
First-Order Linear-time Epistemic Logic
with Group Knowledge:

An Axiomatisation of the Monodic Fragment

Francesco Belardinelli and Alessio Lomuscio

Department of Computing
Imperial College London, UK

{F.Belardinelli,A.Lomuscio}@imperial.ac.uk

Abstract. We investigate quantified interpreted systems, a computa-
tionally grounded semantics for a first-order temporal epistemic logic
on linear time. We report a completeness result for the monodic frag-
ment of a language that includes LTL modalities as well as distributed
and common knowledge. We exemplify possible uses of the formalism by
analysing message passing systems, a typical framework for distributed
systems, in a first-order setting.

1 Introduction

Propositional modal logics to reason about knowledge and time have been thor-
oughly investigated by researchers in artificial intelligence both as regards their
theoretical properties (completeness, decidability, complexity) [7, 9], as well as
for the specification and verification of multi-agent systems [4, 28].

These temporal epistemic logics have been explored in several directions. In
one line of research, epistemic modalities have been added to represent group
knowledge such as distributed and common knowledge [8, 10]. In another one,
the temporal fragment has been modified according to different models of time
(e.g., linear or branching, discrete or continuous) [16, 18]. In yet another line,
temporal epistemic logic has been studied at the first order [1, 15].

In this paper we extend a combination of epistemic and temporal logic to
the predicate level. We provide this language with a computationally grounded
semantics [27] given in terms of quantified interpreted systems [1, 2], and we
present a complete axiomatisation of the monodic fragment of this logic, where
at most one free variable appears in the scope of any modal operator. Finally,
we apply this formalism to the modeling of message passing systems, a typical
framework in distributed systems [17, 4].

Our starting point is a number of results by Hodkinson, Wolter, and Za-
kharyaschev, among others, regarding the axiomatisability [22, 25], decidability
[15, 24], and complexity [12, 13] of first-order modal logics, including both posi-
tive [11, 21] and negative results [14, 23, 26]. Specifically, we prove completeness
for our first-order temporal epistemic logic via quasimodels. These structures



have been used in [15] to prove decidability for monodic fragments of first-order
temporal logic (FoTL) on a variety of flows of time. These investigations were
further pursued in [14], where branching flows of time are analyzed, and in [11],
which deals with the packed fragment of FoTL. In [12, 13] the complexity of the
decision problem for a number of monodic fragments of FoTL is considered.

As regards general first-order modal logic, the decidability of monodic frag-
ments has been investigated in [24]. In [26] it is proved that first-order epistemic
logic with common knowledge is not axiomatisable. However, in [23] it is shown
that its monodic fragment is. Finally, this paper relies on results in [22, 25]. In
[25] the authors present a complete axiomatisation for the monodic fragment of
FoTL on the naturals. In [22] we have a similar result for a variety of first-order
epistemic logics with common knowledge. Note that none of these articles uses
interpreted systems [4, 19] as the underlying semantics, as we do here.

Our motivation for this contribution comes from an interest in first-order tem-
poral epistemic formalisms to model high-level properties of multi-agent systems
(MAS). While temporal epistemic logics are well understood at the propositional
level, their usefulness has been demonstrated in a number of applications, and
model checking tools have been developed for them [6, 20], still we believe there
is a growing need in web-services, security, as well as other areas, to extend these
languages to the first order. As preliminary contributions to this project, in [2] we
introduced a “static” version of quantified interpreted systems to model a first-
order epistemic formalism. This was then extended to the temporal dimension in
[1]. Differently from these previous works, here we explicitly assume linear-time
operators and the natural numbers as the flow of time. Both features are crucial
for applications, but they also increase the complexity of the formalism.

Scheme of the paper. In Section 2 we introduce the first-order temporal
epistemic language Lm, for a set A = {1, . . . ,m} of agents, and in Section 3 we
provide it with a semantics in terms of quantified interpreted systems and present
its monodic fragment. In Section 4 we explore its expressive power in specifying
message passing systems. In Sections 5 and 6 we introduce an axiomatisation for
the monodic fragment of Lm and prove its completeness. We present detailed
proofs in Appendix A.

2 Syntax

The first-order temporal epistemic language Lm contains individual variables
x1, x2, . . ., individual constants c1, c2, . . ., and n-ary predicative letters Pn1 , P

n
2 , . . .,

for n ∈ N, the propositional connectives ¬ and→, the universal quantifier ∀, the
temporal operators © and U , the epistemic operators Ki, for i ∈ A, D, and C.
The only terms t1, t2, . . . in Lm are individual variables and constants.

Definition 1. Formulas in Lm are defined in the BN form as follows:

φ ::= P k(t1, . . . , tk) | ¬ψ | ψ → ψ′ | ∀xψ | ©ψ | ψUψ′ | Kiψ | Dψ | Cψ

The formulas ©φ and φUφ′ are read as “φ holds at the next step” and “φ′

will hold and φ is the case until that moment”. The formula Kiφ represents



“agent i knows φ”, while formulas Dφ and Cφ respectively mean “φ is distributed
knowledge” and “φ is common knowledge” in the group A of agents.

We define the symbols ∧, ∨, ↔, ∃, G (always in the future), F (some time
in the future) as standard. Further, Eφ =

∧
i∈AKiφ, and for 4 equal to E or

©, 4kφ is defined as follows for k ∈ N: 40φ = φ and 4k+1φ = 44kφ.
By φ[y] we mean that y = y1, . . . , yn are all the free variables in φ; while

φ[y/t] is the formula obtained by substituting simultaneously some, possibly all,
free occurrences of y in φ with t = t1, . . . , tn, renaming bounded variables.

3 Quantified Interpreted Systems

In this section we present a dynamic version of the “static” quantified interpreted
systems in [2] by assuming the natural numbers N as the underlying flow of time.
Specifically, for each agent i ∈ A in a multi-agent system we introduce a set Li
of local states li, l′i, . . ., and a set Acti of actions αi, α′i, . . .. We consider local
states and actions for the environment e as well. The set S ⊆ Le×L1× . . .×Lm
contains the global states of the MAS, while Act ⊆ Acte×Act1×. . .×Actm is the
set of joint actions. We also introduce a transition function τ : Act→ (S → S).
Intuitively, τ(α)(s) = s′ encodes that agents can access the global state s′ from
s by performing the joint action α. We say that the global state s′ is reachable
in one step from s, or s @ s′, iff there is α ∈ Act such that τ(α)(s) = s′.

To represent the temporal evolution of the MAS we consider the flow of
time 〈N, <〉 of natural numbers N with the strict total order <. A run r over
〈S, Act, τ,N〉 is a function from N to S such that r(n) @ r(n + 1). Intuitively,
a run represents a possible evolution of the MAS according to the transition
function τ and assuming N as the flow of time. We now define the quantified
interpreted systems for the language Lm as follows:

Definition 2 (QIS). A quantified interpreted system over 〈S, Act, τ,N〉 is a
triple P = 〈R,D, I〉 such that (i) R is a non-empty set of runs over 〈S, Act, τ,N〉;
(ii) D is a non-empty set of individuals; (iii) I is an interpretation of Lm such
that I(c) ∈ D, and for r ∈ R, n ∈ N, I(P k, r, n) is a k-ary relation on D.
We denote by QIS the class of all quantified interpreted systems.

Following standard notation [4] a pair (r, n) is a point in P. If r(n) =
〈le, l1, . . . , lm〉 is the global state at the point (r, n), then re(n) = le and ri(n) = li
are the environment’s and agent i’s local state at (r, n) respectively. Further, a
QIS is synchronous if for all i ∈ A, ri(n) = r′i(n

′) implies n = n′, that is, time is
part of the local state of any agent. QISsync is the class of all synchronous QIS.

Now we assign a meaning to the formulas of Lm in quantified interpreted
systems. Let σ be an assignment from the variables to the individuals in D, the
valuation Iσ(t) of a term t is defined as σ(y) for t = y, and Iσ(t) = I(c), for
t = c. A variant σ

(
x
a

)
of an assignment σ assigns a ∈ D to x and coincides with

σ on all the other variables.

Definition 3. The satisfaction relation |= for φ ∈ Lm, (r, n) ∈ P, and an
assignment σ is defined as follows:



(Pσ, r, n) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, r, n)
(Pσ, r, n) |= ¬ψ iff (Pσ, r, n) 6|= ψ
(Pσ, r, n) |= ψ → ψ′ iff (Pσ, r, n) 6|= ψ or (Pσ, r, n) |= ψ′

(Pσ, r, n) |= ∀xψ iff for all a ∈ D, (Pσ(x
a), r, n) |= ψ

(Pσ, r, n) |=©ψ iff (Pσ, r, n+ 1) |= ψ
(Pσ, r, n) |= ψUψ′ iff there is n′ ≥ n such that (Pσ, r, n′) |= ψ′

and for all n′′, n ≤ n′′ < n′ implies (Pσ, r, n′′) |= ψ
(Pσ, r, n) |= Kiψ iff for all (r′, n′), ri(n) = r′i(n

′) implies (Pσ, r′, n′) |= ψ
(Pσ, r, n) |= Dψ iff ri(n) = r′i(n

′) for all i ∈ A, implies (Pσ, r′, n′) |= ψ

(Pσ, r, n) |= Cψ iff for all k ∈ N, (Pσ, r, n) |= Ekψ

The truth conditions for ∧, ∨, ↔, ∃, G, and F are defined from those above.
A formula φ ∈ Lm is true at a point (r,m) iff it is satisfied at (r,m) by every σ;
φ is valid on a QIS P iff it is true at every point in P; φ is valid on a class C of
QIS iff it is valid on every QIS in C.

3.1 The monodic fragment
In what follows we focus on the monodic fragment of the language Lm.

Definition 4. The monodic fragment L1
m is the set of formulas φ ∈ Lm such

that any subformula of φ of the form Kiψ, Dψ, Cψ, ©ψ, or ψ1Uψ2 contains at
most one free variable.

The monodic fragments of a number of first-order modal logics have been
thoroughly investigated [22, 25, 15, 13, 24]. In the case of Lm this fragment is
quite expressive as it contains formulas like the following:

∀y (Resource(y)→ C (∀zAvailable(y, z)U∃xRequest(x, y)) (1)
D©∀xyz(Request(x, y)→ ¬Available(y, z))→
→©D∀xyz(Request(x, y)→ ¬Available(y, z)) (2)

According to (1), it is common knowledge that every resource will eventually
be requested, but until that time the resource is universally available. By (2) if
it is distributed knowledge that at the next step any resource is not available
whenever it is requested, then at the next step it is distributed knowledge that
this is the case.

Note that the monodic fragment of Lm contains all de dicto formulas, i.e.,
formulas where no free variable appears in the scope of modal operators, as in
(2). So, the limitation is really only on de re formulas.

4 Message Passing Systems
In this section we model message passing systems [4, 17] in the framework of QIS.
A message passing system (MPS) is a MAS in which the only actions for the
agents are sending and receiving messages. This setting is common to a variety
of distributed systems, well beyond the realms of MAS and AI.

To define our message passing QIS we introduce a set Msg of messages
µ1, µ2, . . ., and define the local state li for agent i as a history over Msg, that is, a



sequence of events of the form send(i, j, µ) and rec(i, j, µ), for i, j ∈ A, µ ∈ Msg.
Intuitively, send(i, j, µ) represents the event where agent i sends to j message
µ, while the meaning of rec(i, j, µ) is that agent i receives from j message µ. A
global state s ∈ S is a tuple 〈le, l1, . . . , ln〉, where l1, . . . , ln are local states as
above, and le contains all the events in l1, . . . , ln.

A run r over 〈S,N〉 is a function from the natural numbers N to S such that:

MP1 ri(0) is a sequence of length zero, and ri(m+ 1) is either identical to ri(m)
or results from appending an event to ri(m).

By MP1 the local states of each agent record the messages she has sent or
received, and at each step at most a single event occurs to any agent. We define
message passing QIS (MPQIS) as the class of quantified interpreted systems
P = 〈R,D, I〉, where R is a non-empty set of runs satisfying MP1, D contains
the agents in A and the messages in Msg, and I is an interpretation for Lm. We
use the same notation for objects in the model and syntactic elements.

For the specification of MPS we introduce a predicative letter Send such
that (Pσ, r, n) |= Send(i, j, µ) iff event send(i, j, µ) occurs to agent i at time n
in run r, i.e., ri(n) is the result of appending send(i, j, µ) to ri(n − 1). Also,
we introduce the predicate Sent such that (Pσ, r, n) |= Sent(i, j, µ) iff event
send(i, j, µ) occurs to agent i before time n in run r, i.e., send(i, j, µ) appears in
ri(n). The predicates Rec and Rec’ed are similarly defined for event rec(i, j, µ).

Let us now explore the range of specifications that can be expressed in this
formalism. A property often required in MPS is channel reliability. We express
this by stating that every sent message is eventually received. Notice that ac-
cording to the definition of message passing QIS, it is possible that a message
is lost during a run of the system. We can force channel reliability by requiring
the following specification on MPQIS:

∀µ(∃ijSend(i, j, µ)→ F∃i′j′Rec(j′, i′, µ)) (3)

In fact, we can be more specific and require that every message is received at
most (at least) k steps after being sent, or exactly k steps after being sent:

∀µ(∃ijSend(i, j, µ)→©k∃i′j′Rec’ed(j′, i′, µ)) (4)
∀µ(∃ijSent(i, j, µ)→©k∃i′j′Rec(j′, i′, µ)) (5)
∀µ(∃ijSend(i, j, µ)→©k∃i′j′Rec(j′, i′, µ)) (6)

Note that all of (3)-(6) are monodic. In these specifications the identities of
the sender and the receiver are left unspecified. So, in cases in which we are not
interested in singling out the addresser and the addressee, the monodic fragment
suffices.

Another property often required on MPQIS is that there are no “ghost”
messages: if agent i receives a message µ, then i knows that µ must actually
have been sent by some agent j. This specification is expressible as a monodic
formula:

∀µ(∃jRec’ed(i, j, µ)→ Ki∃j′Sent(j′, i, µ)) (7)



We compare (7) with a further relevant property of MPQIS, i.e., authentication:
if agent i has received a message µ from agent j, then i knows that µ had actually
been sent by j. This specification can be expressed as the de re version of (7):

∀µj(Rec’ed(i, j, µ)→ KiSent(j, i, µ)) (8)

Note that differently from (7), (8) is not monodic.
Even if we allow an agent i not to know whether a received message µ has

actually been sent, that is, we reject (7), by definition of MPQIS it is distributed
knowledge that a message µ has been sent and received as soon as it has been
received, i.e., the following monodic formula holds:

∀µ(∃ijRec’ed(i, j, µ)→ D∃i′j′(Sent(j′, i′, µ) ∧ Rec’ed(i′, j′, µ)))

On the other hand, the corresponding formula

∀µ(∃jRec’ed(i, j, µ)→ Ki∃j′(Sent(j′, i, µ) ∧ Rec’ed(i, j′, µ)))

is not valid for any agent i.
Furthermore, in L1

m we can express that an agent i cannot aquire the knowl-
edge that message µ has been sent to her, other than by receiving the message:

∀µ(∃jSent(j, i, µ)→ (¬Ki∃j′Sent(j′, i, µ)U∃j′′Rec(i, j′′, µ))

Finally, we might want to check whether at a certain point in the evolution
of the MPQIS it will be common knowledge that a message has been sent or
received:

∀µ(∃ijSent(i, j, µ)→ FC(∃i′j′Sent(i′, j′, µ))) (9)
∀µ(∃ijRec’ed(i, j, µ)→ FC(∃i′j′Rec’ed(i′, j′, µ))) (10)

From results in [4] regarding the attainability of common knowledge in sys-
tems with unreliable communication, we may infer that some assumption on
channel reliability in MPQIS is needed in order to satisfy specifications (9)
and (10). The conclusion we can draw from the observations above is that the
monodic fragment of the language Lm allows for rich specifications on MPS,
notwithstanding the limitation on free variables in modal contexts.

5 Axiomatisation

In this section we present a sound and complete axiomatisation of the set of
monodic validities in the class of quantified interpreted systems. The system
QKT 1

m is a first-order multi-modal version of the propositional epistemic system
S5 combined with the linear temporal logic LTL.

Definition 5. The system QKT 1
m on L1

m contains the following schemes of ax-
ioms and inference rules, where � is any of the epistemic operators Ki, for
i ∈ A, D, or C, and φ, ψ and χ are formulas in L1

m:



Taut classic propositional tautologies
MP φ→ ψ, φ⇒ ψ

K© ©(φ→ ψ)→ (©φ→©ψ)
©¬φ↔ ¬© φ
φUψ ↔ ψ ∨ (φ ∧ (φUψ))

Nec© φ⇒©φ
χ→ ¬ψ ∧©χ⇒ χ→ ¬(φUψ)

K� �(φ→ ψ)→ (�φ→ �ψ)
T �φ→ φ
4 �φ→ ��φ
5 ¬�φ→ �¬�φ
Nec� φ⇒ �φ

Kiφ→ Dφ
Cφ↔ (φ ∧ ECφ)
φ→ (ψ ∧ Eφ)⇒ φ→ Cψ

BF© ©∀xφ↔ ∀x© φ
BF� �∀xφ↔ ∀x�φ
Ex ∀xφ→ φ[x/t]
Gen φ→ ψ[x/t]⇒ φ→ ∀xψ, for x not free in φ

The operators Ki, D and C are S5 modalities, while the next© and until U
operators are axiomatised as linear-time modalities. To this we add the classic
postulates Ex and Gen for quantification. We consider the standard definitions
of proof and theorem: ` φ means that φ ∈ L1

m is a theorem in QKT 1
m.

It is easy to check that the axioms of QKT 1
m are valid on every QIS and

the inference rules preserve validity. As a consequence, we have the following
soundness result:

Theorem 1 (Soundness). The system QKT 1
m is sound with respect to the

class QIS of quantified interpreted systems.

Thus, QKT 1
m is sound also for the class QISsync of synchronous QIS.

5.1 Kripke Models
To prove the completeness of QKT 1

m with respect to QIS we first introduce an
appropriate class of Kripke models, and prove completeness for these models.
Then we apply a correspondence result between Kripke models and QIS.

Definition 6. A Kripke model for Lm is a tupleM = 〈〈Nj , <j〉j∈J , {∼i}i∈A,D,
I〉 such that (i) each Nj is a copy of the naturals with the strict total order <j; (ii)
for i ∈ A, ∼i is an equivalence relation on

⋃
j∈J Nj; (iii) D is a non-empty set

of individuals; (iv) the interpretation I is such that I(c) ∈ D, and for nj ∈ Nj,
I(P k, nj) is a k-ary relation on D.
The class of all Kripke models is denoted by K.

A Kripke model is synchronous if for all i ∈ A, nj ∈ Nj , nj ∼i n′j′ implies
n = n′. Ksync is the class of all synchronous Kripke models. Further, let R∗ be
the reflexive and transitive closure of a given relation R. The satisfaction relation
|= for an assignment σ is inductively defined as follows:



(Mσ, nj) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, nj)
(Mσ, nj) |= ¬ψ iff (Mσ, nj) 6|= ψ
(Mσ, nj) |= ψ → ψ′ iff (Mσ, nj) 6|= ψ or (Mσ, nj) |= ψ′

(Mσ, nj) |= ∀xψ iff for all a ∈ D, (Mσ(x
a), nj) |= ψ

(Mσ, nj) |=©ψ iff (Mσ, n+ 1j) |= ψ
(Mσ, nj) |= ψUψ′ iff there is n′j ≥j nj such that (Mσ, n′j) |= ψ′

and for all n′′j , nj ≤j n′′j <j n′j implies (Mσ, n′′j ) |= ψ
(Mσ, nj) |= Kiψ iff for all n′j′ , nj ∼i n′j′ implies (Mσ, n′j′) |= ψ
(Mσ, nj) |= Dψ iff for all n′j′ , (nj , n

′
j′) ∈

⋂
i∈A ∼i implies (Mσ, n′j′) |=ψ

(Mσ, nj) |= Cψ iff for all n′j′ , (nj , n
′
j′) ∈ (

⋃
i∈A ∼i)

∗ implies (Mσ, n′j′) |=ψ

We compare Kripke models and quantified interpreted systems by means
of a map g : K → QIS. Let M = 〈〈Nj , <j〉j∈J , {∼i}i∈A,D, I〉 be a Kripke
model. For every equivalence relation ∼i, for nj ∈ Nj , let the equivalence class
[nj ]∼i = {n′j′ | nj ∼i n′j′} be a local state for agent i, while Nj is the set of local
states for the environment. Then define g(M) as the tuple 〈R,D, I ′〉 where R
contains the runs rj such that rj(n) = 〈nj , [nj ]∼1 , . . . , [nj ]∼m

〉, D is the same as
in M, and I ′(P k, rj , n) = I(P k, nj). The structure g(M) is a QIS that satisfies
the following result:

Lemma 1. For every φ ∈ Lm, n ∈ N,

(Mσ, nj) |= φ iff (g(M)σ, rj , n) |= φ

We omit the proof of this lemma for reasons of space. Note that if M is syn-
chronous, then also g(M) is synchronous, i.e., g : Ksync → QISsync.

6 Completeness
In this section we outline the main steps in the completeness proof; we refer to
the appendix for definitions and detailed proofs.

The completeness of the system QKT 1
m with respect to the class QIS of

quantified interpreted systems is proved by means of a quasimodel construction
[5]. In particular, the version of quasimodels here considered combines the purely
epistemic structures in [22] and the purely temporal structures in [25]. As the
first step we show that for monodic formulas satisfability in quasimodels implies
satisfability in Kripke models.

Lemma 2. If there is a quasimodel Q for a monodic formula φ ∈ L1
m, then φ

is satisfiable in a Kripke model.

Note that if the quasimodel Q for φ is synchronous, then also the Kripke
model built from Q in Lemma 2 is synchronous.

Next we prove the existence of such a quasimodel for φ.

Lemma 3. Suppose that φ ∈ L1
m is a consistent monodic formula, then there

exists a (synchronous) quasimodel for φ.

In the proof of Lemma 3 we make use of results in [22, 25] regarding purely
epistemic and temporal first-order logic. By combining Lemmas 3 and 2 we can
state the main result of this paper.



Theorem 2 (Completeness). The system QKT 1
m is complete with respect to

the class QIS of quantified interpreted systems.

Assume that 0 φ, then ¬φ is consistent and by Lemmas 3 and 2 there is a
Kripke model M satisfying ¬φ. By Lemma 1 the QIS g(M) does not validate
φ, therefore QIS 6|= φ. Similarly, we can prove the following result.

Theorem 3 (Completeness). The system QKT 1
m is complete with respect to

the class QISsync of synchronous QIS.

We refer to the appendix for the details of the proofs.

7 Conclusions and Further Work

In this paper we analysed a quantified version of interpreted systems, and proved
completeness for the system QKT 1

m defined on the monodic fragment of the first-
order language Lm, which includes linear-time modalities and epistemic opera-
tors for group knowledge. This result makes use of previous contributions on the
axiomatisation of pure first-order epistemic and temporal logic [22, 25]. Further,
we showed that a wide range of specifications on message passing systems can
be expressed in the monodic fragment of Lm.

Still, further work is needed in this line of research. The present paper deals
with the class QIS of all quantified interpreted systems and the class QISsync
of synchronous QIS. In the axiomatisation QKT 1

m for these classes there is no
interaction between temporal and epistemic operators, but interaction is essen-
tial to express epistemic concepts such as perfect recall and no learning. These
refinements have been widely studied at the propositional level [7, 9], but it is
not clear to which extent these results apply to the first order. By results in
[10] the set of validities in L1

m on the class of QIS with perfect recall is not
axiomatisable, as we have unaxiomatisability already at the propositional level.
However, to our knowledge there is no result about the monodic fragment in the
case that we drop either the linear-time modalities © and U , and retain only F
and G, or the common knowledge operator C. Results along this line would be
of interest for the investigation of the expressive power of modal logic between
propositional and full first-order.

Finally, another issue not tackled in this paper is decidability. We believe
that by combining the techniques in [15, 24] it is likely to find decidable monodic
fragments of first-order temporal epistemic logic. However, this topic demands
further investigations.
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A Appendix
In this appendix we provide definitions for the main concepts used in the com-
pleteness proof for the system QKT 1

m, as well as the relevant partial results.
Intuitively, a quasimodel for a monodic formula φ ∈ L1

m is a relational structure
whose points are sets of sets of subformulas of φ. Each set of sets of subformulas
describes a “possible state of affairs”, and contains sets of subformulas defining
the individuals in the point.

Definition 7. Given a formula φ ∈ L1
n, we denote by subφ the set of subfor-

mulas of φ, and define subCφ as subφ ∪ {ECψ | Cψ ∈ subφ} ∪ {KiCψ | Cψ ∈
subφ, i ∈ A}. Further, let subC©φ be the set subCφ∪{¬ψ | ψ ∈ subCφ}∪{©ψ |
ψ ∈ subCφ} ∪ {©¬ψ | ψ ∈ subCφ}.

Let subnφ be the subset of subC©φ containing formulas with at most n
free variables, and let x be a variable not occurring in φ, we define subxφ as
{ψ[x/y] | ψ[y] ∈ sub1φ}. Clearly, x is the only free variable in subxφ. By conφ
we denote the set of all constants occurring in φ.

Definition 8 (Type). A type for φ is any subset t of subxφ such that for every
ψ, χ ∈ subxφ, (i) ψ ∧ χ ∈ t iff ψ ∈ t and χ ∈ t; (ii) ¬ψ ∈ t iff ψ /∈ t.

This definition of type is completely standard [5, 22, 25]. Two types t, t′ agree
on sub0φ iff t∩ sub0φ = t′∩ sub0φ. Given a type t for φ and a constant c ∈ conφ,
the pair 〈t, c〉 is called an indexed type for φ.

Also the following definition of state candidate is standard.

Definition 9 (State Candidate). Let T be a set of types for φ that agree on
sub0φ, and T con a set containing for each c ∈ conφ an indexed type 〈t, c〉 such
that t ∈ T , then the pair C = 〈T, T con〉 is a state candidate for φ.

Given a state candidate C = 〈T, T con〉 we define formula αC as follows:

αC :=
∧
t∈T
∃xt[x] ∧ ∀x

∨
t∈T

t[x] ∧
∧

〈t,c〉∈T con

t[x/c]



A state candidate C is consistent iff the formula αC is consistent with QKT 1
m;

consistent state candidates will be the points of our quasimodel. We now define
a relation of suitability for types and state candidates which constitute the rela-
tional part of our quasimodel.

Definition 10. 1. A pair (t1, t2) of types is©-suitable iff the formula t1∧©t2
is consistent. It is i-suitable iff the formula t1 ∧¬Ki¬t2 is consistent, and it
is D-suitable iff the formula t1 ∧ ¬D¬t2 is consistent

2. A pair of state candidates (C1,C2) is ©-suitable iff the formula αC1 ∧©αC2

is consistent. It is i-suitable iff the formula αC1 ∧ ¬Ki¬αC2 is consistent,
and it is D-suitable iff the formula αC1 ∧ ¬D¬αC2 is consistent.

We now introduce the frame underlying the quasimodel for φ.

Definition 11 (Frame). Let A+ = A ∪ {D}. A frame F is a tuple
〈〈Nj , <j〉j∈J , {≺l}l∈A+〉 such that (i) each Nj is a copy of the natural num-
bers with the strict total order <j; (ii) the pair 〈

⋃
j∈J Nj ,

⋃
l∈A+ ≺l〉 is a set of

disjoint intransitive trees1.

A frame is synchronous if for all l ∈ A+, n = n′ whenever nj ≺l n′j′ . Further,
we introduce state functions mapping points in F to state candidates.

Definition 12 (State Function). A state function for φ over F is a map f
associating with each nj ∈ F a consistent state candidate f(nj) = Cnj

for φ such
that (i) the domain of f is not empty; (ii) if f is defined on nj, then f is defined
on n+ 1j; (iii) if f is defined on nj and nj ≺l n′j′ then f is defined on n′j′ .

This definition of state function takes into account also the case of syn-
chronous systems. In what follows we often do not distinguish between a state
nj and its associated state candidate f(nj) = Cnj

.
Finally, we provide the definition of objects, which correspond to the runs in

[22, 25]. We choose this name to avoid confusion with the runs in QIS.

Definition 13 (Object). Let f be a state function for φ over F . An object in
〈F , f〉 is a map ρ associating with every nj ∈ Nj a type ρ(nj) in Tnj

such that

1. the pairs (ρ(nj), ρ(n+ 1j)) are ©-suitable;
2. ρ(nj) and ρ(n′j′) are l-suitable whenever nj ≺l n′j′ ;
3. if χUψ ∈ ρ(nj) then there is n′ ≥ n such that ψ ∈ ρ(n′j) and χ ∈ ρ(n′′j ) for

all n ≤ n′′ < n′;
4. if ¬Kiψ ∈ ρ(nj) then for some n′j′ , ρ(nj) ≺i ρ(n′j′) and ψ /∈ ρ(n′j′);
5. if ¬Dψ ∈ ρ(nj) then for some n′j′ , ρ(nj) ≺D ρ(n′j′)) and ψ /∈ ρ(n′j′);
6. if ¬Cψ ∈ ρ(nj) then for some n′j′ , (ρ(nj), ρ(n′j′)) ∈ (

⋃
l∈A+ ≺l)∗ and ψ /∈

ρ(n′j′).

1 The pair 〈U,R〉 is an intransitive tree iff (i) there is a root u0 ∈ U such that u0R
∗u

for every u ∈ U ; (ii) for every u ∈ U the set {u ∈ U | uR∗u} is finite and linearly
ordered by R∗; (iii) every u ∈ U but the root u0 has exactly one predecessor; (iv)
the root u0 is irreflexive.



A map ρ associating with every nj ∈ Nj a type ρ(nj) ∈ Tnj
such that only

(1) and (3) hold is a temporal object. Similarly, a map ρ associating with every
nj ∈ Nj a type ρ(nj) ∈ Tnj such that only (2) and (4)-(6) hold is an epistemic
object. Now we have all the elements to give the definition of quasimodels.

Definition 14 (Quasimodel). A quasimodel for φ is a tuple Q = 〈F , f,O〉
such that f is a state function over F , and

1. φ ∈ t, for some t ∈ Tnj and Tnj ∈ Cnj

2. every pair (Cnj
,Cn+1j

) is ©-suitable, and every pair (Cnj
,Cn′

j′
) is l-suitable

whenever nj ≺l n′j′
3. for every t ∈ Tnj

there exists an object ρ ∈ O such that ρ(nj) = t
4. for every c ∈ conφ, the function ρc such that ρc(nj) = t, for 〈t, c〉 ∈ T connj

is
an object in O.

We can now prove Lemma 2.

Lemma 2 If there is a quasimodel Q for a monodic formula φ ∈ L1
m, then φ is

satisfiable in a Kripke model.

Proof. The proof of this lemma is similar to those for Lemmas 11.72 and 12.9
in [5].

First of all, for every monodic formula ψ ∈ L1
m of the form Kiχ, Dχ, Cχ,

©χ, or χ1Uχ2 we consider a k-ary predicate P kψ , for k equal to 0 or 1. The
formula P kψ(x) is the surrogate of ψ. Given a formula φ ∈ L1

m we denote by φ
the formula obtained from φ by substituting all its modal subformulas which are
not within the scope of another modal operator by their surrogates.

Since every state candidate C in the quasimodel Q is consistent and the
system QKT 1

m is based on first-order logic, the formula αC is consistent with
first-order (non-modal) logic. As a consequence, by completeness of first-order
logic, there is a first-order structure I = 〈I,D〉, where D is a non-empty set of
individuals and I is an interpretation on D, which satisfies αC, that is, Iσ |= αC

for some assignment σ to D.
Now, we consider a cardinal κ ≥ ℵ0 greater than the cardinality of the set

O of all objects in Q, and define D = {〈ρ, ξ〉 | ρ ∈ O, ξ < κ}. By the theory of
first-order logic, we can assume without loss of generality that D is the domain
of the first-order structure Inj

= 〈Inj
,D〉 satisfying αCnj

, that is, all structures
Inj share a common domain D, and for every t ∈ Tnj , 〈ρ, ξ〉 ∈ D, ρ(nj) = t iff
Iσnj
|= t[x], for σ(x) = 〈ρ, ξ〉. Moreover, Inj

(c) = 〈ρ, 0〉, for every c ∈ conφ.
Let us now define the Kripke model M. Let F = 〈〈Nj , <j〉j∈J , {≺l}l∈A+〉

be the frame of the quasimodel Q, we define M as 〈〈Nj , <j〉j∈J , {Ri}i∈A,D, I〉
where each sequence Nj of naturals in F belongs also to M; each relation Ri
is the reflexive, symmetric and transitive closure of ≺i ∪ ≺D; D is defined as
above; and the interpretation I is obtained by gluing together the various Inj .

By induction on the length of ψ ∈ subxφ we can show that for every σ,

Iσnj
|= ψ iff (Mσ, nj) |= ψ



The base of induction follows by definition of I. The step for propositional
connectives and quantifiers follows by the induction hypothesis and equations
ψ1 → ψ2 = ψ1 → ψ2, ¬ψ1 = ¬ψ1, ∀xψ1 = ∀xψ1. To deal with modal operators
we state without proof the following remark, the relevant cases directly follow.

Remark 1. For every ρ ∈ O and nj ∈ Nj ,

(i) © ψ ∈ ρ(nj) iff ψ ∈ ρ(n+ 1j)
(ii) ψUχ ∈ ρ(nj) iff there exists n′j ≥j nj such that χ ∈ ρ(n′j)

and for every nj ≤j n′′j < n′j , ψ ∈ ρ(n′′j )
(iii) Kiψ ∈ ρ(nj) iff for every n′j′ , njRin

′
j′ implies ψ ∈ ρ(n′j′)

(iv) Dψ ∈ ρ(nj) iff for every n′j′ , (nj , n
′
j′) ∈

⋂
i∈A

Ri implies ψ ∈ ρ(n′j′)

(v) Cψ ∈ ρ(nj) iff for every n′j′ , (nj , n
′
j′) ∈

( ⋃
i∈A

Ri

)∗
implies ψ ∈ ρ(n′j′)

The proof of this remark is similar to the one for Lemma 12.10 in [5]. To
complete the proof of Lemma 2 we remark that by definition of quasimodel
φ ∈ t, for some t ∈ Tnj

and Tnj
∈ Cnj

, therefore we have that φ is satisfied in
the Kripke model M. ut

Note that if Q is a synchronous quasimodel for φ, then the Kripke model
built from Q in Theorem 2 is also synchronous.

Now it is left to prove the existence of such a quasimodel for φ.

Lemma 3 Suppose that φ ∈ L1
m is a consistent monodic formula, then there

exists a (synchronous) quasimodel for φ.

In the proof we use the following partial results. These lemmas, which we
state without proof, are modifications of Lemmas 11.73 and 12.11 in [5].

Lemma 4. Let C be a consistent state candidate, then we can construct an
infinite sequence {Cn}n∈N of state candidates such that (i) every pair (Cn,Cn+1)
is ©-suitable; (ii) for every t ∈ Tn there exists a temporal object ρ such that
ρ(n) = t; (iii) for c ∈ conφ, the function ρc such that ρc(n) = t, for 〈t, c〉 ∈ T conn ,
is a temporal object.

Lemma 5. Let C be a consistent state candidate, then we can construct a struc-
ture W = 〈W,≺1, . . . ,≺m,≺D〉 such that W is a non-empty set of state candi-
dates, and the pair 〈W,

⋃
l∈A+ ≺l〉 is a tree. Further, (i) C ≺l C′ only if C and

C′ are l-suitable; (ii) for every t ∈ T , w ∈W , there exists an epistemic object ρ
such that ρ(w) = t; (iii) for c ∈ conφ, the function ρc such that ρc(w) = t, for
〈t, c〉 ∈ T conw , is an epistemic object.

We can now prove Lemma 3.



Proof. Let πφ be the disjunction of all formulas αC, for all state candidates for φ.
Note that πφ is true in every first-order model, so by completeness we have that
` πφ. Since φ is consistent, also φ ∧ πφ is consistent. Then there is a consistent
state candidate C = 〈T, T con〉 such that φ ∈ t, for some t ∈ T .

We define the structure 〈F , f〉 underlying the quasimodel Q in steps. At step
2n+1 we extend the structure with a chain NC′ of state candidates for every
state candidate C′ introduced at step 2n. At stage 2n+2 we provide every state
candidate introduced at step 2n+1 with a tree of state candidates as shown in
Lemma 5.

We start with the base of induction. Define F0 = 〈〈Nj , <j〉j∈J0 , {≺0
l }l∈A+〉,

where J0 is empty and for every l ∈ A+, ≺0
l is also empty. The function f0 is

empty as well. We also consider a set U0 which contains only the state candidate
C defined above, and assume U−1 = ∅.

At step 2n+1 the frame F2n+1 is defined as the tuple 〈〈Nj , <j〉j∈J2n+1 ,

{≺2n+1
l }l∈A+〉 such that J2n+1 = J2n ∪ {U2n \ U2n−1}, and for each l ∈ A+,

≺2n+1
l =≺2n

l . Further, for every u ∈ U2n \ U2n−1 by Lemma 4 there exists a se-
quence {uk}k∈N of state candidates such that u0 = u. Thus, the state function
f2n is extended to f2n+1 such that f2n+1(nu) = un, for u ∈ U2n \ U2n−1, and
f2n+1 is equal to f2n on all the other u. Finally, U2n+1 =

⋃
j∈J2n+1

Nj .
For defining F2n+2 we take J2n+2 = J2n+1. Moreover, by Lemma 5 for ev-

ery u ∈ U2n+1 \ U2n there is a structure 〈Wu, {≺l}l∈A+〉 such that the pair
〈Wu,

⋃
l∈A+ ≺l〉 is a tree. We define ≺2n+2

l as ≺2n+1
l ∪ ≺l, for each l ∈ A+.

Finally, f2n+2 = f2n+1 and U2n+2 = U2n+1 ∪
⋃
u∈U2n+1\U2n

Wu.
Now consider the quasimodel Q = 〈F , f,O〉, where F = 〈〈Nj , <j〉j∈J ,

{≺l}l∈A+〉 such that J =
⋃
k∈N Jk and ≺l=

⋃
k∈N ≺kl , for l ∈ A+, f =

⋃
k∈N fk,

and O is the set of all objects on 〈F , f〉. By Lemmas 4 and 5 and by construction
of Q we can show that the objects in O satisfy the constraints on quasimodels.
Since φ ∈ t, for some t ∈ C and C ∈ Q, we have that Q is a quasimodel for φ.

Furthermore, if we want to obtain a synchronous quasimodel from the con-
struction above we modify the step 2n+1, for n ≥ 1, as follows. For every
u ∈ U2n \ U2n−1 by construction there exists a structure 〈Wu′ , {≺l}l∈A+〉, for
some u′ ∈ U2n−1, such that u ∈ Wu′ . Moreover, for some j ∈ J2n, m ∈ N,
u′ = mj . Now, by Lemma 4 there exists a sequence {uk}k∈N of state candi-
dates such that u0 = u, but now define the state function f2n+1 such that
f2n+1((m+ k)u) = uk for k ∈ N, where m is as above. It it not difficult to show
that by this construction the quasimodel Q for φ is synchronous. This completes
the proof of Lemma 2. ut

From Lemmas 3 and 2, Theorems 2 and 3 follow by Lemma 1. This completes
the completeness proof.


