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Abstract. Model checking has been widely applied to the verification ofnetwork protocols. Alter-
natively, optimisation based approaches have been proposed to reason about the large scale dynamics
of networks, particularly with regard to congestion and rate control protocols such as TCP. This paper
intends to provide a first bridge and explore synergies between these two approaches. We consider a
series of discrete approximations to the optimisation based congestion control algorithms. Then we
use branching time temporal logic to specify formally the convergence criteria for the system dy-
namics and present results from implementing these algorithms on a state-of-the-art model checker.
We report on our experiences in using the abstraction of model checking to capture features of the
continuous dynamics typical of optimisation based approaches.

Keywords: Model Checking, Distributed Optimisation, Congestion Control, Convergence

1. Introduction

Model checking has been widely applied to reason about network protocols in terms of the sequences
of interactions between protocol entities. This typicallyallows the discovery of functional problems
in network protocols, such as whether a protocol can deadlock or otherwise fail to achieve the desired
outcome.
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In the case of routing or flow control protocols network-wideproperties are studied, such as whether
a stable routing configuration can be established, or whether link capacity can be fairly and efficiently
shared between communication sources. Optimisation theory has provided a successful approach to this
type of questions. This approach abstracts away from the details of packet arrivals and transmissions in a
network, and instead considers the rate at which a source sends packets, typically measured as a positive
real number. A protocol is then specified as an algorithm which defines how the rate should change in
response to feedback from the network.

Our work investigates how model checking can be applied to reason about protocol behaviour at this
higher level of abstraction. We seek to explore how logic, nondeterminism and discreteness, implicit in
model checking, apply to network resource control problemsnormally modelled from the point of view
of optimisation. In doing this we intend to widen the scope ofmodels of this type of network problem,
and investigate their impact on protocol behaviour. We takeexamples from the area of congestion control,
which has been extensively studied in the networking literature [7, 8, 4]. To the best of our knowledge
this is the first time congestion control has been analysed from the perspective of model checking. Our
approach leads to the following notable features:

• The source and resource agents, instead of concrete protocol entities, are identified in accordance
with the duality structure of the underlying optimisation model. The source agents represent com-
munication sources that control primal variables, while the resource agents represent network re-
sources that control dual variables.

• A range of options is presented for composing these agents todefine a congestion control algo-
rithm, ranging from fully synchronous to fully asynchronous models and various combinations of
them. The expressiveness analysis of these models reveals that fully asynchronous models with
both source and resource agents simulate fully synchronousmodels with source or resource agents
only, but not vice versa.

• Nondeterminism can capture aspects not modelled within theoptimisation framework, such as
uncertain gain (a parameter within the agents) or propagation delay. Through model checking, we
find that nondeterminism can affect the stability of congestion control algorithms by introducing
different scenarios of convergence or oscillation, and also by increasing the number of states a
network may undergo until stable.

The experiments we report here used the model checker NuSMV [2], due to its full support for CTL
and LTL, as well as explicit fairness constraints (e.g., to ensure every agent to execute infinitely often).
The model checker is able to identifyunanticipatedunstable behaviour, by returning counterexamples to
the stability property. We have also tried, but not reportedhere, other model checkers, such as SPIN [5]
and UPPAAL [1], with no better results in other slightly different settings.

Related Work. Following [7] optimisation based approaches are now standard for analysing conges-
tion control. Kelly and Voice [8] proposed a stable fluid-flowframework for joint routing and rate control
on which our first case study is based. Walker, Wennink et al. [14, 15] exploited Lagrangian optimisa-
tion models, which decompose into distributed synchronousand asynchronous algorithms for congestion
control. However, it was argued in [6] that the importance ofcommunication mechanisms has generally
been overlooked in the modelling of global behaviour.
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Formal verification techniques have been applied to networkprotocols before. For instance, Yuen
and Tjioe [16] applied SPIN to verify the equilibrium property of a priority pricing based congestion
control model. Sobeih, Viswanathan et al. [11] presented anextended compositional network simulation
environment with the capability of bounded model checking.

Our work inherits the global perspective of optimisation based approaches and characterises stability
(a network-wide property) as a temporal logic formula. Thismakes it different from existing literature
on model checking network protocols, where local functionalities of concrete protocol entities such as
border gateways and interior routers were the main concern.Specially, our work differs from [16] in
that we discretise and analyse a continuous optimisation based congestion control model and explore the
issue of nondeterminism in this setting. This contrasts with [16] which is just applicable to the particular
model considered.

The work closest to our own is the asynchronous algorithm presented in [10], which was based
on optimisation but schedules the sources and resources in the fully nondeterministic order. Jaggard,
Ramachandran et al. [6] studied the impact of communicationmodels on network convergence under the
synchronous framework. The present paper further exploresa range of synchronous and asynchronous
compositions systematically.

Structure. The rest of the paper is organised as follows. Section 2 briefly introduces two conges-
tion control protocols. Section 3 presents the modelling spectrum with expressiveness analysis for each
composition framework. The stability property is formulated in Section 4, followed by the model check-
ing results. Section 5 discusses the strength and the weakness of both approaches for this optimisation
problem. We conclude in Section 6 with some observations.

2. Optimisation Based Congestion Control

This section briefly presents an optimisation formulation of a congestion control problem. We imagine a
network in which a number of sources communicate with a number of destinations. Between each source
and destination a number of routes have been previously provisioned, and a source can split its traffic
over these routes. Each route uses a number of links or, more generally, resources, each of which has a
finite capacity constraint. We formalise this as follows.

Assume a network with a setS of sources and a setJ of resources. LetR be a set of routes, each
identifying a non-empty subset of resources. Each route connects only one source with its pre-defined
destination. Letr ∈ s denote that sources can transmit along router ands(r) be the unique sources
such thatr ∈ s. For example, in the network shown in Figure 1(a), each source si (1 ≤ i ≤ 3) transmits
data to its destinationdi along two routesr2i−1 andr2i. SoS = {s1, s2, s3} andR = {r1, · · · , r6}.
Figure 1(b) presents the resource topology of the network, in which each source is configured with two
routes (i.e.,r2i−1 ∈ si andr2i ∈ si for 1 ≤ i ≤ 3), and each resource is shared by two routes (i.e.,
j1 ∈ r1, j1 ∈ r6 andji ∈ r2(i−1), ji ∈ r2i−1 for i = 2, 3).

Let xr be the flow rate on router andCj be the capacity of resourcej. It is convenient to introduce
vector notations for the flows and capacity constraints. Let~x = (xr, r ∈ R) andC = (Cj , j ∈ J).
Define the resource matrixA such that, forj ∈ J andr ∈ R, Ajr = 1 if j ∈ r andAjr = 0 otherwise.

Letxj denote the aggregate flow rate at resourcej, that is,xj =
∑

{r|j∈r}

xr. A resourcej is congested

if xj > Cj. A route r is congestedif some j ∈ r is congested. The multi-path congestion control
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(a) Network Topology
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(b) Resource Topology

Figure 1. A Communication Network

problem is to find an assignment of flows~x which maximises the overall utility of the network such that
no resource is congested.

We assume that the utilityUs experienced by each sources depends on the total flow sent over all
routes available to it, and that the overall utility of the network can be expressed as a sum of utilities of
all the sources. These assumptions are standard in the networking literature, and allow the multi-path
congestion control problem to be specified as the following optimisation problem:

max
∑

s∈S

Us(
∑

r∈s

xr) subject toA~x ≤ C, ~x ≥ 0 (1)

Here, the inequalities apply component-wise on the vectors~x andC. The utility functionsUs are strictly
increasing and concave in their argument.

To assign flows to routes the network must implement a distributed algorithm to solve this problem.
This is best understood by moving the constraints into the objective function to obtain the associated
Lagrangian relaxation, a typical technique for this type ofproblem [7, 10, 8]. Each constraint (one for
each capacitated resource) gives rise to a Lagrange multiplier yj. Then, it is a well known result in
optimisation theory that problem (1) can be solved by findinga saddle point of the following Lagrangian
function:

L(~x, ~y) =
∑

s∈S

Us(
∑

r∈s

xr)− ~y(A~x− C) (2)

where~y = (yj , j ∈ J) with ~y ≥ 0 and ~x ≥ 0. A saddle point(~x∗, ~y∗) maximises the value of
L with respect~x so thatL(~x, ~y∗) ≤ L(~x∗, ~y∗) for any ~x, and minimises it with respect to~y sot that
L(~x∗, ~y) ≥ L(~x∗, ~y∗) for any ~y. If (~x∗, ~y∗) is a saddle point ofL, then~x∗ is an optimal solution to
problem (1) [10].

The variables~x and~y in (2) are referred to asprimal anddual decision variables, respectively. The
dual variables have the interpretation of price, and act as afeedback signal from the network (resources)
to the sources indicating incipient congestion. In a distributed setting each source controls the flow
variablesxr associated with all the routesr available to it, and the resources are assumed to control



A. Lomuscio et al. / Model Checking Optimisation Based Congestion Control Algorithms 5

the dual variables or prices (recall there is one dual variable yj associated with each resourcej). The
sources aim to maximise the value ofL given the values chosen for the dual variables by the resources,
and the resources aim to minimise the value ofL given the flows chosen by the sources. A solution to
problem (1) is where the interactions between the sources and resources reach an equilibrium [14, 15],
as expressed by the saddle point conditions.

To design a distributed algorithm we must provide more details on the rules by which a source (re-
spectively, resource) dynamically updates its values of primal (respectively, dual) variables. A common
approach is to model the update rules as temporal trajectories specified by differential equations, on the
assumption that the utility functionsUs are differentiable. A complete analysis would then demonstrate
that these trajectories converge to the optimum solution (or saddle point) under appropriate modelling
and applicability assumptions [7, 10, 8, 14, 15, 12].

The rest of this section presents two congestion control protocols based on the above multi-path set-
ting. The first protocol (multi-path congestion/rate control) intends to capture the fluid-flow congestion
control algorithm specified in [8]. Under the fluid-flow assumption the algorithm was described by dif-
ferential equations and supported by a proof of stability. We apply a direct discretisation to this model
so as to make it tractable for model checking. Depending on the level of granularity, this discretisation
may exhibit behaviour that seems unrealistic for the systemmodelled in [8] (we will discuss this later
in Section 4.2). But the process of discretisation leads us to consider the meaning of nondeterminism
present in the discrete models, which does not exist in the differential equations.

Our second protocol (session based rerouting and termination) is inspired by this experience and
considers a scenario where the assumptions behind the Kellyand Voice’s model start to fail and where
the assumptions of model checking become more realistic. Wechoose a system where flow rates are
discrete-valued, corresponding to the discrete nature of model checking, and the behaviour of a source is
itself naturally nondeterministic.

2.1. Multi-path congestion/rate control

First we consider the dynamics of the primal variables. As presented in [8], for each sources and route
r ∈ s, the trajectory in the primal flow ratesxr is modelled as a continuous function of timet, i.e.,xr(t),
subject to the following differential equation:

d

dt
xr(t) = κrxr(t)

(

1−
yr(t)

U ′
s(r)(xs(r)(t))

)+

xr(t)

(3)

whereκr is a constant and

• yr(t) =
∑

j∈r
yj(t) is the total cost on router; yj(t) is the cost at resourcej;

• xs(t) =
∑

r∈s
xr(t) is the aggregate flow rate on all routes available to sources;

• U ′
s is the first-order derivative ofUs;

• (z)+x = min(0, z) if x ≤ 0, otherwise(z)+x = z.
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In [8] propagation delay in a communication network was taken into account by definingyr andxs
as functions of the past route flow rates. Herein, we omit thisconsideration and assume propagation
delay to be negligible. We will come back to this point in Section 5.

For the dynamics of the dual variables controlled by the resources we choose a simpler model. We
assume that the congestion priceyj depends functionally on the instantaneous total flow at resourcej:
yj = Prj(xj). This dependency can be thought of as capturing a congestioncost, for example, due to
increased packet delay. This cost will perturb the solutions of (1) slightly. However, if the congestion
pricing functionPrj is chosen appropriately it has little impact on the equilibrium configuration of the
system, though has the advantage of significantly improvingcontrollability.

Now we discretise this continuous model by making the time and state variables integer-valued under
integer arithmetic, and by choosing particularly tractable instances of the generic functions in Equation
(3).

When the continuous timet is abstracted into a discrete one, the flow rate functionxr(t) is converted
into a series of instantaneous snapshots ofxr. This also applies toyr(t) andxs(t). The relation between
the current value ofxr and its next valuex′r can be defined uniformly asx′r = xr +∆xr, where∆xr is
the increment ofxr in one unit time.

Following a rather common choice, we assumeUs to be a logarithmic function of the aggregate flow
rate on all routes serving sources, that is,Us = α ln(xs), whereα is the utility coefficient. We choose
the pricing functionPrj to be a linear function of the flow rates at resourcej, that is,

yj = Prj(xj) = βxj (4)

whereβ is the price coefficient. Then, by following the skeleton of Equation (3),∆xr is defined as

∆xr = κrxr



1−
β

α

∑

j∈r

xj
∑

r′∈s(r)

xr′





+

xr

(5)

Here,κr can be regarded as againcoefficient that defines the pace at which router seeks its equilib-

rium; while
β

α
defines how much flow will follow router at equilibrium.

Equations (5) and (4) define how the sources and resources act, respectively. The agents in the Kelly
and Voice’s algorithm can be thought of as acting synchronously though in infinitesimal steps. For a
discrete model composition structures that do not constrain those actions to synchrony could also be
applicable, as suggested by [10]. We will explore these options in Section 3.

Once we allow this relaxation, then the sources no longer proceed with the deterministic gain implied
by κr. Althoughκr is constant, those asynchronous models allow the sources toupdate their flow rates
in a nondeterministic order. This then may lead the routes toequilibrate at a variable pace, which is
significantly different to the deterministic behaviour specified by Equation (3).

2.2. Session based rerouting and termination

In the second protocol, we consider essentially the same underlying optimisation problem but with the
context moved to a regime where a continuous real-valued model is a less reliable fit. Specially, we
consider a system where the sources are managing a non-emptyset of constant flow rate sessions. Two
control actions are provided for a source to resolve its possible congestion status. Firstly, the source
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may reroute the excess sessions from the congested routes toalternative routes. Rather than considering
a deterministic rerouting policy, we will let the model explore how the source may choose the new
routes. Secondly, the sources may, though onlyin extremis, terminate those excess sessions. This follows
the general ideas specified in the IETF Pre-Congestion Notification (PCN) Working Group, where an
architecture for controlling congestion through admission control and flow termination is being defined
[4]. For each route, its destination will inform its source of the proportion of congestion at the bottleneck
resource (if any), while its source relies on this feedback to decide the proportion of its flow to terminate.

For the second protocol, the primal variablexr of problem (1) is regarded as the number of sessions
on router, a more naturally discrete value. We take a linear utility functionUs = αsxs, whereαs is the
utility value of a single session of sources. This seems appropriate for a network operator treating all
sessions equally.

The congestion control policy of the second protocol is as follows: for each congested router ∈ s,
sources will reroute a certain number of excess sessions from router to a non-congested router′ ∈ s
(chosen nondeterministically), or terminate them if suchr′ does not exist. The proportions of sessions to
be rerouted or terminated is based on the proportions of excess load at resources, that is, for resourcej,

yj =
xj − Cj

xj
(6)

Then, for a congested router ∈ s,

∆xr = −xr max{yj | j ∈ r} (7)

Herein,max{yj | j ∈ r} is the largest proportion of congestion at a bottleneck resource. For a non-
congested router′ ∈ s, ∆xr′ is the aggregate number of sessions rerouted tor′ from those congested
routesr ∈ s.

As before these equations define how the primal and dual decision variables change over time. The
possible composition structures will be explored later. However, observe this model is nondeterministic
even in the synchronous case. This is because whenever thereis more than one non-congested route
available, sources chooses one of them nondeterministically for each congested router ∈ s.

3. Modelling

Distributed algorithms for optimisation based congestioncontrol differ on whether the evolution is driven
by the sources (primals), the resources (duals), or both. Most of these algorithms schedule the sources and
resources synchronously along the global continuous time scale [10, 8, 15]. An asynchronous algorithm
was presented in [10], scheduling the sources and resourcesin the fully nondeterministic order. In the
rest of this section we will explore the options of these composition structures.

Note that it is the data flows in a network that are concerned with these optimisation models. So,
the behaviours of the sources and resources, which control and monitor the data flows, respectively, are
prescribed in corresponding congestion control algorithms, but not the detailed hop-by-hop behaviours
of particular protocol entities. Thus, we follow the perspective of optimisation-based approaches, that is,
to encode the sources and resources as procedural agents.

Technically, we adopt a special form of symbolic transitiongraph with assignments (STGA) [9],
termed assymbolic assignment graph, to model the systems above. The explicit input/output constructs
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in STGA is omitted, due to the fact that shared variables can be relied on for this purpose. Recall
that symbolic transition graphs are a basic symbolic semantics for value-passing CCS,π-calculus, and
others. Herein, the notion of symbolic assignment graph hasthe benefit of offering a succinct semantics
to describe the systems above, which is amenable to model checking; clearly other formalisms are also
possible.

We presuppose the following syntactic categories:Val is a set of values, ranged over byv; Var is a
set of variables, ranged over byx; Exp is a set of data expressions overV al ∪ V ar, ranged over bye;
BExp is a set of Boolean expressions ranged over byb.

An assignmentθ has the formx̄ := ē, wherex̄ (respectivelyē) represents a list of variables (re-
spectively data expressions), with̄x and ē having the same length. AssumeAssignV be the set of all
assignments to variables inV ⊆ V ar.

A valuationρ is a total mapping fromVar to Val . Applications ofρ onto a data expressione and a
Boolean expressionb are denoted byρ(e) andρ(b) as usual. Especially, we writeρ � b if ρ(b) = true.
The valuationρ{x̄ 7→ v̄} is same asρ except mappinḡx to v̄. AssumeEval be the set of all valuations.

Definition 3.1. (Symbolic Assignment Graph)
Given a set of variablesV ⊆ V ar, a symbolic assignment graph(SAG) is a tupleMV = (Q,T , q0)
where

• Q is a set of symbolic states;

• T ⊆ Q × BExp × AssignV × Q is a set of symbolic transitions, each(q, b, x̄ := ē, q′) ∈ T

denoted byq
b,x̄:=ē
−−−−→ q′ with {x̄} ⊆ V ;

• q0 ∈ Q is the initial symbolic state.

Informally a symbolic transitionq
b,x̄:=ē
−−−−→ q′ denotes a possible state change ofMV from q to q′, under

the assumption that the guardb is evaluated to true at stateq, and in doing so the values ofx̄ are changed
to the ones of̄e evaluated at stateq. The following definition makes this precise.

Definition 3.2. (Labelled Transition Systems)
Given a set of observable labelsLV = {µW |W ⊆ V } and an initial valuationρ0, the concrete semantics
of the SAGMV is a labelled transition systemJMV Kρ0 = (P, T, p0), where

• P = {qρ | q ∈ Q, ρ ∈ Eval} is a set of states;

• T ⊆ P × LV × P is the minimal set of transitions given by the following operational rule:

q
b,x̄:=ē
−−−−→, q′

qρ
µ{x̄}
−−−→ q′

ρ{x̄ 7→ρ(ē)}

ρ � b

Similarly we writep
µW−−→ p′ for each(p, µW , p′) ∈ T with W ⊆ V ;

• p0 ≡ q0ρ0 ∈ P is the initial state.
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To conclude we say thatω = µX1
· · · µXi

· · · is a traceof MV if there exists a run (i.e., a sequence of

transitions)q0ρ0
µX1−−→ q1ρ1 · · · q(i−1)ρi−1

µXi−−→ qiρi · · · in JMV Kρ0 for some initial valuationρ0.
In what follows we explore source and resource agents modelled by symbolic assignment graphs

(SAGs). To define the evolution of a system we use the standardnotions of synchronous and asyn-
chronous compositions.

Definition 3.3. (Synchronous Composition)
Given two symbolic assignment graphsMV1

= (Q1, T1, q
0
1) andMV2

= (Q2, T2, q
0
2) with V1 ∩ V2 = ∅,

MV1
|MV2

is the graphMV1∪V2
= (Q1 ×Q2, T, (q

0
1 , q

0
2)), whereT is the minimal set of transitions given

by the following composition rule:

q1
b1,x̄1:=ē1
−−−−−−→ q′1 q2

b2,x̄2:=ē2
−−−−−−→ q′2

(q1, q2)
b1∧b2,(x̄1,x̄2:=ē1,ē2)
−−−−−−−−−−−−−→ (q′1, q

′
2)

Definition 3.4. (Asynchronous Composition)
Given two symbolic assignment graphsMV1

= (Q1, T1, q
0
1) andMV2

= (Q2, T2, q
0
2) with V1 ∩ V2 = ∅,

MV1
‖ MV2

is the graphMV1∪V2
= (Q1 × Q2, T, (q

0
1 , q

0
2)), whereT is the minimal set of transitions

given by the following composition rules:

q1
b1,x̄1:=ē1
−−−−−−→ q′1

(q1, q2)
b1,x̄1:=ē1
−−−−−−→ (q′1, q2)

q2
b2,x̄2:=ē2
−−−−−−→ q′2

(q1, q2)
b2,x̄2:=ē2
−−−−−−→ (q1, q

′
2)

The state defined in our optimisation models is precisely thevalues of the primal and dual variables:
the flow rates{xr | r ∈ R} and congestion costs{yj | j ∈ J}. The agents who control this state are
sources and resources respectively. We take this structureover directly to our SAG models which contain
source agents and resource agents.

In scheduling these agents, three forms of optimisation-based congestion control algorithms exist.
One standard form is termed primal algorithms, in which the sources actively adjust their primal variables
and the resources only recalculate the values of their dual variables accordingly. The symmetric form
of primal algorithms is termed dual algorithms, in which it is the resources that take the active parts.
Finally, the other is termed primal/dual algorithms, in which both classes of agents are active. In the
rest of the section we model the cases of primal algorithms and primal/dual algorithms; the case of dual
algorithms can also be modelled but we do not present it here.

3.1. Congestion control as SAGs - primal algorithms

In the case of primal algorithms the sources are active agents modelled as SAGs, while the resources are
modelled by deterministic functions recalculating the congestion costs passively. Thus we are assuming
that the resources respond with the up-to-date congestion information quickly on the timescale at which
the sources are taking their actions. This does not allow a resource agent to apply more complex algo-
rithms to smooth the congestion information it sends: it hasto be a simple function of the current load at
the resource.

Let Xs = {xr | r ∈ s} denote the decision variables of sources. In this framework, we model
each sources as a SAGMXs updating its own variablesXs at each transition. We assume that a source
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updates all of its own variables simultaneously in one transition, which is counted as one source update.
For the multi-path congestion/rate control model described in Section 2.1, this leads us to the following
SAG: for a sources owningk ≥ 1 routesr1, . . . , rk:

MXs = ({q}, {q
true, xr1

,··· ,xrk
:=xr1

+∆xr1
,··· ,xrk

+∆xrk−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q}, q)

where∆xri(1 ≤ i ≤ k) is defined by equation (5).
Having defined source updates, we are left with two options torepresent the interleaving of all source

agents in this framework: by synchronously composition generating a system of Synchronous Sources
(SS), or by asynchronous composition generating a system of Asynchronous Sources (AS):

SS ,
∣

∣

s∈S

MXs

AS ,
∥

∥

s∈S

MXs

These two compositions model different scenarios. Intuitively,SS inherits the synchronous structure
of dynamic equations like (3). But as a discrete model, it reflects the situation where propagation delay
periods are uniform on every route.

AS constitutes the general case of naturally modelling the concurrent nature of a distributed network,
where the sources are monitored in uncertain paces.

3.2. Congestion control as SAGs - primal/dual algorithms

In this subsection we model both sources and resources as SAGs and consider their compositions. Mod-
elling resources agents explicitly can reflect the delayed reaction of the resources to source updates.
Recall that resources’ decision variables are the dual variables{yj | j ∈ J} in the Lagrangian function
(2).

Similarly to the previous section for each resourcej ∈ J , we associate a resource agentMyj mod-
elled as a SAG built onyj as its state variables. Resource agents may be composed synchronously (re-
spectively, asynchronously), thereby generating systemsof Synchronous Resources (SR) (respectively,
Asynchronous Resources (AR)).

SR ,
∣

∣

j∈J

Myj

AR ,
∥

∥

j∈J

Myj

Combining this analysis with the one of the previous subsection, we obtain four general modelling
frameworks, in which a particular class of sources agents are asynchronously composed with a particular
class of resources agents.

SSSR , SS ‖ SR

SSAR , SS ‖ AR

ASSR , AS ‖ SR

ASAR , AS ‖ AR
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Moreover, we restrictASSR models with an alternative scheduling policy between sources and
resources. This generatesAS∗ models, where source and resource updates are arranged in a turn-based
mode. In each turn, only sources (or resources) get updated,followed by resources (or sources) getting
updated in the next turn.

The modelling options above will in general produce different system evolutions but, as far as the
underlying optimisation models are concerned, there is a certain redundancy. For instance, in a pri-
mal/dual system, consecutive updates by different sourcescause the same state change as that caused by
a joint synchronous update, because the sources depend onlyon the states of the resources, which have
not yet changed during the consecutive source updates. Any interleaving of these source updates leads
to the same state as the equivalent synchronous update. Thisredundancy also applies to consecutive re-
source updates. This opens the possibility of employing state reduction techniques, notably partial order
reduction, when checking such a system.

3.3. Expressiveness

In this subsection the expressiveness of each modelling framework is illustrated through trace analysis.
This will show that different interleaving structures of these modelling frameworks associate optimisation
models with distinct senses of nondeterminism.

With the above observations, we extend the notationµW to represent trace fragments. LetX =
⋃

s∈S
Xs andY = {yj | j ∈ J}. For someS′ = {s1, · · · , sl} ⊆ S, l ≥ 1, let X ′ =

⋃

s∈S′

Xs and

µX′ represent the synchronous updates onX ′, or any permutation of the sequence of asynchronous
updatesµXs1

· · · µXsl
, whichever applicable. Similarly, for someY ′ = {yj1 , · · · , yjm} ⊆ Y,m ≥ 1,

let µY ′ represent the synchronous updates onY ′, or any permutation of the sequence of asynchronous
updatesµ{yj1}

· · ·µ{yjk}
. Let CX andCY be the set of compound source and resource update labels,

respectively, i.e.,CX = {µX′ | X ′ ⊆ X and for eachs ∈ S, X ′ ∩ Xs = ∅ or X ′ ∩ Xs = Xs} and
CY = {µY ′ | Y ′ ⊆ Y }.

Then, the finite traces of these modelling frameworks can be expressed as regular expressions shown
in Table 2(a).

Models Traces

SS (µX)∗

AS ({µXs | s ∈ S})∗

SSSR (µX | µY )
∗

SSAR (µX | CY )
∗

ASSR (CX | µY )
∗

ASAR (CX | CY )
∗

AS∗ (CXµY )
∗

(a)

ASAR

SSAR
≺

77oooooooo
ASSR

≺

OO

SSSR

≺

OO

≺

77oooooooo
AS∗

≺

OO

SS

≺

OO

≺

77ooooooooo
AS

≺

OO

(b)

Figure 2. Modelling Spectrum

Let traces(M) be the set of finite traces of agentM . We have thatM � N if traces(M) ⊆
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traces(N), andM ≺ N if traces(M) ⊂ traces(N). The trace inclusion relations shown in Figure
2(b) can be inferred from the standard semantics of synchronous and asynchronous composition. These
relations indicate the impact of synchronisation mechanisms on the interactions between the sources and
the resources, and hence on the dynamic properties of congestion control, including stability.

1. SSSR ≺ SSAR ≺ ASAR andSSSR ≺ ASSR ≺ ASAR.

Asynchronous source agents can nondeterministically choose to ignore resource updates, while
synchronous ones cannot. Hence in the case of asynchronous agents, the rate at which a source
moves towards an equilibrium is uncertain.

By including the resources explicitly as agents, these models can partially capture an uncertain
propagation delay between the sources and resources, in thesense that one source (or resource)
update will not take effect until the connected resources (or sources) act and thereby pass on the
information.

2. SS ≺ SSSR andAS ≺ ASSR.

Since only the sources are active inSS andAS models, only source update labels appear in their
traces. But if we incorporate the state change of resources’decision variable explicitly, thefull
traces forSS andAS models can be written as(µXµY )

∗ and({µXs | s ∈ S}µY )
∗, respectively,

whereµY represents evaluating the resource functions. Thus,SS andAS models can be regarded
as havingfast resources, which immediately react to all source updates. This is equivalent to a
primal/dual system in which there is a synchronous resourceupdate after every source action. The
difference betweenSS andAS is that inSS all sources act between the resource updates, while
in AS only one source does.

3. AS∗ ≺ ASSR

ForAS∗ (like SS andAS) each source update will take effect on all resources, that is, the resources
will not miss any source update. On the contrary,ASSR allows consecutive source updates, which
can be interpreted as allowing the sources to update faster than the resources.

As can be seen from the above trace patterns, these modellingframeworks can capture the effect of
network propagation to a certain extent. But since all agents always share the same view on the global
state, these models cannot capture situations in which propagation delay leads the sources to act together
but on an inconsistent view of the states of resources.

Remark. We were interested in whether nondeterminism from asynchrony would allow us to make
statements about the behaviours of the congestion control protocols that are independent of propagation
delay encountered by signalling mechanisms.

However, it seems that, because the state space of a system issimply the product of the state spaces
of its component agents, we cannot model theon-the-flymessage states between agents. These additional
states make the system models considerably more complex butare also required if we need to model the
situation when different agents can take inconsistent snapshots of the states of other agents.

A natural way to represent continuous propagation delay would be to augment the input/output (I/O)
constructs of STGA with extra data facilities, such as queues. We do not pursue this here. But we observe
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that in the absence of fully specified queueing behaviour, the I/O constructs on their own do not help to
model propagation delay since the synchronous semantics ofthe I/O constructs (which implements ren-
dezvous communication) excludes any delay; while the asynchronous semantics does not preserve the
correct propagation order when a sequence of outputs occurs. We approximately implemented continu-
ous propagation delay with timed automata in UPPAAL. However, the resulting models are too complex
for further investigation.

4. Verification

Given the presence of nondeterminism in the above algorithms, model checking is a natural choice for
verification. Moreover, following a perturbation from an equilibrium (perhaps due to a fault), it would be
useful to establish not only whether an algorithm will reconfigure the network flow to a new optimum,
but also how quickly it will do. Although the objective function of problem (1) itself does not consider
the convergence time, this can be investigated through model checking. In this section we report on the
lessons learnt from a series of experiments we have run in this setting.

We first briefly recall the syntax and the semantics of CTL (Computation Tree Logic) [3], in which
the stability property is formulated in this paper. CTL formulas are built up from atomic propositions
AP = {b, . . . } using the Boolean connectives, path quantifiers “A” and “E”,and temporal operators “X”
(next), “F” (future), “G” (globally), “U” (until). Every occurrence of a path quantifier is immediately
followed by a temporal operator. The semantics of CTL can be defined with respect to the concrete
semantics of a SAGMV . For a CTL formulaϕ and a stateq0ρ0 of JMV K, let q0ρ0 � ϕ denote formulaϕ
holds at stateq0ρ0 . The relation� is defined inductively as follows (we omit the definitions foroperators
“X” and “U” as they were not used in our specifications):

• q0ρ0 � b iff ρ0 � b;

• q0ρ0 � AFϕ iff for any run q0ρ0
µX1−−→ q1ρ1 · · · , there existsi ≥ 0 such thatqiρi � ϕ;

• q0ρ0 � EFϕ iff there exists a runq0ρ0
µX1−−→ q1ρ1 · · · andi ≥ 0 such thatqiρi � ϕ;

• q0ρ0 � AGϕ iff for any run q0ρ0
µX1−−→ q1ρ1 · · · and anyi ≥ 0, qiρi � ϕ.

• q0ρ0 � EGϕ iff there exists a runq0ρ0
µX1−−→ q1ρ1 · · · such that for anyi ≥ 0, qiρi � ϕ.

4.1. Specifications

Herein we consider convergence of the objective function toa given valueu∗, i.e.,
∑

s∈S

Us(
∑

r∈s
xr) = u∗.

To check whether there exists such a constant value to which the objective function may converge, we
can repeatedly run model checking experiments exploring the range ofu∗ with the binary search strategy.
Therefore, in our experiments we checked the following CTL specifications:

AFAG
∑

s∈S

Us(
∑

r∈s
xr) = u∗ (8)

EFAG
∑

s∈S

Us(
∑

r∈s
xr) = u∗ (9)
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Note that even if we do not have equality in our language the formulas above can still be appropriately
encoded through propositions.

Specification (8) states that the objective function alwaysconverges to some constantu∗, while Spec-
ification (9) states that it does so along at least one trace.

As well as considering the value of the objective function wecan also consider the value of the flow
rates when specifying stability. So we also checked the following CTL specifications:

AFAG ((
∑

s∈S
Us(
∑

r∈s
xr) = u∗) ∧

∧

r∈R
(x′r = xr)) (10)

EFAG ((
∑

s∈S
Us(
∑

r∈s
xr) = u∗) ∧

∧

r∈R
(x′r = xr)) (11)

Recall thatx′r is the next value ofxr.

4.2. Experimental results

The combination of the individual agent transitions described in Section 2 with the composition rules in
Section 3 generates a collection of transition models that can be straightforwardly coded into NuSMV,
which we ran on a Xeon Dual-Core 64-bit 2.8GHz machine with 1GB memory.

Two different initial congestion conditions were examined: Route OverloadandResource Failure.
The first was designed to emulate a situation in which a network must redistribute load because one route
has excess load which can be carried elsewhere. The second was to emulate a resource failure, that is,
we setCj1 = 0 so that resourcej1 cannot carry any traffic. Table 1 summarises the experimental results
for the network shown in Figure 1, which has three sources andthree resources. The capacity of each
resource was set to 6.

The column#Reach.st. shows the number of reachable states of each model. It can be seen that the
reachable state space grows dramatically, though as expected, from synchronous models to asynchronous
models.

None of the 12 models of Table 1 satisfied Specifications (8) and (10), i.e., each of these models was
found to be unstable. However, most models show that the network does converge along some trace in
the sense that there exist values for the constantu∗ resulting in Specification (9) or Specification (11)
being satisfiable.

The penultimate columnu∗(Stable)reports the validity of Specification (11), hence Specification
(9) for each model; while for this case the column#Min stepspresents the minimal number of control
actions that the sources take to reach an equilibrium in eachmodel. The columnu∗(Vibrating) shows the
values of the constantu∗ for which Specification (9) but not Specification (11) is satisfied.

The convergence results of these transition models are analysed in detail below.

Multi-path congestion/rate control. Our first batch of experiments were based on the congestion
control protocol with primal transition rule (5) and dual update rule (4), withα = 36β, kr = 2 for each
r. For the congestion condition ofroute overload, the initial configuration is set by~x = (5, 3, 3, 3, 1, 3),
where one route is overloaded by 2 units; while for the congestion condition ofresource failure, the
initial configuration is set with~x = (0, 3, 3, 3, 3, 0) to emulate the failure at resourcej1. The model
checking results are presented in Table 1(a).
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Table 1. Model Checking Results

(a) Multi-Path Congestion/Rate Control

No. Composition Congestion #Reach.st. u∗(Stable) #Min steps u∗(Vibrating)

1 SS Route Overload 23 NONE NONE

2 SS Resource Failure 17 NONE NONE

3 AS∗ Route Overload 82723 ? ?

4 AS∗ Resource Failure 6187 ln(100) ? NONE

5 ASSR Route Overload 2.06719e+06 ? ?

6 ASSR Resource Failure 35445 ln(100) 8 NONE

(b) Session based Rerouting and Termination

No. Composition Congestion #Reach.st. u∗(Stable) #Min steps u∗(Vibrating)

7 SS Route Overload 3 NONE NONE

8 SS Resource Failure 7 NONE 14

9 AS∗ Route Overload 16 16 2 18

10 AS∗ Resource Failure 1418 11-12 3 13,15,16

11 ASSR Route Overload 8513 12-18 2 13-18

12 ASSR Resource Failure 32200 4-12 5 13-18

Because the individual transition rules are deterministic, their synchronous composition (SS) leads
to a deterministic trace, and relatively few states. However, the discretisation of the continuous state
space leads to a limit cycle rather than a final stable state, and model checking picked this up in the
failure to satisfy Specification (8) and Specification (9).

For eachAS∗ andASSR model, as the interleaving constraints are relaxed, the number of accessible
states increases, suggesting an instability in the system.This is not unexpected since it is now possible
for one source agent to act many times before the others do: repeated actions on router, when projected
back into the optimisation framework, corresponds roughlyto an increase in the gain coefficientκr, and
increasing gain within a feedback loop typically leads to instability. Through model checking, similar
limit cycles are detected in theAS∗ andASSR models, which makes Specification (8) and Specification
(10) unsatisfiable.

Therefore, the instability of these models is mainly causedby too much gain in each primal up-
date. By increasing the size of the domain of route flow rates,we can set smaller gain coefficients
in Equation (3). This results in finer discretisations in thesense that the step size of each primal up-
date can be reduced. Table 2 reports the model checking results under the finer discretisation settings,
where the capacityCj of each resourcej is 24 and the gain coefficientκr is set to 0.2 for each router.
Model k′ is the correspondingly revised version of Modelk in Table 1(a) under the finer discretisation
setting. As before, the two types of initial congestion conditions are modelled:Route Overloadwith
~x = (20, 12, 12, 12, 4, 12) andResource Failurewith ~x = (0, 12, 12, 12, 12, 0). With such finer discreti-
sations, specification (8) and (10), or their weaker forms, are satisfiable in these models for a single value
or a set of values of the constantu∗. The stability results ofSS andAS∗/ASSR models conform to
Theorem 1 and 2 in [10], respectively.
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Table 2. Multi-Path Congestion/Rate Control - Finer Discretisation

No. Composition Congestion #Reach.st. {u∗}(Stable) #Min steps u∗(Vibrating)

1’ SS Route Overload 4 ln(10368) 3 NONE

2’ SS Resource Failure 4 ln(5400) 3 NONE

3’ AS∗ Route Overload 11 ln(10368) 3 NONE

4’ AS∗ Resource Failure 114 ln(5400) 3 NONE

5’ ASSR Route Overload 18 ln(9216) 5 NONE

ln(9600) 4

ln(9984) 3

ln(10368) 2

6’ ASSR Resource Failure 225 ln(5400) 6 NONE

ln(5760) 7

ln(6120) 8

ln(6144) 8

ln(6528) 9

ln(6936) 10

Convergence in this setting mirrors the results of the underlying optimisation models in terms of
differential equations. However, by means of model checking we can here quantify quite precisely the
amount of control actions, hence the time, required for the network to recover from a perturbation. The
above model checking results also indicate the impact of synchronisation mechanisms on the stabil-
ity property of congestion control. The scenarios of convergence or oscillation under the synchronous
frameworks are preserved by the asynchronous frameworks; however, variant interaction scenarios are
introduced by the latter, and as a consequence, the number ofstates that the network may transition
through before stabilising may be increased.

A composition of the agents which faithfully captures the optimisation dynamics of Equation (3) but
which also allows certain nondeterminism in the interleaving of the agents is therefore not well repre-
sented in the options we have investigated. It appears that some notion of fairness is required, that is
intermediate between (i) complete synchrony and (ii) forcing each agent always to act eventually. De-
veloping a well motivated correspondence between optimisation dynamics and model checking requires
both a notion of interleaving fairness and the quantisationof the state space to be taken into account
together, as they can both be seen as related to the gain coefficients in the optimisation models.

Session based rerouting and termination. In light of the above observations we chose our second
batch of experiments to be based on a scenario that is closer to the natural idiom of model checking. Here
transition rules are not designed to correspond to smooth optimisation dynamics in any way. Instead they
are designed to terminate flows in ways comparable to real systems like [4]. We use the dual update rule
(6) and the primal update rule (7), while the latter featuresnondeterminism in which route it chooses to
reallocate flow to. Again, we consider two types of initial congestion conditions:Route Overloadwith
~x = (5, 3, 3, 3, 1, 3) andResource Failurewith ~x = (3, 3, 3, 3, 3, 3) andCj1 = 0.

The model checking results, presented in Table 1(b), show that the flow termination scheme does not
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ensure stability. Because the transition rules are designed only to shed load rather than to increase it we
did not witness any state explosion corresponding to instability in any of the interleaving scenarios,

Figure 3. Stable total load with varying route flow rates

However, the last columnu∗(Vibrating) reports values of the constantu∗ that are valid for Specifi-
cation (9) but not Specification (11), that is, the objectivefunction converges to the shown values but at
least some route flow rates do not meet the capacity constraint and continue to change (“vibrate”). In
these circumstances, the system is entering a limit cycle inwhich the total load offered into the network
is greater than the capacity that it can carry, but no individual source knows it must terminate some flow.
Instead they pass the excess flow around in the cycle. A trace showing this is presented in Figure 3. This
behaviour appears possible in real systems; and model checking detected a real possible issue with this
simple design.

Remark. In these two case studies, theASSR models may terminate more flows than theAS∗ mod-
els do to converge. This suggests a performance degradationwhen the sources update faster than the
resources and therefore miss a few resource updates.

Compared to the models of the multi-path congestion/rate control, the models of the session-based
rerouting and termination system can lead to convergence byterminating more flows. The results also
show that there exists a non-trivial lower bound on the number of excess flows to be terminated.
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5. Discussion

In translating from optimisation based continuous dynamics to model checking, we identified two pos-
sibilities for the interpretation of nondeterminism. In the first, it represents the choice that each agent
haswithin each action it takes. From an optimisation point of view thistype of choice arises when the
solution to a local problem is not unique: if two routes have equal least cost then the total flow can be
split or moved arbitrarily between them. In the second interpretation, nondeterminism represents choice
of sequencingof the actions of the agents which can be derived from the composition of the agents, and
our first case study suggests that allowing too much nondeterminism in the agent composition would
lead to system instability.

Another way of thinking about nondeterminism is that it accounts for loss of knowledge in mov-
ing from real systems to abstract models. We had hoped that this abstraction would allow us to make
statements about the behaviour of congestion control policies that are independent of the propagation
delay encountered by signalling mechanisms (indeed the resource matrix used in our models is already
forgetful of details of the underlying resource connectivity). However, this was not straightforward. The
difficulties arise from modelling the additional state actually present in the propagating messages. We
did build models, though not reported here, in which we explicitly represented state “on-the-fly” within a
signalling system (or within input queues and buffers). Ourhope was that the increase in the system state
space could be offset by reducing the explosion of possible evolution due to the interleaving semantics.
In other words we produced larger but more deterministic models. However, our initial experiments still
ran into size limitation of the model checkers that we used.

In the standard modelling idiom, the state space is the product of the state space of all the individual
agents (sources and resources in our case). Crucially, thisidiom abstracts away from the real state
information on-the-fly. This same abstraction is also implicit in the smooth optimisation dynamics of
Equation (3). In that case the agents are assumed to act sufficiently slowly for the abstraction to be
valid. In model checking, by contrast, the agents are assumed to act instantaneously, but sufficiently
infrequentlyfor it to be valid. In all cases this assumption could be interpreted either as the limitation on
the accuracy of the model (if analysing a system), or as constraints on implementation, or as conditions
that must be policed by some other mechanism in the network (if synthesising a system). In both cases
the assumption is quite brittle. In optimisation dynamics it has been shown that an arbitrarily short
delay can render an otherwise stable system unstable [13]. In the model checking idiom an arbitrarily
short delay could allow a sequence of transitions not captured by the delay free semantics. While the
optimisation and discrete models appear at first sight to be quite different, in their modelling of delay it
turns out that they share very similar types of limitation.

Hybrid model checking may also applicable for the continuous settings of optimisation. We believe
it would emulate the standard optimisation based approaches to a much closer extent, though at a com-
putational cost. However, it seems likely that it would confirm, among other things, the relationship
between nondeterminism and stability discussed in the paper.

6. Conclusions

The paper presents a way to integrate optimisation based approaches with model checking. On the one
hand, it associates optimisation models with nondeterminism; on the other hand, it associates the struc-
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ture of optimisation models into model checking. A spectrumof modelling frameworks are presented
importing different levels of nondeterminism: uncertain gain and propagation delay, and nondeterminis-
tic congestion control policies.

We believe that logic methods and model checking approachesshould offer machinery that comple-
ments optimisation theory in the design and analysis of network control processes. We have investigated
this proposition in the context of dynamic allocation of traffic amongst multiple routes across a network,
a topic that is attracting attention within the networking research community. Our experiments showed
some promise in this direction, but also some limitation. Not surprisingly we were limited to small con-
crete topologies by the state explosion problem. We see one way of addressing this could be to combine
theorem proving and model checking techniques. However, our experiments highlighted more subtle
points concerning the interpretation and specification of the interleaving semantics.
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