
A data symmetry reduction technique for
temporal-epistemic logic

Mika Cohen1, Mads Dam2, Alessio Lomuscio1, and Hongyang Qu3

1 Department of Computing, Imperial College London, UK
2 Access Linnaeus Center, Royal Institute of Technology, Sweden

3 Oxford University Computing Laboratory, UK

Abstract. We present a data symmetry reduction approach for model
checking temporal-epistemic logic. The technique abstracts the epistemic
indistinguishably relation for the knowledge operators, and is shown to
preserve temporal-epistemic formulae. We show a method for statically
detecting data symmetry in an ISPL program, the input to the temporal-
epistemic model checker MCMAS. The experiments we report show an
exponential saving in verification time and space while verifying security
properties of the NSPK protocol.

1 Introduction

Abstraction by data symmetry reduction [1] is one of the techniques put for-
ward to tackle the state-explosion problem in model checking reactive systems.
While the effectiveness of the methodology is well understood in the context of
temporal logics, this is not the case for richer logics. Specifically, no analysis
has been conducted so far in the context of temporal-epistemic logic [2]. This
seems unsatisfactory as efficient symbolic checkers for epistemic languages have
been put forward recently [3–5] and the usefulness of temporal-epistemic spec-
ifications demonstrated in a number of application-critical scenarios including
web-services [6], automatic fault-detection [7], and security [8].

The models for the applications above display large numbers of initial states,
often resulting from randomisation of data parameters (such as nonces and mes-
sages), exacerbating further the problem of checking large models. In such mod-
els, as it is known, a group of computation paths may well be the same up
to renaming the data parameters in question. While in pure temporal logic we
can safely collect representatives on these traces and conduct our checks only
on these, this is not immediately possible in the presence of temporal-epistemic
specifications. In fact, as we recall below, in these frameworks the epistemic
operators are defined analysing all possible global states in which the local com-
ponent for the agent in question is the same even if these belong to different
computation paths. Because of this, simply collapsing traces would make some
epistemic specifications satisfied in the abstract model even if they were not in
the concrete one.

In this paper we show that an alternative methodology solving this problem
may be defined. Specifically, we show how we can still reduce the number of

2

initial states to be considered by using an “abstracted” version of the epistemic
relations for agents in the system. We show this reduction is sound and complete
for temporal-epistemic specifications, in the sense that no false positives or false
negatives are found in the reduced model. We also show how to compute the ab-
stract epistemic relations efficiently, and how to statically detect data symmetry
in the input to the temporal-epistemic model checker MCMAS [5] by means of
scalarset annotations [1]. The experiments we report on a prototype extension
to MCMAS show an exponential reduction in time and space for the verification
of the security protocol NSPK.

Related work. Data symmetry reduction is a known abstraction technique
aiming to collapse states that are equivalent up to a renaming of data, thereby
yielding a bisimilar quotient model [1]. There has been no attempt in the litera-
ture to extend data symmetry reduction from temporal logic to epistemic logic.
Indeed, while abstraction for temporal properties is a well-established research
area, abstraction for epistemic properties has only recently begun to receive some
attention. In [9, 10], Kripke models for epistemic logic are abstracted by approx-
imating the epistemic relations. However, the models are not computationally
grounded, which hampers concrete applications [11]. In [12], computationally
grounded systems are abstracted by collapsing local states and actions of agents.

Closer to our contribution, [13] gives a technique for component symmetry
reduction [14, 15] not too dissimilar from the data symmetry reduction technique
in this paper. Indeed, Theorem 1 in this paper has a close analogue in [13],
although the semantics for the epistemic modality is abstracted there into a
counterpart semantics [16]. Beyond this, the main contribution in this paper
is to address abstraction and symmetry detection in terms of concrete models
represented in the MCMAS model checker. Specifically, we introduce a symbolic
extension of MCMAS on which a syntactic criteria can be given that guarantees
data symmetry, and we compute the abstract semantics without quantifying over
permutations. This allows significantly improved savings in relation to [13].

Overview of paper. The rest of the paper is organised as follows. In sec-
tion 2 we review the interpreted systems framework, the temporal-epistemic
logic CTLK, and the model checker MCMAS. In Section 3 we present the data
symmetry reduction technique for CTLK properties of interpreted systems. In
Section 4 we show how to detect data symmetry in an interpreted system descrip-
tion in the input language to MCMAS. In Section 5 we report on experimental
results for a prototype extension to MCMAS. Finally, Section 6 concludes.

2 Interpreted systems, CTLK, and MCMAS

We model multi-agent systems in the mainstream interpreted systems framework
[2] and express system requirements in the temporal-epistemic logic CTLK [17];
this section summarises the basic definitions. More details can be found in [2].
We also describe MCMAS [5], a model checker for the verification of CTLK
properties of interpreted systems.

3

Interpreted systems. Consider a set Ag = {1...n} of agents. For each agent
i, assume a non-empty set Li of local states that agent i can be in, and a
non-empty set ACTi of actions that agent i can perform. Assume also a non-
empty set LEnv of states for the environment and a non-empty set ACTEnv of
actions for the environment. Let S = L1 × · · · × Ln × LEnv be the set of all
possible global states and ACT = ACT1 × · · · ×ACTn ×ACTEnv the set of all
possible joint actions. For each agent i assume a local protocol Pi : Li −→ 2ACTi

selecting actions depending on the local state of i, and a local evolution function
ti : Li × ACT −→ Li specifying how agent i evolves from one local state to
another depending on its action, the actions of the other agents, and the action of
the environment. Analogously, assume an environment protocol PEnv : LEnv −→
2ACTEnv , and an environment evolution function tEnv : LEnv ×ACT −→ LEnv.
Let P = 〈P1, · · · , Pn, PEnv〉 be the joint protocol and t = 〈t1, · · · , tn, tEnv〉 be
the joint evolution function. Finally, consider a non-empty set I0 ⊆ S of initial
states, and an evaluation function V : A −→ 2S for some non-empty set A of
propositional atoms.

Definition 1 (Interpreted system). An interpreted system is a tuple I =
〈S,ACT, P, t, I0, V 〉 with a set S of possible global states, a set ACT of possible
joint actions, a joint protocol P , a joint evolution function t, a set I0 of initial
states, and an evaluation function V .

For any global state g = 〈l1, . . . , ln, lEnv〉 ∈ S, we write gi for the local state li
of agent i in g, and gEnv for the environment state lEnv in g.

The local protocols and the local evolution functions together determine how
the system of agents proceeds from one global state to the next. The global
transition relation R ⊆ S × S is such that 〈g, g′〉 ∈ R if and only if there exists
a = 〈a1, . . . , an, aEnv〉 ∈ ACT such that for all i ∈ Ag∪{Env}, ti(a, gi) = g′i and
ai ∈ Pi(gi). We assume throughout the paper that the global transition relation
R is serial, i.e., for every g ∈ S, there is g′ ∈ S such that gRg′.

A path in I is an infinite sequence g0, g1, . . . of global states in S such that
each pair of adjacent states forms a transition, i.e., gjRgj+1 for all j. The set G
of reachable states in I contains all global states g ∈ S for which there is a path
g0, g1, . . . , g, . . . starting from some g0 ∈ I0.

Intuitively, the local state gi contains all the information available to agent
i: if gi = g′i then global state g could, for all agent i can tell, be global state g′.
This observation can be used to employ a knowledge modality defined on the
relation given by the equality on the local components [2]:

Definition 2 (Epistemic relation). The epistemic indistinguishability rela-
tion ∼i⊆ G×G for agent i is such that g ∼i g′ iff gi = g′i.

Computation Tree Logic of Knowledge. We consider specifications in the
temporal-epistemic logic CTLK which extends CTL with epistemic modalities.

Definition 3 (CTLK). Assume a set Ag = {1..n} of agents i and a non-empty
set A of propositional atoms p. CTLK formulae are defined by the expression:

φ ::= p | ¬φ | φ ∧ φ | Kiφ | EXφ | EGφ | E(φUφ)

4

The knowledge modality Ki is read “Agent i knows that”, the quantifier E is
read “For some computation path” and the temporal operators X, G and U
are read “In the next state”, “Always” and “Until” respectively. We assume
customary abbreviations: Ki encodes the diamond epistemic modality ¬Ki¬;
AGφ represents ¬E(trueU ¬φ) (“For all paths, always φ”); AF φ abbreviates
¬EG¬φ (“For all paths, eventually φ”).

Satisfaction of the language above with respect to interpreted systems is
defined as standard. Specifically, the knowledge modality Ki is evaluated on an
interpreted system I on a point g by means of Definition 2 as follows:

– (I, g) |= Kiφ iff for all g′ such that g ∼i g′ we have that (I, g′) |= φ.

The CTL modalities are interpreted on the serial paths generated by the global
transition relation R: (I, g) |= EXφ iff for some path g0, g1, . . . in I such that
g = g0, we have (I, g1) |= φ; (I, g) |= EGφ iff for some path g0, g1, . . . in I such
that g = g0, we have (I, gi) |= φ for all i ≥ 0; (I, g) |= E(φUφ′) iff for some
path g0, g1, . . . in I such that g = g0, there is a natural number i such that
(I, gi) |= φ′ and (I, gj) |= φ for all 0 ≤ j < i.

We write [[φ]] for the extension of formula φ in I, i.e., the set of reachable
states g ∈ G such that (I, g) |= φ. We say that formula φ is true in system I,
written I |= φ, iff I0 ⊆ [[φ]].

MCMAS. The tool MCMAS is a symbolic model checker for the verification of
CTLK properties of interpreted systems [5]. We illustrate its input language, the
Interpreted Systems Programming Language (ISPL), with the bit-transmission
protocol, a standard example in temporal-epistemic logic [2].

Example 1 (Bit-transmission protocol [2]). A sender and a receiver communicate
over a lossy channel. Their goal is to transmit a bit value b ∈ {0, 1} from the
sender to the receiver in such a way that the sender will know that the receiver
knows the value of b. The sender sends the bit value and continues to do so until
it receives an acknowledgement of receipt. The receiver waits until it receives a
bit value and then sends an acknowledgement and re-sends it indefinitely.

The protocol can be modelled as an interpreted system I with a sender agent
S, a receiver agent R and the environment Env as the unreliable channel. We
would like to verify that once the sender receives the acknowledgement, the bit
held by the receiver is the same as the bit held by the sender, that the receiver
knows this, and that the sender knows that the receiver knows this:

AG (recack −→ KS KRagree) (1)

where KS and KR are the epistemic modalities for the sender and receiver agents
respectively, and the propositional atom agree holds at a global state g if the
variable bit in the receiver agrees with the variable bit in the sender, i.e.,
gR(bit) = gS(bit), and the propositional atom reckack holds when the sender
has received an acknowledgement. The code in Fig.1 describes the system I
and the CTLK specification (1) in ISPL. The code should be straightforward to
understand in view of the above. We refer to [5] for more details.

5

Agent S
Vars
bit: {0,1};
rec_ack: {true,false};

Actions = {send__0,send__1,null};
Protocol
rec_ack=false and bit=0: {send__0};
rec_ack=false and bit=1: {send__1};
rec_ack=true: {null};

end Protocol
Evolution
rec_ack=true if

R.Action=sendack and
Env.Action=transmit;

end Evolution
end Agent

Agent Env
Vars:
state: {ok, error};

end Vars
Actions = {transmit,drop};
Protocol:
state=ok: {transmit};
state=error: {drop}

end Protocol
-- Evolution omitted
end Agent

Agent R
Vars
bit: {0, 1};
rec_bit: {true, false};

-- Actions, Protocol omitted
Evolution
bit=0 and rec_bit=true if

S.Action=send__0 and
Env.Action=transmit;

bit=1 and rec_bit=true if
S.Action=send__1 and
Env.Action=transmit;

end Evolution
end Agent

InitStates
S.rec_ack=false and
R.rec_bit=false;

end InitStates

Evaluation
agree if S.bit=R.bit;
recack if S.rec_ack=true;

end Evaluation

Formulae
AG recack -> K(S,K(R,agree))

end Formulae

Fig. 1. Bit-transmission protocol in ISPL

We briefly describe the features of basic ISPL needed to follow the discussion
below (in Section 4); Fig.1 can be consulted for an example. An ISPL programs
σ reflects the structure of the defined interpreted system I(σ), with one program
section for each agent, and for each agent section four subsections containing,
respectively:

– Local variable and domain definitions of the form X: {d0, . . . , dn}.
– Action declarations listing the actions such as send 0, send 1 available to

the agent.
– Local protocol specifications of the form lcond : {a0, . . . , an} where the ai

are actions and lcond is a boolean combination of (domain correct) local
equalities of the form X = X ′ or X = d.

– Local evolution function specifications of the form assign if acond where
assign is a conjunction of local equalities and acond is a boolean combination
of atoms i.Action = a, where a is an action declared in the agent named i.

In addition, an ISPL program provides an initial state condition and truth
conditions for atomic propositions, all in the form of global state conditions built
from (domain correct) equalities of the form i.X = j.Y or i.X = d, where X
and Y are local variables of agents i and j respectively.

3 A data symmetry reduction technique

In this section we present a data symmetry reduction technique for CTLK prop-
erties of interpreted systems. Subsection 3.1 extends the notion of data symme-

6

try [1] to interpreted systems; Subsection 3.2 establishes the reduction result;
Subsection 3.3 shows how to compute the reduced epistemic relations.

3.1 Data symmetry

We assume that local states are built from variables (as they are in ISPL pro-
grams). In detail, an interpreted system I is given together with a set V ari of
local variables for every agent i ∈ Ag ∪ {Env}, where each X ∈ V ari is associ-
ated with a non-empty set DX , the data domain of X. A local state l ∈ Li of
agent i is a type respecting assignment to the variables in V ari, i.e., l(X) ∈ DX

for every X ∈ V ari. We write D for the collection of all domains.
Following [1] we mark domains as either ordered or unordered.4 Informally, a

system is expected to treat all data from the same unordered domain in a sym-
metric fashion: Every permutation of data from such a domain should preserve
the behaviours of the system.

Definition 4 (Domain permutation). A domain permutation is a family π =
{πD}D∈D of bijections πD : D −→ D that only change values in unordered
domains, i.e., if D is ordered, then πD(d) = d, for d ∈ D.

The domain permutation π naturally defines a bijection on the local states
Li of agent i and a bijection on the global states S by point-wise application on
data elements inside the states. In detail, for each l ∈ Li, π(l) ∈ Li is defined by
π(l)(X) = πDX (l(X)) for local variable X ∈ V ari; For each global state g ∈ S,
π(g) = 〈π(g1), ..., π(gn), π(gEnv)〉.

Definition 5 (Data symmetry). A set ∆ ⊆ S of states is data symmetric
iff g ∈ ∆ iff π(g) ∈ ∆ for all domain permutations π. A relation ∆ ⊆ S × S
between states is data symmetric iff 〈g, g′〉 ∈ ∆ iff 〈π(g), π(g′)〉 ∈ ∆ for all
domain permutations π. The system I is data symmetric iff the induced global
transition relation R, the set I0 of initial states, and each extension V (p) of a
propositional atom p are data symmetric.

Example 2. Consider the protocol model I in Example 1 and mark the bit do-
main {0, 1} as an unordered domain. Two domain permutations are possible:
the identity ι leaving all values unchanged, and the transposition flip such that
flip{0,1}(0) = 1 and flip{0,1}(1) = 0. It can be checked that both ι and flip
preserve the global transition relation, the set of initial states, and the extension
of the propositional atom agree. Therefore the system I is data symmetric.

Lemma 1. If system I is data symmetric, then so is the set G of reachable
states, each epistemic relation ∼i, and any formula extension [[φ]].

Proof. (Sketch) G is data symmetric: Since I0 and R are data symmetric, ∼i
is data symmetric: Assume g ∼i g′; then gi = g′i and g, g′ ∈ G. From the
former, π(gi) = π(g′i), i.e., π(g)i = π(g′)i. But, since G is data symmetric,

4 Unordered domains are called scalarsets in [1].

7

π(g), π(g′) ∈ G. Thus, π(g) ∼i π(g′). [[φ]] is data symmetric: By induction
on φ we can show that (I, g) |= φ iff (I, π(g)) |= φ. For the base step note
that the extension V (p) of an atomic proposition is data symmetric. Induction
step, epistemic modalities: Since ∼i is data symmetric. Induction step, temporal
modalities: Since the global transition relation R is data symmetric.

Given a data symmetric system I, the global states g, g′ ∈ S are said to
be data symmetric, written g ≡ g′, if and only if, π(g) = g′ for some domain
permutation π. The equivalence class [g] of global state g with respect to ≡ is
called the orbit of g. Analogously, the local states l, l′ ∈ Li are said to be data
symmetric, l ≡ l′, if and only if, π(l) = l′ for some domain permutation π.

3.2 Data symmetry reduction

In this section we present a technique that exploits data symmetries to reduce
the number of initial states in interpreted systems.

Let I be a data symmetric interpreted system. An abstraction of I is an
interpreted system IA = 〈S,ACT, P, t, I ′0, V 〉 where I ′0 ⊆ I0 is minimal such
that I0 = {[g] : g ∈ I ′0}. Thus, the abstract system has a single representative
initial state g for each orbit [g] of symmetric initial states in I0.

Example 3. Consider the data symmetric system I from Example 2. There
are eight initial states in I0 reflecting the eight possible joint assignments to
the variable bit in the sender/receiver and the variable state in the environ-
ment. We can form an abstraction IA = 〈S,ACT, P, t, I ′0, V 〉 of I such that
I ′0 contains only four initial states and in each of these S.bit=1. Observe that
IA |= KR agree ∨ KR ¬agree, i.e., in the abstract system initially the receiver
knows whether its variable agrees with the senders variable. This follows from the
fact that agree ↔ R.bit = 1 holds at all reachable states in IA. By contrast,
I 6|= KR agree ∨KR ¬agree.

As the example illustrates temporal-epistemic formulae are not preserved
from the abstraction IA to the original system I (or vice versa). However, we
show that we can make formulae invariant between the original system and the
abstract system by abstracting the satisfaction relation.

Definition 6 (Abstract epistemic relation). The abstract epistemic indis-
tinguishability relation ∼Ai ⊆ G×G for agent i is such that g ∼Ai g′ iff gi ≡ g′i.

In other words, data symmetric local states are indistinguishable under the ab-
stract epistemic relation ∼Ai . In the abstract semantics the knowledge modality
Ki for agent i is defined by the abstract epistemic relation ∼Ai for agent i.

Definition 7 (Abstract satisfaction). Abstract satisfaction of φ at g in I,
written (I, g) |=A φ, is defined inductively by:

– Non-epistemic cases are the same as for standard satisfaction (Section 2)
– (I, g) |=A Kiφ iff (I, g′) |=A φ for all g′ ∈ G such that g ∼Ai g′

8

Example 4. Continuing Example 3, the abstract semantics avoids the unintended
validity, i.e., IA 6|=A KR agree∨KR ¬agree. Pick an initial state g ∈ I ′0 in which
gS(bit) = gR(bit) = 1. Then, g′ = 〈gS , f lip(gR), gEnv〉 ∈ I ′0 and g ∼AR g′, since
gR ≡ flip(gR). However, the atom agree has different truth values in g and g′.

Standard satisfaction on a data symmetric interpreted system I is equivalent
to abstract satisfaction on the abstract system IA.

Theorem 1 (Reduction). I |= φ iff IA |=A φ, assuming I is data symmetric.

Proof. (Sketch) By Lemma 1, G is data symmetric, and so G = {π(g) | anyπ, g ∈
GA}, where G and GA are the sets of reachable states in I and IA respectively.
Therefore, we can evaluate the epistemic modality in I by scanning the reduced
space G′ and apply agent permutations “on the fly”, expanding each state g′

into its equivalence class [g′]. So, (I, g) |= Kiφ iff ∀g′ ∈ GA : ∀π : g ∼i π(g′) ⇒
(I, π(g′)) |= φ. By Lemma 1, [[φ]] is data symmetric, and so we can replace the
test of the property φ at π(g′) with the test of φ at g′, and so obtain: (I, g) |= Kiφ
iff ∀g′ ∈ GA : ∀π : g ∼i π(g′) ⇒ (I, g′) |= φ. In other words, (I, g) |= Kiφ iff
∀g′ ∈ GA : gi ≡ g′i ⇒ (I, g′) |= φ. By induction over φ, therefore, we obtain:
(I, g) |= φ iff (IA, g) |=A φ, for all g ∈ GA. The theorem follows from this, since
[[φ]] is data symmetric by Lemma 1.

3.3 Computing the abstract epistemic relations

Computing the abstract epistemic relations may seem expensive when there is a
large number of domain permutations. However, as we show below, we can com-
pute the abstract epistemic relations without applying any domain permutation
at all; two local states l and l′ are data symmetric if l and l′ satisfy the same
equalities between variables with the same unordered domain, and in addition
each variable with an ordered domain has the same value in l and l′.

Proposition 1 (Equivalence check). For any l, l ∈ Li, l ≡ l′, if and only if,
for all variables X,Y ∈ V ari with the same unordered domain DX = DY ,

1. l(X) = l(Y) iff l′(X) = l′(Y)

and for all variables X ∈ V ari with an ordered domain DX ,

2. l(X) = l′(X)

Proof. Pick two local states l, l′ ∈ Li. For each domain D ∈ D, define the
relation πD = {〈l(X), l′(X)〉|X ∈ V ari, DX = D}. Condition (1) holds iff for
each unordered domain D, πD is functional and injective, i.e., can be extended
to a bijection on D. Condition (2) holds iff for each ordered domain D, πD

preserves values, i.e., can be extended to the identity on D.

For symbolic model checkers, Proposition 1 provides a constructive way of
computing a boolean formula encoding of the abstract epistemic relations.

9

4 Data Symmetry Detection

In this section we establish a static test on ISPL programs that establishes
whether a given interpreted system is data symmetric, and so amenable to re-
duction. A natural check [1] is to verify whether or not the program explicitly
distinguishes between different values from an unordered domain.

Definition 8 (Symbolic program). Assume an ISPL program σ and a par-
tition of the variables’ domains in σ into ordered and unordered. The program
σ, or a program section of σ, is symbolic if ground values from an unordered
domain appear only in domain definitions.

For the concept of symbolic ISPL program to be useful, the actions in it need
to carry parameters from unordered domains.

Example 5. Consider the program in Fig.1 with the bit-domain marked as un-
ordered; the program is not symbolic. Intuitively, the atomic actions send 0
and send 1 could be replaced by one action and a parameter.

4.1 Extended ISPL

We extend ISPL with structured actions that explicitly carry parameters from
a specified domain; the parameter can be indicated symbolically by a variable.

Agent S

-- Vars, Evolution as in Fig.1

Actions = {send(?bit),null};

Protocol

rec_ack=false: {send(bit)};

rec_ack=true: {null};

end Protocol

end Agent

-- Agent Env, InitStates,

-- Evaluation as in Fig.1

Agent R

-- Vars, Actions, Protocol

-- as in Fig.1

Evolution

bit=?bit and rec_bit=true if

S.Action=send(?bit) and

Env.Action=transmit;

end Evolution

end Agent

Fig. 2. Bit-transmission protocol in extended ISPL

The syntax of the extended version of ISPL is as follows; Fig.2 can be con-
sulted for an example. Local variables X of agents are declared as in basic ISPL.
Each entry in the list of actions has the form a(?X), where X is a local variable.5

Intuitively, the macro-variable ?X represents an arbitrary value of the domain
of X. A term t is either a local variable X, a macro variable ?X, or a ground
element d (drawn from some domain). A parametric action is an expression of
the form a(t) where the operation a and the argument term t have identical
domains. The syntax for protocol sections and evolution sections are given in
5 For ease of presentation we restrict attention to the unary case.

10

the same way as for basic ISPL but using the above definitions of term and
parametric action. The initial states condition and the evaluation section are
the same as in basic ISPL (i.e., no macro variables are allowed in equalities).

Intuitively, local variables such as bit are evaluated and bound at time of
execution in the expected fashion. For instance, in the protocol of S, Fig.2, the
parametric action send(bit) represents both send 0 and send 1 depending
on how the term bit is instantiated. By contrast, the macro-variable ?bit in
the protocol of R represents an arbitrary bit value.

{a1(?X1), . . . , an(?Xn)} → {a1(d1,1), . . . , a1(d1,m1), . . . , an(dn,1), . . . , an(dn,mn)} (2)

lcond : actions(x, y) →
^

d1,d2

x = d1 and lcond : actions(d1, d2) (3)

assign(y) if acond(x, y) →
^

d1,d2

assign(d2) if acond(d1, d2) (4)

Fig. 3. Extended ISPL Translation Rules

Translation into basic ISPL Extended ISPL programs are expanded into ba-
sic ones by means of the rewrite rules given in Fig. 3. As an illustration, the
(symbolic) program in Fig.2 translates to the (non-symbolic) program in Fig.1.
Action lists are expanded according to (2) where {di,1, . . . , di,mi

} is the domain
of ?Xi. Protocol and evolution rules are expanded to sets of rules (denoted as
conjunctions) where x is the list of local variables and y is the list of macro
variables occurring in the rule under consideration, and where we assume that
substitutions respect domain assignments. Thus, each macro-variable is replaced
during the translation by the elements from its domain.

4.2 Detection theorem

We show that symbolic programs in extended ISPL define data symmetric sys-
tems. We assume throughout an extended ISPL program Σ which translates
into a basic ISPL program σ, and we write I(Σ) for the interpreted system I(σ)
defined by σ. We assume domains are divided into ordered and unordered.

Observe that a domain permutation π defines a substitution of code frag-
ments of σ. In particular, π(a d) = a π(d) for atomic actions a d, and π(x =
d) = (x = π(d)) for local equalities (x = d). Continuing, π lifts to a bijec-
tion on the set ACT of joint actions by component-wise application: π(a) =
〈π(a1), . . . , π(an), π(aE)〉.

According to the following lemma, if program Σ is symbolic then agent i is
“syntactically data symmetric” in the sense that the set of protocol rules and the
set of evolution rules in the translation σ are closed under domain permutations.

11

Lemma 2 (Syntactic agent closure). Assume agent i is symbolic in Σ.

1. If ∆ is a rule i’s protocol in σ, then so is π(∆).
2. If ∆ is a rule in i’s evolution in σ, then so is π(∆).

Proof. (Sketch) (1): By rewrite rule (3) of Fig. 3, there is a “source” proto-
col entry lcond : actions(x, y) in agent i in Σ such that ∆ is the rule (x =
d1 and lcond : actions(d1, d2)), for some d1, d2. By rewrite rule (3) again, (x =
π(d1) and lcond : actions(π(d1), π(d2)) is a protocol rule in agent i in σ. But,
this rule is precisely π(∆), since both lcond and actions(x, y) are symbolic. (2):
By rewrite rule (4) of Fig. 3, there is an evolution entry assign(y) if acond(x, y)
in agent i in Σ such that ∆ is the rule (assign(d2) if acond(d1, d2)), for some
d1, d2. By rewrite rule (4) again, (assign(π(d2)) if acond(π(d1), π(d2))) is also
an evolution rule in agent i in σ. But, this rule is π(∆), since both assign(y) and
acond(x, y) are symbolic.

It follows that agents are “semantically data symmetric” as defined below.

Definition 9 (Symmetric agent). Agent i is data symmetric in I(Σ) iff

1. a ∈ Pi(l) iff π(a) ∈ Pi(π(l))
2. ti(a, l) = l′ iff ti(π(a), π(l)) = π(l′).

Lemma 3. If agent i is symbolic in Σ, agent i is data symmetric in I(Σ).

Proof. (Sketch) The local protocol Pi is data symmetric: Assume a ∈ Pi(l).
By the semantics of basic ISPL, there is a protocol rule lcond : actions in
agent i in the translation σ such that a ∈ actions and l satisfies lcond, and so
π(a) ∈ π(actions) and π(l) |= π(lcond). But, by Lemma 2.1, π(lcond : actions)
is also a protocol rule in agent i in σ, and so π(a) ∈ Pi(π(l)). We conclude that
a ∈ Pi(l) implies π(a) ∈ Pi(π(l)). The converse implication follows by applying
π−1. The local evolution function ti is data symmetric: Assume ti(a, l) = l′.
By the semantics of basic ISPL, there is an evolution entry assign if acond in
agent i in σ such that a satisfies acond and l [assign] l′, using Floyd–Hoare logic
style notation for local state updates. It follows that π(a) satisfies π(acond) and
π(l) [π(assign)]π(l′). But, by Lemma 2.2, π(assign if acond) is an evolution
rule in agent i in σ, and so ti(π(a), π(l)) = π(l′). We conclude that ti(a, l) = l′

implies ti(π(a), π(l)) = π(l′). The converse implication follows by applying π−1.

If agents are data symmetric then so is the induced global transition relation.

Lemma 4. If each agent is data symmetric in I(Σ), then so R.

Proof. By definition of R, 〈g, g′〉 ∈ R iff there is a such that 〈gi, g′i〉 ∈ ti(a) and
ai ∈ Pi(gi) for i ∈ Ag ∪ {E}. Since i is data symmetric, this is equivalent to
〈π(gi), π(g′i)〉 ∈ ti(π(a)) and π(ai) ∈ Pi(π(gi)) for i ∈ Ag ∪ {E}. In turn this is
equivalent to 〈π(g)i, π(g′)i〉 ∈ ti(π(a)) and π(ai) ∈ Pi(π(g)i) for i ∈ Ag ∪ {E}.
By definition of R, this is equivalent to 〈π(g), π(g′)〉 ∈ R.

12

We reach the symmetry detection result stating that every symbolic program
in the extended ISPL defines a data symmetric interpreted system.

Theorem 2 (Detection). If extended ISPL program Σ is symbolic then inter-
preted system I(Σ) is data symmetric.

Proof. (i) R is data symmetric: By Lemmas 3 and 4. (ii) I0 is data symmetric:
The initial states condition cond in the basic ISPL translation σ of Σ is symbolic,
and so g satisfies cond iff π(g) satisfies cond. (iii) V (p) is data symmetric: Shown
as (ii).

5 Implementation and experiments

In this section we describe a prototype extension to MCMAS implementing the
data symmetry reduction presented above and report on its performance for a
well-known security protocol.

Implementation. The prototype extension takes as input an extended ISPL pro-
gram in which some domains are marked as unordered, checks that the supplied
program is data symmetric (using Detection Theorem 2), compiles it to basic
ISPL (using the translation in Section 4), reduces the initial states (as described
below) and, finally, checks the supplied CTLK specifications against the abstract
semantics (using Proposition 1).

To reduce the initial states, the prototype constructs the symbolic represen-
tation of a set S′ which contains exactly one representative state for each orbit
class, i.e., S′ ⊆ S is minimal such that S = {[s] : s ∈ S′}, where S is the set
of possible global states for the supplied program. Roughly, the symbolic repre-
sentation of S′ is a disjunction of assignments, one assignment for each possible
pattern of identities between variables with unordered domains. In detail, let V
be the set of variables with unordered domains, and let ∆ ⊆ 2V be a partition
of V such that each block δ ∈ ∆ contains only variables that share the same
domain. Intuitively, the partition ∆ represents a pattern of identities between
variables in V: X = Y if and only if X and Y belong to the same block δ ∈ ∆.
For every such partition ∆, the prototype selects an assignment to variables in
V that “agrees” with ∆; The symbolic representation of S′ is the disjunction of
all such assignments:

symS′ =
∨
∆

∧
δ∈∆,X∈δ

X = d(δ) (5)

where d(δ) is a value from the domain shared by variables in block δ; the value
d(δ) is different for different blocks δ ∈ ∆ from the same partition.

A symbolic representation of the reduced set I ′0 of initial states can then
be obtained by conjuncting symS′ with the initial states condition symI0 in the
supplied program. To optimise the construction, the prototype distributes symI0

over the disjunction in symS′ :

symI′
0

=
∨
∆

(symI0 ∧
∧

δ∈∆,X∈δ

X = d(δ)) (6)

13

i.e., it conjuncts with symI0 “on the fly” as symS′ is being constructed. As a
further optimisation, the prototype generates only some of the possible variable
partitions ∆. In particular, if (X = Y) ∧ symI0 is empty for two variables
X,Y ∈ V, the prototype excludes variable partitions ∆ that have a subset δ
containing both X and Y .

The prototype computes the symbolic representation of the extension [[Kiφ]]
of an epistemic formula Kiφ with respect to the abstract satisfaction relation as
follows:

sym[[Kiφ]] = symG ∧ ¬
∨
∆

(sym∆ ∧ PreImage(sym[[¬φ]] ∧ sym∆,≈))

where symG is the symbolic representation of the set of reachable states; ∆
ranges over partitions of the set of agent i’s local variables with unordered do-
mains; sym∆ expresses that variables in agent i agree with ∆, i.e., the conjunc-
tion of equalities X = Y and inequalities X 6= Z for X,Y belonging to the same
block in ∆ and X,Z belonging to different blocks in ∆; sym[[¬φ]] is the sym-
bolic representation of the extension [[¬φ]]; ≈ relates global states with identical
values for the variables in agent i with ordered domains, i.e., ≈ is the condition∧
X

X = prim(X) where X ranges over agent i’s variables with ordered domains.

NSPK. To evaluate the performance of the technique we tested the prototype
on the Needham-Schroeder Public Key protocol (NSPK), a standard example in
the security literature [18]. The NSPK protocol involves a number of A–agents
and B–agents; each A–agent starts with a nonce (unique, unpredictable number)
Na, and each B–agent starts with a nonce Nb. We considered the following
CAPSL [19] authentication goal for the protocol:

Knows B : Knows A : agreeA : B : Na,Nb (7)

stating that when a protocol session between an A–agent and a B–agent ends,
the agents share the nonces Na and Nb, the A–agent knows this and the B–agent
knows that the A–agent knows this.6

To verify the CAPSL goal (7) we modelled the NSPK protocol as an extended
ISPL program with N agents, some of them A–agents and others B–agents. In
addition, we modelled a Dolev-Yao attacker [21] in the environment agent. The
intruder and all agents start with a unique, non-deterministic nonce value – a
value for Na in the case of A–agents and value for Nb in the case of B–agents.
Thus we assumed a domain of N + 1 nonces; one nonce for the intruder and
one for each agent.7 We marked the domain of nonces as unordered. Finally, we
translated the CAPSL goal (7) into the following CTLK formula:∧

i:B

AG (i.Step = 3→ Ki

∨
j:A

(agree(i, j) ∧Kj

∨
i:B

agree(i, j))) (8)

6 The goal was derived manually in [20].
7 It would be reasonable to provide the intruder with more than just one initial nonce;

the reduction would then yield even bigger savings.

14

where i : B ranges over B–agents, and j : A ranges over A–agents, and agree(i, j)
states that agents i and j agree on the protocol variables Na, Nb, A and B, i.e.,
i.Na = j.Na, i.Nb = j.Nb, etc. The specification (8) states that whenever a
B–agent i has completed all three protocol steps, the agent i knows that some
A–agent j agrees with i, and agent i knows that this agent j knows that some
B–agent i agrees with j.

Experiments Table 1 shows the total verification time (including the time it
takes to reduce the initial states) in seconds and the number of reachable states
for CTLK specification (8) and different number of participating agents. The
experiments ran on a 2 GHz Intel machine with 2GB of memory running Linux.
Each run was given a time limit of 24 hours. For this experiment we observed
an exponential reduction in both time and space in the number N of agents.
Specifically, the state space is reduced by the factor (N + 1)!, while the re-
duction in verification time is more irregular given that MCMAS is a symbolic
model checker. We can expect even greater savings for security protocols that
involve more than just one unique, unpredictable data value (nonce, session key,
password, etc.) per agent.

Table 1. Verification results for NSPK

Agents Without reduction With reduction
States Time States Time

3 1 536 3 64 1
4 11 400 28 95 4
5 651 600 7 716 905 9
6 – > 86 400 12 256 24
7 – > 86 400 21 989 91

6 Conclusions

We presented a data symmetry reduction technique for temporal-epistemic logic
in the mainstream interpreted systems framework. The technique uses an ab-
stract satisfaction relation in the reduced system; this was shown to make the
reduction sound and complete, i.e., there are no false positives or false negatives
in the reduced system. To facilitate the detection of data symmetric systems,
i.e., systems amenable to reduction, we extended the interpreted systems pro-
gramming language (ISPL) with parametric actions. We showed that symbolic
programs in the extended ISPL define data symmetric systems. Experiments on
the NSPK security protocol show an exponential reduction in verification time
and state space for temporal-epistemic security goals.

The reduction technique in this paper reduces initial states only. However,
we emphasize that for some applications, such as the security protocol model

15

considered in this paper, collapsing data symmetric initial states alone yields
the same reduced state space as collapsing all data symmetric states, i.e., it
yields the quotient model with respect to the orbit relation.

References

1. Ip, C.N., Dill, D.L.: Better verification through symmetry. Form. Methods Syst.
Des. 9(1-2) (1996) 41–75

2. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about knowledge.
MIT Press, Cambridge, MA, USA (1995)

3. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Proc. CAV’04. Volume 3114 of LNCS., Springer-Verlag (2004) 479–483

4. Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter, M.: VerICS

2004: A model checker for real time and multi-agent systems. In: Proc. CS&P’04,
Humboldt University (2004) 88–99

5. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for multi-agent
systems. In: Proc. CAV’09, Springer Verlag (2009.)

6. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated service
composition. In: Proc. ICWS ’08, IEEE Computer Society (2008) 254–261

7. Ezekiel, J., Lomuscio, A.: Combining fault injection and model checking to verify
fault tolerance in multi-agent systems. In: Proc. AAMAS’09. (2009) To appear.

8. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining
cryptographers. In: Proc. CSFW ’04, Washington, DC, USA, IEEE Computer
Society (2004) 280

9. Dechesne, F., Orzan, S., Wang, Y.: Refinement of kripke models for dynamics. In:
Proc. ICTAC’08, Springer (2008) 111–125

10. Enea, C., Dima, C.: Abstractions of multi-agent systems. In: Proc. CEEMAS’07.
(2007) 11–21

11. Wooldridge, M.: Computationally grounded theories of agency. In: Proc. IC-
MAS’00. IEEE Press (2000) 13–22

12. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking
multi-agent systems. In: Proc. AAMAS’09. (2009) To appear.

13. Cohen, M., Dam, M., Lomuscio, A., Qu, H.: A symmetry reduction technique for
model checking temporal epistemic logic. In: Proc. IJCAI’09. (2009) To appear.

14. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des. 9(1-2) (1996) 77–104

15. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst.
Des. 9(1-2) (1996) 105–131

16. Lewis, D.: Counterpart theory and quantified modal logic. Journal of Philosophy
65 (1968) 113–126

17. van der Meyden, R., Wong, K.S.: Complete axiomatizations for reasoning about
knowledge and branching time. Studia Logica 75(1) (2003) 93–123

18. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12) (1978) 993–999

19. Denker, G., Millen, J.: Capsl integrated protocol environment. In: Proc. DIS-
CEX’00, pp 207-221, IEEE Computer Society (2000) 207–221

20. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1) (1990) 18–36

21. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2) (1983) 198–208

