The OBDD for
the set of reachable states is then compared with the OBDD
corresponding to each formulae. In case of an equivalence
the tool reports a positive output, otherwise a negative out-
put is produced.

In what follows, we encode the process outlined in section
3.1 in ISPL. We then formalise a few properties using the
formal model specified in section 2 and verify them using
MCMAS.

4.1 Encoding specifications in ISPL
There is a precise correspondence between the semantics

of section 2 and the language ISPL. An agent i in ISPL is
defined as (1) a set of local states, some of which are initial
states, (2) a set of local actions, (3) a protocol specifying for
each local state, a subset of local actions that can be per-
formed in that state, and (4) an evolution function defining
the transition relation among local states. The properties
to be verified are encoded as temporal-epistemic formulae
and are defined over atomic propositions, each of which is
mapped to a set of compound states across some agents.

To model the complete system as illustrated in Section 3,
we define seven agents, each of which represent the main
thread of a service. We begin by representing the compo-
sition as a state transition diagram such that we put local
states before and after atomic processes and these atomic
processes become actions connecting local states. For exam-
ple, Figure 4 shows that atomic process receiveFirstUpdate
in SoftwareUpdate is translated into an action receiveFirstUp-
date starting from a local state s to another local state s′.
Since OWL-S does not define processes directly in terms of

ReceiveFirstUpdate
receiveFirstUpdate

S

S'≫

Figure 4: State transition diagram for
receiveFirstUpdate.

the primitives of interpreted systems, we need to extract
these from the IOPRs and the process definition. For the
agents running parallel processes, such as PSP , SP and C,
extra agents or processes are generated. For example, three
extra agents are constructed for PSP to model its concur-
rent executions of sending update messages to SP and C,
and receiving update messages from SP . These three agents
are synchronised with the main thread of agent PSP . In to-



tal, 19 agents are generated. The following piece of ISPL
code1 shows the definition of agent C.

Agent I

-- Local states

Lstate={c0, c1, c2, c3, c4, c5,...};

-- local actions

Action={waiting, start, endSuccess, endFail,

contractFail, null...};

-- Local protocol

Protocol :

c0 : {waiting};

c1 : {start };

c2 : {waiting};

c3 : {endSuccess, endFail};

c4 : {contractFail};

c5 : {null};

...

end Protocol

-- Evolution function

Ev :

c1 if (Lstate = c0 and Action = waiting);

c2 if (Lstate = c1 and Action = start and

C_1.Action=start and C_2.Action=start);

c3 if (Lstate = c2 and Action = waiting);

c4 if (Lstate = c3 and Action = endFail and

(C_1.Lstate=c1_7 or C_2.Lstate=c2_7));

c5 if (Lstate = c4 and Action = contractFail) or

(Lstate = c20 and Action = contractFail);

...

end Ev

end Agent

4.2 Specifications
In this subsection we formalise various properties of com-

pliance (or lack of) for the motivating case study outlined
in Section 3 using the Syntax defined in Section 2.

• Whenever PSP is in a green state (i.e., is in a state of
compliance), he knows the contract can be eventually
fulfilled successfully.

AG(gPSP → KPSPEF (contractSucceed)) (1)

Intuitively this property should not hold because even
though PSP is in compliance, the software might not
pass testing or cannot be deployed.

• In some of the paths where C is always in compliance,
he eventually receives the software.

EG(gC ∧ EF (receiveSoftware)) (2)

• In some of the paths where PSP is always in com-
pliance, the software can be eventually integrated and
tested.

EG(gPSP ∧ gSP ∧ EF (softwareIntegrated)∧
EF (softwareTested)) (3)

• PSP knows that for some paths, it is possible that
whenever PSP , SP , C, I, H, T and E are all in com-
pliance, the software can be eventually delivered.

KPSP (EG(gall → EF (softwareDelivered))), (4)
1The complete code of the system is available from the au-
thors upon request.

where gall represents gPSP ∧gSP ∧gC∧gT ∧gH∧gE∧gI .

• It is possible for C to be in compliance until the soft-
ware is deployed successfully but then entering a vio-
lation by not sending the final payment to PSP .

E((gC ∧ EF (softwareDeployed))

U EG(¬gC ∧ noPayment)) (5)

• It is possible that SP is always in compliance be-
fore failing to provide the component requested by the
PSP .

E(gSPU EG(¬gSP∧componentNotProvided)) (6)

• It is possible that PSP does not send the first update
to C as per schedule and only sends it after paying a
penalty to C.

E(gPSPU ((¬gPSP ∧ noFirstUpdate)∧
EX((gPSP ∧ payPenalty) ∧ EX EG(gPSP )))) (7)

• It is possible that C withdraws the request for change
made after the second update.

E(gC U ((¬gC ∧ illegalChangeRequest) ∧ EF
(gC ∧ withdrawChangeRequest ∧ EXEG(gC))))

(8)

4.3 Model properties in ISPL
Before we check the temporal-epistemic specifications above,

it is necessary to define an evaluation function in the ISPL
model. This function maps atomic propositions to states
and specifies for every atomic proposition the set of states
in which the proposition holds. Conditions in OWL-S, e.g.,
preconditions, can be specified in terms of atomic proposi-
tions. In order to model compliance, we define an atomic
proposition gi that holds on all green states of agent i. For
example, gC for the client is defined in ISPL as follows:

Evaluation

...

g_C if C.Lstate=c0 or C.Lstate=c1 or C.Lstate=c2

or C.Lstate=c3 or C.Lstate=c4, ...;

...

end Evaluation

Specification formulae are specified in “Formulae” section
in ISPL. For example, formula (5) is defined in ISPL as
follows:

Formulae

...

E ((g_C and EF softwareDeployed) U

EG (!g_C and noPayment));

...

end Formulae

4.4 Experimental verification Results
We encoded the scenario and the specification above in

ISPL and verified it using MCMAS. Our system was run-
ning on Linux Fedora 8 (kernel 2.6.23) on Intel Core 2 Duo
E6750 2.66GHz with 2GB memory. 68 BDD variables were
generated to encode the local states of agents and 66 BDD



variables to encode actions. In order to encode the transi-
tion relation, an additional copy of BDD variables for local
states was constructed. In total, 202 BDD variables were
used. The overall state space is estimated to have 221 global
states and uses 111 MB memory space. It took 41 minutes
for MCMAS to verify the properties in the previous subsec-
tion. Table 2 presents the results. It can be seen that they
are in line with what expected.

Property Satisfaction Property Satisfaction
1 no 5 yes
2 yes 6 no
3 yes 7 yes
4 yes 8 yes

Table 2: Verification of the properties.

5. CONCLUSION
Extensive research has been done on the automated verifi-

cation of Web service composition. Pistore et al [12] present
a technique based on“Planning as Model Checking”for plan-
ning under uncertainty for composition and monitoring of
BPEL4WS processes. Fu et al [5] presents a framework
where BPEL specifications are translated to an intermediate
representation, using guarded automata as XPath expres-
sions. This is followed by the translation of the interme-
diate representation to a verification language “Promela”,
input language of the model checker SPIN. Hu Huang et
al [6] presents an approach using the BLAST model checker
to verify the process models of OWL-S.

None of the above efforts, however, address the issue of
violation or non-compliance of pre-defined behaviour when
specified as SLAs, contracts or protocols - specifically in a
multi-agent scenario.

In this paper, we used a reasonably complex example (221

states) to show that it is possible to verify at design time,
temporal-epistemic properties of services that capture the
compliance levels of their implementing agents.

Much work still needs to be done in this line, e.g., there is
presently no automatic way to generate the green/red states
for a language representing contracts. Also it remains to be
seen how the input language of the checker can be adapted
to accept a suitable abstraction of the service composition
so that a tool can be used to provide automatic compilation.
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