
A methodology for automatic diagnosability
analysis

Jonathan Ezekiel and Alessio Lomuscio

Department of Computing, Imperial College London, UK
{jezekiel,alessio}@doc.ic.ac.uk

Abstract. We present an algorithm based on temporal-epistemic model
checking combined with fault injection to analyse automatically the di-
agnosability of faults by agents in the system. We describe an imple-
mentation built on the multi-agent systems model checker MCMAS and
a dedicated compiler for injecting faults into an MCMAS program. A
diagnosability report is generated by the implementation which can be
utilised at an early stage of fault tolerant multi-agent system design to
ensure accurate fault diagnosis. We demonstrate the practical usefulness
of the algorithm by performing automatic diagnosability analysis on a
model of the IEEE 802.5 token ring LAN protocol which employs fault
diagnosis mechanisms to achieve fault tolerance.

1 Introduction

Distributed fault tolerant systems are notoriously difficult to understand and
design due to their high level of complexity [10]. A potential way to manage
this complexity is offered by the multi-agent systems (MAS) paradigm [25] in
which agents, representing processes of a distributed system, autonomously in-
teract with one another, engaging in communication, co-ordination, negotiation,
etc. Moreover, a number of fault tolerant MAS architectures have been designed
which utilise strategies such as agents diagnosing faults so that they can com-
municate and co-ordinate to recover from them (see e.g., [18]).

As a design paradigm, MAS has many applications including, but not lim-
ited to distributed control systems (DCS) (see e.g., [20]). Within the general
area of DCS it is known that safe design is a major industrial concern since
DCS are becoming increasingly complex and involved in many safety-critical
applications [6]. However, practical approaches towards verifying fault tolerant
MAS are required to certify that they conform to the stringent requirement of
operating correctly under degraded conditions [1].

Recently, an approach combining fault injection [16] with model checking [8]
has been used to verify the correctness of fault tolerance mechanisms in reactive
systems [2, 4, 5, 17] and MAS [12, 13]. In contrast to ad-hoc modelling of faulty
behaviour, in this approach faults can be automatically injected into a model of a
correctly behaving system to create a mutated model which exhibits both correct
and faulty behaviour. Temporal-epistemic specifications [14] can then be verified

to analyse the correct and faulty behaviour of agents in the mutated model, as
well as the knowledge that agents have about the behaviour. This allows for
the verification of fault tolerance, recovery from faults, and diagnosability, i.e.,
whether an unobservable fault can be accurately diagnosed from the observable
events of the system [22].

The high level of usability offered by the automatic nature of both the fault
injection and the model checking process makes the approach particularly at-
tractive to non-experts in verification [4]. Another advantage is the ability to use
the model checker to generate automatically artifacts that analyse the impact of
the injected faults such as fault trees [23]. To date, these artifacts have been gen-
erated by using temporal formulas to describe which component failures occur as
a result of the injected faults [3, 4]. However, artifacts relating to diagnosability
have yet to be suggested in the literature.

In this paper we show how a diagnosability artifact can be generated from
a combined fault injection and temporal-epistemic model checking [15, 19, 21]
approach by presenting a methodology for automatic diagnosability analysis.
The analysis is used to provide the user with a report on the diagnosis of each
injected fault by every agent in the system. We consider this to be part of a
practical approach towards verifying fault tolerant MAS that can be used at
an early stage of system design to ensure that agents in the system accurately
diagnose faults.

We implement these ideas by integrating the algorithm we propose with
the model checker MCMAS [19] and an existing fault injection compiler that
injects automatically faults into a model for input into MCMAS [12, 13]. We
describe a framework in which powerful modules which generate fault analysis
artifacts for fault tolerant MAS can be integrated with MCMAS and the fault
injection compiler. To highlight the practical usefulness of the algorithm from a
user perspective we use the implementation to perform automatic diagnosability
analysis on a model of the IEEE 802.5 token ring LAN protocol from [13] which
utilises distributed diagnosis mechanisms to achieve fault tolerance.

The rest of the paper is structured as follows. In Section 2 we provide the
background on model checking, interpreted systems, MCMAS, fault injection,
and artifact generation. In Section 3 we present the algorithm for diagnosabil-
ity analysis. In Section 4 we describe a framework for integrating fault analysis
modules with MCMAS and the fault injection compiler, which we use to imple-
ment the algorithm for diagnosability analysis. In Section 5 we show how the
diagnosability analysis module is applied to the token ring protocol. In Section 6
we discuss the related work and in Section 7 we conclude and put forward future
work.

2 Background
Model checking [8] is a widely adopted technique for systems verification. The
system considered for verification S is represented by a logical model MS which
encodes the behaviour of the system as computational traces. A specification
of a property P is expressed by means of a logical formula ϕP . The model
checker establishes whether or not MS satisfies ϕP (formally, M � ϕP). The

satisfaction relation is implemented as an automatic decision procedure, mak-
ing model checking attractive for the purpose of verification [8]. In the case of
MAS ϕP is often expressed by using a number of rich modal logics including
temporal, ATL, and epistemic logics [25]. Particularly relevant to diagnosability
is temporal-epistemic logic, which can be used to reason about the knowledge of
the agents over time.

2.1 Interpreted systems and MCMAS

We summarise the key points of the formalism used by following the presentation
given in [12]. Interpreted systems [14] are a popular semantics for temporal-
epistemic logic. Each agent i ∈ {1, . . . , n} in the system is characterised by
a finite set of local states Li and by a finite set of actions Acti. Actions are
performed in compliance with a protocol Pi : Li → 2Acti , specifying which
actions may be performed in a given state. In this formalism the environment in
which agents live may be modelled by means of a special agent E. Associated
with E are a set of local states LE , a set of actions ActE , and a protocol PE .
A tuple g = (l1, . . . , ln, lE) ∈ L1 × . . . × Ln × LE where li ∈ Li for each i and
lE ∈ LE , is a global state describing the system at a particular instant of time.

The evolution of the agents’ local states is described by a function
ti : Li × LE × Act1 × · · · × Actn × · · ·ActE → Li, which returns a local state
(the next local state) for agent i given the current local state of the agent,
the current local state of the environment and all the agents’ actions. Similarly
the evolution of the environment’s local states is described by a function
tE : LE × Act1 × · · · ×Actn × · · ·ActE → LE . It is assumed that in every state
agents evolve simultaneously. The evolution of the global states of the system is
described by a function t : S × Act → S, where S ⊆ L1 × · · · × Ln × LE , and
Act ⊆ Act1 × · · · × Actn × ActE . The function t is defined by t(g,a) = g′ iff for
all i, ti(li(g), a) = li(g′) and tE(lE(g), a) = lE(g′), where li(g) denotes the i-th
component of a global state g (corresponding to the local state of agent i). Given
a set I ⊆ S of possible initial global states, a set G ⊆ S of reachable global states
is generated by all possible runs of the system. Finally, the definition includes a
set of atomic propositions AP together with a valuation function V : S → 2AP .
We define an interpreted system as the tuple:

IS = 〈(Li, Acti, Pi, ti)i∈{1,...,n}, (LE , ActE , PE , tE), I, V 〉
The syntactical constructs and the semantic model that are presented in [19]

are adopted for the interpretation of temporal-epistemic formulae in interpreted
systems. Specifically, we consider the following syntax defining our specification
language:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | AGϕ | E(ϕUϕ) | Kiϕ

In the grammar above p ∈ AP is an atomic proposition; EX is a temporal
operator expressing that there exists a next state in which ϕ holds; AG is a
temporal operator expressing that in all runs ϕ holds globally; E(ϕUψ) is a
temporal operator expressing that there exists a run in which ϕ holds until ψ
holds; Kiϕ expresses that agent i knows ϕ [14].

IS is associated with a model MIS = (W,Rt,∼1, . . . ,∼n, L) that can be
used to interpret any formula ϕ. The set of possible worlds W is the set G of
reachable global states. The temporal relation Rt ⊆W ×W relating two worlds
(i.e., two global states) is defined by considering the temporal transition t. Two
worlds w and w′ are such that Rt(w,w′) iff there exists a joint action a ∈ Act
such that t(w, a) = w′, where t is the transition relation of IS. The epistemic
accessibility relations ∼i⊆ W × W are defined by considering the equality of
the local components of the global states. Two worlds w,w′ ∈ W are such that
w ∼i w

′ iff li(w) = li(w′) (i.e., two worlds w and w′ are related via the epistemic
relation ∼i when the local states of agent i in global states w and w′ are the
same [14]). The labelling relation L ⊆ AP ×W can easily be defined in terms of
the valuation relation V .

Formulae can be interpreted in MIS in a standard way [14] as follows. Let
π = (w0, w1, · · ·) be an infinite sequence of global states such that for all i,
Rt(wi, wi+1), and let π(i) denote the i-th world of the sequence (notice that,
following standard conventions we assume that the temporal relation is serial
and thus all computation paths are infinite). We write (M,w) � ϕ to represent
that a formula ϕ is true at a world w in a Kripke model M , associated with an
interpreted system IS. Satisfaction is defined as follows.
(M,w) � p iff (p, w) ∈ L;
(M,w) � ¬ϕ iff it is not the case that M � ϕ;
(M,w) � ϕ1 ∨ ϕ2 iff either M � ϕ1 or M � ϕ2;
(M,w) � EXϕ iff there exists a path π such that π(0) = w, and

(M,π(1)) � ϕ;
(M,w) � AGϕ iff for all paths π such that π(0) = w we have that

(M,π(i)) � ϕ, for all i ≥ 0;
(M,w) � E(ϕUψ) iff there exists a path π such that π(0) = w, and there

exists k ≥ 0 such that (M,π(k)) � ψ and (M,π(j)) � ϕ
for all 0 ≤ j < k;

(M,w) � Kiϕ iff for all w′ ∈W , w ∼i w
′ implies (M,w′) � ϕ.

We say that a formula ϕ is true in the model, and we write M � ϕ, if
(M,w) � ϕ for all w ∈ W . Similarly to [14], we say that a formula ϕ is true in
an interpreted system IS, and we write IS � ϕ, if MIS � ϕ. A formula is true
in an interpreted system if it is true in the associated Kripke model.

MCMAS [19] provides ISPL as an input language for modelling a MAS and
expressing (amongst others) temporal and epistemic formulas as specifications
of the system. ISPL programs are closely related to interpreted systems; specif-
ically each ISPL program describes an interpreted system. MCMAS supports
the verification for all formulas in the language above. The structure of an ISPL
program allows the local states to be defined using boolean, bounded integer, and
enumeration variables.

2.2 Fault injection into MAS programs

The first step of a combined fault injection and model checking approach [2, 4,
5, 13, 17] involves mutating a model of correct system behaviour by injecting

faulty behaviour into it. The output of the mutation step is a model containing
correct and faulty behaviour.

We summarise the mutation technique for interpreted systems defined in [12,
13]. Any agent A of the system can be mutated into a faulty agent AF∗ which
includes the faulty behaviour that results from a fault occurring. For each fault
an additional fault injection agent FI implements the timing characteristics of
the fault. The faulty behaviour is triggered in the faulty agent whenever an
inject action is performed by FI. Conversely, the correct behaviour is preserved
in the faulty agent whenever the inject action is not performed by FI.

The faulty behaviour in the faulty agent AF∗ is introduced using a number
of mutation rules which determine how the evolution function tA is mutated
to tAF∗ . A variable value replace fault defines that the value of a variable var
is updated with a value v2 in tAF∗ whenever the value of var is updated to a
value v1 in tA. This fault is useful for defining faulty conditions where some of
the correct agent behaviour is skipped. A stuck at select fault defines that the
value v1 of a variable var persists if the current value of var is v1. If in tA the
variable var is updated to a value vx 6= v1 when var = v1, the faulty behaviour
in tAF∗ preserves var = v1. This fault can be used to define behaviour in which
a component becomes stuck in particular state. Further rules are defined in [12].

The occurrence of the inject action is determined by the behaviour of the
fault injection agent FI. A number of timing options can be selected for FI:
injecting constantly, randomly, after a random start, until a random stop, and
after and until an action has occurred [12]. The local states, actions, protocol,
and evolution function of the fault injection agent are defined according to these
options, which can be combined to create complex timing characteristics of the
fault. A mutated set of initial states IF∗ stipulates that the local state of FI is
set to either notfaulty which persists throughout the system run, or to a state
in which faults may be injected into the system by FI in the future according
to the timing options.

A mutated valuation function V F∗ relates atomic propositions to the local
states of each fault injection agent. This can be used to reason about the correct
and faulty behaviours of the mutated interpreted system ISF∗. For each fault
j ∈ {1, . . . ,m} the mutated set of atomic propositions APF∗ extends with the
propositions faultyj , injectedj , injectingj , stoppedj . faultyj represents that a
fault can be injected during the system run; injectedj expresses that a fault is
injected at the current tick of the clock (i.e., a global state describing the system
at a particular instant of time); injectingj denotes that a fault can be injected
at the current tick of the clock; stoppedj describes that a fault has been injected
but can no longer be injected at the current tick of the clock. The extended
faulty system is defined as:

ISF∗ = 〈(LF∗
i, Act

F∗
i, P

F∗
i, t

F∗
i)i∈{1,...,n+m}, (LE , ActE , PE , tE), IF∗, V F∗〉

Once a mutated model ISF∗ has been obtained, both the correct and faulty
behaviours of the system can be analysed. A library of specification patterns
pertaining to fault tolerance, recoverability, and diagnosability defined in [12, 13]

can be used to reason about properties of the system in relation to the taxonomy
of dependable computing given in in [1]. Such properties include whether the
fault becomes an error that is propagated internally amongst the agents of the
system, whether it can be diagnosed, recovered from, or further propagated to
the service interface to cause a failure. In this case, the system boundary is the
shared actions between the agents of the system and the environment. Thus, we
can verify properties of the system that affect the system boundary under faulty
behaviour to determine whether the fault becomes a failure.

We highlight two specification patterns that are relevant to this paper. To
reason about fault tolerance for a property φ we can analyse [13]:

AG((¬faultyj ∧ faultyk)→ φ) (1)

This formula states that φ always holds whenever fault j is never injected into
the model and fault k may be injected into the model. The formula specifies the
ability of the system to tolerate faults, in this instance, fault k.

Usually diagnosability is informally defined by saying that a fault is diagnos-
able if some observations after the occurrence of the fault can correctly identify
it [22]. A fault is diagnosable if any agent of the system knows about it at some
point after its occurrence. We can express this as [12]:

¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(injectingj ∨ stoppedj)))) (2)

This formula states that there is no path in which at some point fault j is injected
and from that time it is not true that at some point in the future agent i knows
fault j can be or has been injected. In other words the formula specifies the
ability of agent i to diagnose fault j correctly after j has first been injected.

2.3 Generating fault analysis artifacts

A particular advantage of using an approach based on model checking and fault
injection is the ability to generate automatically artifacts such as fault trees [23].
A fault tree is a graphical representation which is constructed by identifying a
minimal cut set of events that can cause a system malfunction to occur. This
malfunction is also known as a top level event (TLE). The fault tree displays
these events connected by logic gates to highlight their relation to each other.

The process of identifying this minimal cut set can be automated by combin-
ing fault injection and model checking [3]. The function h : {f,¬f, ε}m → {T, F}
represents the cut set for m injected faults where f corresponds to the fault be-
ing injected, ¬f corresponds to the fault not being injected, and ε corresponds to
the fault being either injected or not injected. For example, h({f1, ε,¬f3}) = T
represents that the TLE occurs when: fault 1 is injected, fault 2 may or may not
be injected, and fault 3 is not injected. In other words a TLE occurs when fault
1 is injected and fault 3 is not irrespective of fault 2. The cut set can be cre-
ated automatically by using a model checker to verify a number of specifications
against a mutated model in order to determine whether a TLE occurs for each

fault injection combination of the cut set. Formula 1 is an example of a suitable
formula that can be used to define specifications that create the cut set.

Once the cut set has been created the prime implicants of the cut set, i.e., the
minimal set of events relevant to the occurrence of the TLE can be determined.
For example, a cut set f1 ∨ (f1 ∧ f3) describes that when fault 1 is injected, or
when fault 1 is injected and fault 3 is injected, the TLE occurs. In this cut set
f1 is a prime implicant representing the minimal cut set, since f1 is sufficient for
all occurrences of the TLE. To identify a minimal cut set, many prime implicant
algorithms exist, for further discussion see [3].

Fault trees are useful for studying the impact of faults, however, they provide
limited insight into the cause of system malfunctions. At an early stage of design
it is desirable to analyse diagnosability so that system malfunctions do not occur
as a result of fault tolerance mechanisms diagnosing faults inaccurately.

3 Diagnosability analysis

In this section we apply the general ideas for artifact generation presented in the
previous section in order to analyse diagnosability. We achieve this by employ-
ing a diagnosability formula to generate a diagnosability cut set and by defining
an algorithm to identity a minimal cut set. Unlike fault trees which communi-
cate the impact of faults, there are no pre-defined graphical representations of
diagnosability. Thus, any diagnosability specification pattern used for analysis
must be carefully selected in order to generate a cut set of meaningful events.
As a starting point for producing diagnosability artifacts we choose Formula 2.
The formula is used to determine the diagnosis of faults by each of the non
fault-injection agents in the system.

In the following we define the diagnosability cut set. For each non fault-
injection agent i ∈ {1, . . . , n} and each fault j ∈ {1, . . . ,m}, given a diagnosis
group, i.e., a group of faults for diagnosis DG ∈ 2{1,...,m}, the cut set which
determines that a diagnosis group can be diagnosed by an agent after a
fault has first been injected into the system is described by the function
D : {1, . . . , n} × {1, . . . ,m} × 2{1,...,m} → {T, F}, where T indicates that the
diagnosis can be made. For example D(i, j, {j, k}) represents whether agent i di-
agnoses that either fault j or fault k has occurred after fault j is first injected into
the system. We can define this function where ijstk = (injectingk ∨ stoppedk)
using Formula 2 as follows :

D(i, j,DG) = T iff j ∈ DG and
ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(

∨
k∈DG ijstk))))

In other words the diagnosability cut set function evaluates to true if fault j is
in the diagnosis group DG and the mutated interpreted system ISF∗ is satisfied
by a formula describing that agent i diagnoses the faults in DG after j has first
been injected.

Due to the way that the mutated initial states are defined in ISF∗ there is
at least one path in ISF∗ in which at some point fault j is injected and along

that path any fault k ∈ {1, . . . ,m} \ {j} is never injected. Agent i cannot know
about fault k along a path in which k is never injected. Thus if:

ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(
∨

k∈DG ijstk))))
it follows that:

ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(
∨

k∈DG ijstk) ∧
¬Ki(

∨
k∈DG\{j} ijstk))))

The formula above specifies in addition to Formula 2 that agent i does not know
that any of the faults in DG other than j can be or has been injected into the
system. Given that this specification is implied by Formula 2 it is implicitly
included in the definition of the diagnosability cut set function.

For each fault injected into the system the minimal cut set must contain the
most specific diagnosis of that fault by each of the agents, i.e., if an agent can
diagnose a fault that has been injected into the system, then it is meaningful to
identify the smallest set of faults that the injected fault is part of, that can be
diagnosed by the agent. For example, in a network protocol it may be necessary
to diagnose a specific severe fault in order to reconfigure a router to bypass
a workstation. Conversely, it may suffice to diagnose that any of a number of
possible intermittent faults have occurred so that a message can be resent.

The diagnosability cut set function D does not determine the most specific
diagnosis. This is because if DG can be diagnosed by an agent, then according
to the conjunction of faults in the definition of Formula 2, DG∪DH ∈ 2{1,...,m}

can be diagnosed by the agent. For example, given three faults j, k, and l, if
D(i, j, {j, k}) = T , then D(i, j, {j, k, l}) = T , but only {j, k} should be included
in the minimal cut set. Thus, we wish to identify a minimal cut set
MCSij ⊂ 2{1,...,m} containing the most specific diagnosis of fault j by agent i.
To identify the minimal cut set we only need to consider conjunctions. Instead
of employing a prime implicant algorithm that considers disjunctions we define
a restriction to the minimal cut set as follows:

DH ∈ 2{1,...,m} /∈MCSij iff D(i, j,DG ∈ 2{1,...,m}) = T and DG ⊂ DH

In other words for every diagnosis group in the minimal cut set there can not be
any subsets of that diagnosis group in the minimal cut set.

If we apply this restriction to the minimal cut set then for every diagno-
sis group DY ∈ MCSij we have that for every diagnosis group DZ ⊂ DY ,
D(i, j,DZ) = F . It follows that:

ISF∗ 2 ¬E(¬injectedj U (injectedj ∧ ¬AF (
DY∨
DZ

Ki(
∨

k∈DZ ijstk))))

ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (
DY∧
DZ

¬Ki(
∨

k∈DZ ijstk))))

hence:
ISF∗ � ¬E(¬injectedj U (injectedj ∧ ¬AF (Ki(

∨
k∈DY ijstk)

DY∧
DZ

¬Ki(
∨

k∈DZ ijstk))))

IdentifyMCS(in i:agentid , j:faultid , m:int) out MCS ⊂ 2{1,...,m}

Identify and return a minimal cut set MCS for agent i and fault j given m faults.

X = 2{1,...,m}

DG ⊂ 2{1,...,m}

l: int

1. for l = 1 to m do
2. for each DG ∈ X where (j ∈ DG and |DG| = l) do
3. if (NotSubsetInMCS(DG, MCS) = true and D(i, j, DG) = T)
4. MCS = MCS ∪DG
5. return MCS

NotSubsetInMCS(in DG ⊂ 2{1,...,m}, MCS ⊂ 2{1,...,m}) out bool

Return true if any element of MCS is a subset of DG otherwise return false.

DY ⊂ 2{1,...,m}

1. for each DY ∈MCS do
2. if DY ⊂ DG
3. return false
4. return true

Fig. 1. Psuedo-code for the diagnosability analysis algorithm.

where
DY∧
DZ

and
DY∨
DZ

are the conjunctions and disjunctions of all subsets of indices

DZ ⊂ DY respectively. The restriction defined for the minimal cut set deter-
mines that every diagnosis group in the minimal cut set is verified by the strong
specification above. This specifies, in addition to Formula 2, that agent i does
not know that any combination of the faults in every diagnosis group DZ ⊂ DY
other than j can be or has been injected into the system.

Based on the cut set function D and the minimal cut set restriction, we
defined a sequential algorithm that performs diagnosability analysis to identify
a minimal cut set for each agent as shown in Figure 1. A description for both
the functions in the algorithm is as follows:
IdentifyMCS: identifies a minimal cut set for agent i and fault j which are
passed as arguments to IdentifyMCS. Lines 1-2 define the iteration through
all the possible diagnosis groups that include fault j, in ascending order of size.
The iteration order ensures that the restriction function only needs to be applied
once to each diagnosis group. Line 3 checks that a diagnosis group DG does not
have any subsets in the minimal cut set and whether the faults in DG can be
diagnosed for agent i and fault j. If both these conditions are met then the
diagnosis group is added to the minimal cut set. Line 6 returns the minimal cut
set for agent i and fault j.

NotSubsetInMCS: applies the restriction to the minimal cut set by checking
to see whether any subsets of a diagnosis group DG passed as an argument to
NotSubsetInMCS are subsets of any diagnosis groups in the minimal cut set
MCS passed as an argument to NotSubsetInMCS. Lines 1-3 iterate through
all the diagnosis groups DY in MCS and NotSubsetInMCS returns false if any

diagnosis group DY is a subset of DG. Line 4 is reached if no diagnosis group
DY in MCS is a subset of DG, at which point NotSubsetInMCS returns true.
Example: Given a system with four faults j, k, l, and m, in which agent i diag-
noses that either faults j or k have occurred, or faults j or l or m have occurred,
after fault j has been injected, a call to IdentifyMCS(i, j, 4) performs four it-
erations of the for loop in line 2. Iteration 1 : Diagnosis groups containing one
element that include fault j: {j}. Since MCS is empty NotSubsetInMCS al-
ways returns true. The function D(i, j, {j}) returns false and {j} is not added to
MCS. MCS = ∅. Iteration 2 : Diagnosis groups which contain two elements that
include fault j: {j, k}, {j, l}, {j,m}. Since MCS is empty NotSubsetInMCS
always returns true. D(i, j, {j, k}) returns true and {j, k} is added to MCS.
D(i, j, {j, l}) and D(i, j, {j,m}) return false. MCS = {{j, k}}. Iteration 3 : Diag-
nosis groups which contain three elements that include fault j: {j, k, l}, {j, k,m},
{j, l,m}. Since MCS = {{j, k}} NotSubsetInMCS returns false for {j, k, l} and
{j, k,m}. D(i, j, {j, l,m}) returns true and {j, l,m} is added to MCS. MCS =
{{j, k}, {j, l,m}}. Iteration 4 : Diagnosis groups containing four elements that
include fault j: {j, k, l,m}. Since MCS = {{j, k}, {j, l,m}} NotSubsetInMCS
returns false for {j, k, l,m}. MCS = {{j, k}, {j, l,m}}.

The algorithm is suitable for systems in which faults are resolved after they
are diagnosed and future occurrences of the fault have no further impact on
the system. Repeating faults can be analysed by substituting Formula 2 with
a formula that reasons about the diagnosability of a fault after each injection
of the fault. A more dynamic analysis would consider the case where one agent
may diagnose faults if another agent is not available for diagnosis, i.e., the dis-
junction of agents diagnosing the disjunction of faults. Another case to consider
is the conjunction of faults, for situations in which different faults injected into
the system are diagnosed as a single fault. Other diagnosability specification
patterns from [12] can also be applied to reason about possible diagnosis, group
diagnosis, and the propagation of the knowledge of faults through the system.
These extensions seem feasible but would require a different definition of the cut
set function and minimal cut set restriction.

The implementation of the diagnosability analysis algorithm requires an in-
terface to a temporal-epistemic logic model checker, the definitions of faults and
agents, and the mutated interpreted system model. In particular, function D
must use the model checker to verify specifications on the mutated model. We
describe how these requirements are met by a fault analysis module interface
which is defined as part of a framework for implementing fault analysis algo-
rithms as modules in the next section.

4 A framework for integrating fault analysis modules

As part of a practical approach towards verifying fault tolerant MAS we con-
structed a framework for integrating fault analysis modules with the model
checker MCMAS and a compiler for injecting automatically faults into a MC-
MAS program [12]. Doing so provides a manner in which powerful fault analysis

File

Input

ISPL

File

Mutated

ISPL

InputUsesCreates

input

verification

mutation

creates

creates
parsing

input

Definitions

input

input

Agents

Diagnosability

FTA Module

Fault Injection

Compiler
MCMAS

InterfaceInterface

Analysis Module Interface

creates

analysis
User Interface

creates

Faults

Definitions

input
input

input

Cut Set
Minimal

Analysis Module

Fig. 2. Integrating fault analysis modules using the analysis module interface.

modules based on algorithms such as the one presented in Section 3 can be
implemented. The high level of automation achieved by fault analysis modules
makes them particularly usable for non-experts in verification who are working
on the design of fault tolerant MAS.

We outline the framework in Figure 2. Any analysis module can be inserted
into the framework via the analysis module interface which provides the module
with an interface from which it is invoked by the user, the definitions of the agents
and faults which can be used to construct formulas to be used for analysis, an
interface to MCMAS to verify formulas on a mutated ISPL program, and a
method to display to the user a minimal cut set in a graphical or report format.
We further describe the framework as follows.

User interaction: the user interface allows the user to define the faults which
are to be injected into an ISPL program; save a file containing the mutated
ISPL program which includes the injected faults; and analyse automatically the
behaviour of the model defined by the mutated ISPL program by using any avail-
able fault analysis module. The process of defining faults includes their name,
mutation rules, timing options, etc. If automatic analysis of faults is required
then the compiler interface is used to create a file containing the mutated ISPL
program for analysis, and the fault analysis module selected by the user is ini-
tiated though the analysis module interface to create a minimal cut set which
is passed back from the analysis module interface to be displayed in either a
graphical or report format.

MCMAS: the MCMAS interface is used to perform the parsing of an ISPL file
and perform the verification of specifications against a mutated ISPL program.
The parsing procedure results in the creation of agents definitions including
their name, protocol, transition relation, actions, etc. Passing a formula to the
MCMAS interface instructs MCMAS to perform verification of the specification
against the mutated ISPL program and the result of the verification is passed
back through the MCMAS interface.

Fault injection compiler: the compiler interface is used to request the muta-
tion of an ISPL program. MCMAS is used to parse the file in which the ISPL
program containing correct behaviour is defined in order to create the agents
definitions. The agents definitions and faults definitions are utilised by the com-
piler to save a file consisting of the mutated ISPL program which contains both
correct and faulty behaviour including the injected faults.

Automatic fault analysis: the analysis module interface is used to invoke any
available fault analysis module to perform analysis on a mutated ISPL program
that has been created using the agents definitions and faults definitions. The
module identifies a minimal cut set as a result of the analysis. The agents def-
initions and faults definitions are utilised to construct the formulas which are
used for the analysis. MCMAS is used to verify these specifications against the
mutated ISPL program. The minimal cut set identified as a result of the analysis
is passed back through the interface so that it can be displayed to the user.

The framework is implemented in C++ (for linux operating systems) so
that modules can be easily integrated into the framework in an object oriented
manner. We implemented into the framework an FTA module which displays
fault trees in a graphical format, and a diagnosability analysis module based on
the algorithm in Section 3 which displays a report on the diagnosability of faults
by agents in the system. The framework and these modules are included as part
of the fault injection compiler which is available for public use [11].

5 Automatic diagnosability analysis of the IEEE 802.5
token ring protocol

The IEEE 802.5 token ring protocol is a widely used local area network (LAN)
protocol in which network nodes are logically organised in a ring. The data
circulates in one direction around the ring via a token passed from node to
node. The network is logically defined as a ring topology and physically defined
as a star topology. Fault tolerance is achieved by physically disconnecting faulty
nodes and re-establishing the logical ring to bypass them. The protocol employs
a distributed diagnosis mechanism to diagnose faulty nodes for disconnection.

Tokens containing fault information are sent around the ring when a fault
occurs, which allows nodes to diagnose faults. One node on the ring is designated
as an active monitor which diagnoses and resolves soft faults, i.e., faults that can
be resolved without requiring a node to be disconnected. The other nodes are
designated as standby monitors which diagnose hard faults on themselves and

Fig. 3. A diagnosability analysis report on the token ring model.

their nearest upstream neighbour i.e., faults that are resolved by disconnecting
and bypassing nodes. Once a fault is diagnosed, information can be propagated
around the ring to inform nodes that a fault has been diagnosed.

To illustrate the practical application of our diagnosability analysis module
we use the implementation of the token ring protocol in ISPL from [12], which
we refer the reader to for in-depth details of the implementation and the faults
we injected into the model. The model contains 6 nodes labelled N1, . . . , N6
with Node 1 designated as the active monitor; the token circulates clockwise
from N1 to N6. Several different faults were chosen to be injected into different
nodes of the model so that the diagnosability of the active and standby monitors
could be analysed. Once a fault has been resolved it has no further impact on the
protocol. We used the variable value replace and stuck at select mutation rules
combined with various timing options to define the following faults for injection:

sN2ns: node 2 stops sending tokens (soft fault).
hN3ns: node 3 stops sending tokens (hard fault).
hN4nr: node 4 stops receiving tokens (hard fault).
hN6ns: node 6 stops sending tokens (hard fault).

Once the faults had been defined for injection, automatic diagnosability anal-
ysis was selected to be performed on the mutated token ring model containing
correct and faulty behaviour. The diagnosability analysis took approximately
22 minutes to complete on an Intel Pentium 2.5GHz Dual Core E5200 proces-
sor using approximately 57MB of memory. The number of reachable states was
approximately 2.3 × 105 out of a possible 1.4 × 1013.

The diagnosability report displayed to the user which shows the results from
the analysis is illustrated in Figure 3. The report displays the minimal cut sets
identified for each injected fault and agent combination. For each injected fault

a list is shown of the most specific diagnosis of that fault (under the heading
Fault Diagnosis) that each agent can make.

The report allows us to determine a number of diagnosability properties of
the token ring protocol as follows; Firstly, when the soft fault sN2ns is injected
it is diagnosed by the active monitor as a possible soft or hard fault, thus,
the active monitor uses the same mechanism to diagnose all faults; Secondly,
only the active monitor can diagnose a soft fault; Thirdly, when a hard fault
is injected, all monitors can diagnose the occurrence of a hard fault that has
affected themselves or their nearest upstream neighbour; Finally, all monitors
can diagnose the occurrence of a hard fault on the ring.

The diagnosability properties we described are critical to achieving fault tol-
erance in the token ring protocol. Soft faults need to be diagnosed by the active
monitor for resolution, hard faults are resolved by the standby monitor if the
fault has occurred on itself or its nearest upstream neighbours, and all other
monitors need to know that a hard fault has occurred so that they can propa-
gate information about the fault around the ring.

Without having to write any specifications, and in the absence of reason-
ing about fault resolution mechanisms, we have demonstrated that the token
ring protocol accurately diagnoses faults. This illustrates how automatic diag-
nosability analysis can be usefully applied during the early design stages of fault
tolerant MAS.

6 Related work

The majority of the previous work on combining fault injection with model
checking [2, 3, 4, 5, 17] is limited to temporal logic model checking. Moreover,
the approaches are primarily concerned with verifying properties of fault toler-
ance and do not analyse diagnosability. A platform in which analysis artifacts
including an FTA module are integrated with an automatic fault injection tool
and a temporal logic model checker is described in [4]. The general approach to
producing fault analysis artifacts in our paper is similar to the implementation
of the automatic FTA algorithm in [3].

The earlier work on combining fault injection with temporal-epistemic model
checking [12, 13] implements a compiler for injecting faults automatically into
an ISPL model, and defines a number of formulas for verifying fault tolerance,
recoverability, and diagnosability. Specifications are hand written to analyse di-
agnosability and automatic diagnosability analysis is not considered.

The previous work on analysing diagnosability [7, 9, 22, 24] considers discrete
event systems [22, 24], and model based diagnosis systems [7, 9]. The main focus
of the work in [9, 22, 24] is the formalisation of the diagnosability problem and
less attention is given to the practicality of the proposed algorithms for analy-
sis. A practical approach to verifying diagnosability using temporal logic model
checking is given in [7]. In this approach, a coupled twin model of the diagnosis
system must be constructed so that diagnosability can be expressed as a tem-
poral specification. This implies that the modelling component of the technique

is significantly more difficult in comparison to injecting automatically faulty
behaviour. The practicality of this approach is not examined for distributed
systems.

7 Conclusions

In this paper we presented a methodology for automatic diagnosability analy-
sis based on fault injection and temporal-epistemic model checking. We imple-
mented an algorithm to analyse automatically the diagnosability of faults by
agents in a system. As part of the implementation we defined a framework for
integrating fault analysis modules with the model checker MCMAS and a fault
injection compiler. We demonstrated the practical usefulness of our approach
by analysing automatically diagnosability in a model of the token ring protocol
which utilises distributed diagnosis to achieve fault tolerance.

We regard our methodology as an important step in the development of
practical tools for verifying fault tolerant MAS. Our framework can be used to
build powerful automatic fault analysis modules which are user friendly. These
are particularly useful for non-experts in verification who are working on the
design of fault tolerant MAS. The analysis can be employed at an early stage of
design with a high level of automation. These aspects of our work encourage a
unified design and verification approach for fault tolerant MAS.

In future work we intend to implement diagnosability analysis modules that
analyse group diagnosis, and the propagation of the knowledge of faults through
the system. Our analysis modules will be applied to autonomous vehicle control
systems and we aim to provide a powerful analysis tool for engineers working on
the design of these systems.

Acknowledgement

The research described in this paper is partly supported by EPSRC funded
project EP/E02727X/1.

References

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

[2] C. Bernardeschi, A. Fantechi, and S. Gnesi. Model checking fault tolerant systems.
Software Testing, Verification and Reliability, 12(4):251–275, 2002.

[3] M. Bozzano and A. Villafiorita. Integrating fault tree analysis with event or-
dering information. In Proceedings of ESREL’03, pages 247–254. Lisse: Swets &
Zeitlinger, 2003.

[4] M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA safety analysis platform.
Software Tools for Technology Transfer, 9(1):5–24, 2007.

[5] G. Bruns and I. Sutherland. Model checking and fault tolerance. In Proceedings
of AMAST’97, volume 1349 of LNCS, pages 45–59. Springer, 1997.

[6] P. Caspi, C. Mazuet, and N. R. Paligot. About the design of distributed control
systems: The quasi-synchronous approach. In Proceedings of SAFECOMP’01,
volume 2187 of LNCS, pages 215–226. Springer, 2001.

[7] A. Cimatti, C. Pecheur, and R. Cavada. Formal verification of diagnosability via
symbolic model checking. In Proceedings of IJCAI’03, pages 363–369. Morgan
Kaufmann, 2003.

[8] E. Clarke, O.Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge,
1999.

[9] L. Console, C. Picardi, and M. Ribaudo. Diagnosis and diagnosability analysis
using PEPA. In Proceedings of ECAI’00, pages 131–135. IOS Press, 2000.

[10] F. Cristian. Understanding fault-tolerant distributed systems. Commun. ACM,
34(2):56–78, 1991.

[11] J. Ezekiel and A. Lomuscio. MCMAS fault injection compiler project page:
http://www.doc.ic.ac.uk/∼jezekiel/ficompiler.html.

[12] J. Ezekiel and A. Lomuscio. An automated approach to verifying diagnosability
in multi-agent systems. In Proceedings of SEFM’09, pages 51–60. IEEE, 2009.

[13] J. Ezekiel and A. Lomuscio. Combining fault injection and model checking to
verify fault tolerance in multi-agent systems. In Proceedings of AAMAS’09, pages
113–120. IFAAMAS, 2009.

[14] R. Fagin, J. Y. Halpern, M. Y. Vardi, and Y. Moses. Reasoning about knowledge.
MIT Press, Cambridge, 1995.

[15] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.
In Proceedings of CAV’04, volume 3114 of LNCS, pages 479–483. Springer, 2004.

[16] R. Iyer. Experimental evaluation. In Proceedings of FTCS-25, pages 115–132.
IEEE, 1995.

[17] A. Joshi and M. P. E. Heimdahl. Model-based safety analysis of Simulink models
using SCADE design verifier. In Proceedings of SAFECOMP’05, volume 3688 of
LNCS, pages 122–135. Springer, 2005.

[18] M. Kalech and G. A. Kaminka. On the design of social diagnosis algorithms for
multi-agent teams. In Proceedings of IJCAI’03, pages 370–375. Morgan Kauf-
mann, 2003.

[19] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the verifi-
cation of multi-agent systems. In Proceedings of CAV’09, volume 5643 of LNCS,
pages 682–688. Springer, 2009.

[20] S. Mannor and J. S. Shamma. Multi-agent learning for engineers. Artificial
Intelligence, 171(7):417–422, 2007.

[21] A. Niewiadomski, W. Penczek, and M. Szreter. Verics 2004: A model checker
for real time and multi-agent systems. In Proceedings of CS&P’04, Informatik-
Berichte, pages 88–99, 2004.

[22] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Diagnosability of discrete-event systems. IEEE Transactions on Automatic Con-
trol, 40(9):1555–1575, 1995.

[23] W. Vesley, F. Goldberg, N. Roberts, and D. Haasl. Fault tree handbook. Tech-
nical Report NUREG-0492, Systems and Reliability Research Office of Nuclear
Regulatory Research U.S. Nuclear Regulatory Comission, 1981.

[24] Y. Wang, T.-S. Yoo, and S. Lafortune. Diagnosis of discrete event systems us-
ing decentralized architectures. Discrete Event Dynamic Systems, 17(2):233–263,
2007.

[25] M. J. Wooldridge. Reasoning about Rational Agents. MIT Press, Cambridge,
2000.

