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Abstract. We investigate the problem of locally monitoring contract regulated behaviours in agent-
based web services. We encode contract clauses in service specifications by using extended timed
automata. We propose anon intrusivelocal monitoring framework along with an API to monitor the
fulfillment (or violation) of contractual obligations. A key feature of the framework is that it is fully
symbolic thereby providing a scalable solution to monitoring. At runtime execution steps generated
by the service are passed as input to the runtime monitor. Conformance of the execution against the
service specification is checked using a symbolically represented extended timed automaton. This
allows us to monitor service behaviours over large state spaces generated by multiple, long running
contracts. We illustrate our methodology by monitoring a service composition scenario from the
vehicle repair domain, and report on the experimental results.

1. Introduction

Web services (WS) are now considered one of the key technologies for building new generations of
digital business systems. Industrial strength distributed applications can be built across organisational
boundaries using services as basic building blocks. According to a largely widespread view services
are implemented byagentsacting socially in the system and the environment to maximise their own
utility [26]. One of the main advantages of building distributed systems as agent-based web services is
the flexibility they provide in terms of composition. However, when services are combined a significant
challenge is to provide effective mechanisms to regulate their interactions. This is a well-known problem
in multi-agent systems (MAS) research where a variety of concepts such as norms [9], institutionalised
power [8] and commitments [6] have been studied to regulate and predict the behaviour of large MAS in
rich human like context.

In WS the traditional notion employed for similar purposes is the one of service level agreement
(SLA) [12]. They provide a useful mechanism to establish agreed levels of service provision when
interactions are invoked within certain parameters. Although SLAs are useful, they can represent only
basic agreements of service provision. Applications running complex, human-like activities require more
general and sophisticated declarative specifications certifying legal-like agreements among the parties.
Indeed, in an environment where previously unknown services are dynamically discovered and binded,



their composition is required to be underpinned by binding agreements. Additionally, agents maximising
their own utilities may indeed choose to violate these agreements for a better payoff differently. While
this is unavoidable, we may still wish to monitor the executions and track at run time the agreements that
are being violated.

A useful concept from the legal domain in this sense is the oneof contract as found in human
societies. Should a contract be broken by one of the parties,additional rights and/or obligations (e.g.,
penalties to be paid) may be applicable to some party. Contracts may not simply prescribe certain actions
depending on certain states, but may go as far as to specify timing constraints (e.g, deadlines), or more
sophisticated measures (such as the number of actions per temporal interval, as in some QoS (Quality of
service) agreements).

In this paper, we study the problem of monitoring runtime behaviours ofcontract regulated web
services. While contracts are usually negotiated offline, it is of interest to monitor at runtime whether
interactions between WS are complying to the contracts stipulated between the parties. Runtime mon-
itoring of web services is concerned with the actual, ratherthan possible state transitions occurring in
the system. A runtime monitor continuously checks the executions against a model of correct behaviour
previously encoded. In the case of contract-based web services we are interested in monitoring at run-
time whether the contracts the web services are supposed to adhere to are violated in a given run of the
system, and if so, what action follows from this behaviour, e.g, whether recovery actions are performed.

Monitoring complex interactions such as the ones above is non-trivial. The key issue is the one of
scalability. It is relatively easy to envisage a methodology whereby contracts and possible behaviours
are explicitly stored in memory and the stream of events at local web-service level is matched at runtime
against the envisaged contract-compliant runs. However with many complex contracts to be verified and
several WS present in a system the present approach is unlikely to be effective in any scenario where the
range of possible behaviours is large.

In this paper we put forward a “symbolic” solution to the problem above. We represent both all
possible behaviours and the contractually-correct ones asan appropriate timed automata [1] at local web
service level. Specifically we present a local contract runtime monitor (CRM) based on the symbolic
toolkit Verics [5], a symbolic model checker for timed-automata. CRM checks the local service’s ex-
ecution at runtime against the symbolic representations provided, and reports back to the service (or
directly to the engineer) any mismatch, orviolation, between the contract-compliant behaviours origi-
nally prescribed and the ones actually received in the inputstream. Note that differently from other lines
of research we do not wish to monitor the overall service composition here. Instead we focus on a single
service and aim to monitor continuously its executions, i.e., the change of its local variables and actions.
This is of relevance to several application areas where individual enterprises wish to monitor whether
any of their executions violates existing contracts, or service level agreements.

The significant advantage of the approach is that we do not need to keep the whole state space of the
possible and the contract-compliant behaviours in memory but we can simply call the timed-automata
engine at runtime to match moves against the stream of eventscoming from the input. Because of the
requirements of the setting the approach extends conventional timed automata with additional constraints
to allow the specification of compliance and violation of contracts. As discussed below the memory
footprint of the CRM is also very attractive as is its performance. Additionally timed-automata offer us a
natural formalism to work with any timing properties of interest. The approach is also inherently scalable
as it enables us to monitor in parallel several independent contracts, or several independent clauses in a
single contract.



The rest of the paper is structured as follows: in Section 2 webriefly introduce the formalism of
timed automata as used here. Section 3 presents our monitoring framework. We analyse a motivating
case study in 4 and discuss the monitoring results. Section 5presents related work and conclusions.

2. Monitoring via Timed Automata

Let IIN denote the set of naturals (including0), ZZ - the set of integers,Q - the set of rational numbers,
andIR (IR+) - the set of (non-negative) reals.

2.1. Variables and Clocks

Let V be a finite set of integer variables. The set ofarithmetic expressionsoverV , denotedEx(V ),
is defined by the following grammar:ex ::= c | v | v ⊗ c | c ⊗ v | v ⊗ v , wherec ∈ ZZ, v ∈ V , and
⊗ ∈ {+,−}.
The set ofboolean expressionsoverV , denotedBool(V ), is defined byβ ::= true | ex ∼ ex | β ∧
β | β ∨ β | ¬β | (β), whereex ∈ Ex(V ) and∼ ∈ {=, 6=, <,≤,≥, >}.
The set ofinstructionsoverV , denotedIns(V ), is given byα ::= ǫ | v := ex | αα, wherev ∈ V ,
ex ∈ Ex(V ).

Moreover, byInsL(V ) we denote the subset ofIns(V ) such that for eachα = α1 . . . αm ∈
InsL(V ), whereαi = (vi := exi) for 1 ≤ i ≤ m, we have

⋂m
i=1

{vi} = ∅, i.e., eachvi is assigned a
new value inα at most once.

By a variable valuationwe mean any total mappingv : V −→ IIN. We extend the mappingv to
expressions ofEx(V ) in the usual way. The satisfaction relation (|=) for the boolean expressions is also
standard.

Given a variable valuationv and an instructionα ∈ InsL(V ), we denote byvu(α) the valuationv′,
obtained after executingα atv (updating a valuation), which is formally defined as follows:

• if α = ǫ thenv
′ = v,

• if α = (v := ex), thenv
′(v) = v(ex) andv

′(v ′) = v(v ′) for all v ′ ∈ V \ {v},

• if α = α1α2, thenvu
′ = (vu(α1))(α2).

LetX = {x1, . . . , xnX
} be a finite set of real-valued variables, calledclocks. The set ofclock constraints

over X andV , denotedC(X ,V ), is defined by the grammar:cc ::= true | xi ∼ c | xi ⊗ xj ∼
c | xi ⊗ xj ∼ v | xi ⊗ v ∼ c | v ⊗ w ∼ xi| cc ∧ cc, wherexi, xj ∈ X , v,w ∈ V , c ∈ IIN,
⊗ ∈ {+,−}, and∼ ∈ {≤, <,=, >,≥}. LetX+ denote the setX ∪ {x0}, wherex0 6∈ X is a fictitious
clock representing the constant0. A clock-to-clock assignmentA overX is a functionA : X −→ X+.
Asg(X ) denotes the set of all the assignments overX . By a clock valuationwe mean a total mapping
c : X −→ IR+. The satisfaction relation (|=) for a clock constraintcc ∈ C(X ,V ) under a clock valuation
c and a variable valuationv is defined as:

• (c,v) |= (xi ⊗ v ∼ c) iff c(xi) ⊗ v(v) ∼ c,

• the other cases are defined similarly.



In what follows, the set of all the pairs(c,v), composed of a clock and a variable valuation, satisfying a
clock constraintcc is denoted by[[cc]]. Given a clock valuationc andδ ∈ IR+, by c + δ we denote the
clock valuationc′ such thatc′(x) = c(x) + δ for all x ∈ X . Moreover, for a clock valuationc and an
assignmentA ∈ Asg(X ), by c(A) we denote the clock valuationc′ such that for allx ∈ X we have
c
′(x) = c(A(x)) if A(x) ∈ X , andc

′(x) = 0 if A(x) = x0. Finally, byc
0 we denote theinitial clock

valuation, i.e., the valuation such thatc
0(x) = 0 for all x ∈ X .

2.2. Timed Automata with Discrete Data

In this paper we assume a slightly modified definition of timedautomata with discrete data [27], which
extend the standard timed automata of Alur and Dill in the following way:

Definition 2.1. A timed automaton with discrete data(TADD) is a tupleA = (Σ, L, l0,V ,X , E ,I),
where

• Σ is a finite set oflabels (actions),

• L is a finite set oflocations,

• l0 ∈ L is theinitial location,

• V is the finite set of integer variables,

• X is the finite set of clocks,

• E ⊆ L × Σ × Bool(V ) × C(X ,V ) × InsL(V ) × Asg(X ) × L is atransition relation, and

• I : L −→ C(X , ∅) is aninvariant function.

The invariant function assigns to each location a clock constraint (without integer variables1) expressing
the condition under whichA can stay in this location. Each elementt = (l, a, β, cc, α,A, l′) ∈ E denotes
a transition from the locationl to the locationl′, wherea is the label of the transitiont, β andcc define the
enabling conditions fort, α is an instruction to be performed, andA is a clock assignment. Moreover,
for a transitiont = (l, a, β, cc, α,A, l′) ∈ E we write source(t), label(t), v guard(t), cv guard(t),
instr(t), asgn(t) andtarget(t) for l, a, β, cc, α, A andl′, respectively.

An example of a TADD can be found in Section 4.1. The automatonin Figure 5 is composed
of 4 locations and3 transitions, wheres4 is the initial location. Labels on the transitions are, e.g.,
SendV ehicle! andSendAssessed!. Invariant is, e.g.,x <= 7 wherex is the clock. Reset on clockx is
defined asx = 0 on the transitions. The semantics of a TADDA is given below:

Definition 2.2. Thesemanticsof A = (Σ, L, l0,V ,X , E ,I) for an initial variable valuationv0 : V −→
ZZ is a labelled transition systemS(A) = (Q, q0,ΣS ,−→), where:

• Q = {(l,v, c) | l ∈ L ∧ v ∈ ZZ
|V | ∧ c ∈ IR

|X |
+ ∧ c |= I(l)} is the set of states,

• q0 = (l0,v0, c0) is the initial state,

• ΣS = Σ ∪ IR+ is the set of labels,

• −→⊆Q × ΣS × Q is the smallest transition relation such that:

1To ensure the monotonicity of the timed successor relation.



– for a ∈ Σ,

(l,v, c)
a

−→(l′,v′, c′) iff there exists a transitiont = (l, a, β, cc, α,A, l′) ∈ E such thatv |=
β, (c,v) |= cc, v′ = vu(α), c |= I(l), and2 c

′ = c(A) |= I(l′) (action transition),

– for δ ∈ IR+,

(l,v, c)
δ

−→(l,v, c + δ) iff c |= I(l) andc + δ |= I(l) (time transition).

A transition t ∈ E is enabledat a state(l,v, c) if v |= v guard(t), (c,v) |= cv guard(t) and
c(asgn(t)) |= I(target(t)). Intuitively, in the initial state all the variables are setto their initial values,
and all the clocks are set to zero. Then, at a stateq = (l,v, c) the system can either execute an enabled
transitiont and move to the stateq′ = (l′,v′, c′), wherel′ = target(t), the valuation of the variables is
changed according toinstr(t), and the clock valuation is changed according toasgn(t), or move to the
stateq′ = (l,v, c + δ) which results from passing some timeδ ∈ IR+ such thatc + δ |= I(l).

2.3. TADD Semantics for contract monitoring

In our framework, we use the TADD for an agent-based service as a formal structure for the specification
of all possible behaviours (contract-compliant or otherwise). Inspired by related work in the formal
representation of states of compliance and violation [15],we partition the set of global statesQ of S(A)
for A = (Σ, L, l0,V ,X , E ,I) into two subsetsG andR such thatG ∩ R = ∅3. The setG represents
green(or ideal) states, whereasR represents thered (or non-ideal) ones. Intuitively,G contains the
states of compliance andR contains the states of violation with respect to the contract, i.e., the whole set
of clauses being included. Figure 1 illustrates the intuition behind the semantics.

Figure 1. Partitioning of states and transitions in a TADD

Based on the above partitioning each action transition(q, a, q′) of S(A) can be one of the following
four types of transitions:

• Contract compliant: between green and green states, i.e.,q, q′ ∈ G. These transitions occur
when the observed behaviour is in compliance with the prescribed behaviour of the contract.

• Contract violating : between green and red states, i.e.,q ∈ G andq′ ∈ R. These transitions occur
when the observed behaviour violates the prescribed behaviour of the contract.

2Note that satisfaction of invariants is ensured by the definition of Q.
3This partition is obtained “location-wise” from a partition of the set of locationsL.



• Recovery: between red and green states, i.e.,q ∈ R andq′ ∈ G. These transitions occur when a
recovery action is taken by the service after a violation of the prescribed behaviour is recorded.

• Continuous contract violating: between red and red states, i.e.,q, q′ ∈ R. The transitions occur
when no recovery results from a previous violation.

We say that there is astepfrom stateq1 to q2 in A if q1

δ1−→ q′1
a

−→ q′2
δ2−→q2, for some statesq′1, q

′
2 ∈ Q,

δ1, δ2 ∈ IR+, anda ∈ Σ.

2.4. Querying of TADD for monitoring contracts

In order to monitor contracts at runtime, we monitor the variation in the variables of the current state of
the service. We query the symbolic representation, i.e., the TADD, by inputting the previously observed
state and the currently observed state. We check whether there is a transition in the formally specified
TADD representation between the two states.

In our approach, we rephrase the problem of local monitoringof executions against contract compli-
ant behaviours into the following model checking problem: for a given TADDA and a pair(Q,Q′) of
sets of global states ofS(A), we check whether there are two statesq ∈ Q andq′ ∈ Q′ such that there
is a step fromq to q′. If so, we denote the step asQ ; Q′. We use this operation as follows: first we
check if there is a transition from the source setQ to the subset of target statesQ′ being the red statesR
(formally: Q ; (Q′ ∩ R)). If so, thennon compliance(RED) is reported. If there is no such a step, we
check ifQ ; Q′. If the result is positive we reportcompliance(GREEN), or INVALID TRANSITION
in the other case.

Technically, the transition relation is first encoded into apropositional formula. Then for each step,
this propositional formula is conjuncted with the encodings of a pair of sets of states specified above, with
the conjunction of formulas encoding sets implementing theset union. The satisfiability of the resulting
formula is tested. A transition exists when the formula is satisfiable, and does not exist otherwise.

Thus we check steps of one transition in length that can occuranywhere in the system. Note that the
fact that we check one step at a time does not mean that we deal with single-step contract. We benefit by
using SAT because we can encode the whole system of all possible behaviours very efficiently, and that
queries are efficiently answered. Our tool uses MiniSAT [7] for checking satisfiability, but any standard
SAT-solver capable of processing propositional formulas in the conjunctive normal form can be applied.

3. Runtime monitoring framework

Our approach for run-time monitoring of contract-based webservices (RMCWS), is illustrated in Figure
2. For each agent to be monitored all its possible behaviours(contract-compliant and otherwise) are rep-
resented as a TADD and stored in the checker. At regular intervals (whose granularity is smaller than the
smallest possible sequence of local transitions, typically several per second), execution snapshots taken
at runtime are passed to RMCWS as inputs. The BMC based monitoring engine checks the snapshots
against their TADD specification and reports back to RMCWS whether the actual runtime behaviours
are in compliance with the contractually prescribed behaviour as specified in the TADD, or, if not, states
the clause that has been violated in the present transition.In this section we enumerate and discuss the
core components of RMCWS followed by a detailed discussion on the monitoring mechanism.



Figure 2. The general architecture and methodology

3.1. Runtime architecture

Agents implementing WS are the primary entities within our framework. Service behaviour and contracts
associated with them may be specified at a high level using WS standards, e.g., WSBPEL [21] and
contracts, e.g., WSLA [12]. The TADD specification for the service is engineered from these interface
representations.

A significant feature of our framework is that we do not place any restriction on service implementa-
tion in terms of development infrastructure and execution platforms. Central to our framework is anon
intrusiveapproach to monitoring. The mechanism works independentlyof service execution.

The module responsible for linking the service to the monitoring mechanism is the “ logging frame-
work”. Each service to be monitored is associated with a logger. The logger records a “snapshot” of
the variables of interest that are to be monitored. Snapshots may be finely grained, i.e., every change
in valuation is recorded or coarse, i.e, recorded after every pre-specified or random number of changes.
Snapshots may also be time bound, i.e., taken after a specifictime interval. Each snapshot captures vari-
able valuation as they are generated, updated by the serviceor received from partners. Every snapshot is
passed to the runtime state analyser using a dedicated API provided by the logging framework.

TADDs for services: The specification of service behaviour used by RMCWS is a TADD representation
as in Section 2. We use the XML format generated by the model checker UPPAAL [22] for representing
the TADD. Our choice is motivated by the fact that UPPAAL provides a user friendly GUI. This is of
great help to system engineers when modelling the TADDs. Secondly, the XML representation format
can be modified easily in order to take into account any extensions to the TADD model. As illustrated



Figure 3. Set of behaviours for a service

in Figure 3, the TADD specification encodes all possible desired behaviours for a service. Typically, the
full set of behaviours for a contract regulated service can be derived from:

• its contractually compliant behaviours. These behavioursencapsulate contractual obligations for
the service.

• behaviours that are classified as violations of the contract.

• behaviours that define a recovery from incurred violations.

There is a one-to-one correspondence between variables defined in the TADD and the service implemen-
tation in terms of types and names i.e., variables names and their types across the two representations
are kept identical for simplicity. The logging framework passes execution snapshots to the analyser
component of the engine as an XML data structure. One such snapshot is illustrated in Listing 1.

<?xml ve rs ion=” 1 .0 ” encod ing =”UTF−8” ?>
<V a r V a l u a t i o n s>
<va r name=” rece ivedPO ”> t r u e< / va r>
<va r name=” numberOfDays”>5< / va r>

< / V a r V a l u a t i o n s>

Listing 1. Snapshot from logger to RSA

Runtime State Analyser (RSA): The runtime state analyser interfaces with the logger for receiving
snapshots of latest variable valuations generated by the service. Snapshots are passed to the RSA via
the logging framework. RSA is also responsible for updatingclocks by querying the system hardware,
in accordance with the granularity of atick chosen by the service. A tick can be defined in terms of
seconds, minutes, hours or days i.e., clock values may be captured every second, minute or day or any
other interval chosen by the service. Clocks may also be updated based on resets and assignments defined
in the TADD for the service. The monitoring engine reports back any resets or assignments made to the
clocks, along with reporting the results, e.g., if the monitoring engine reports that a clockx is reset, the
current valuation of the clock is discarded and the clock is re-initialised. Clock resets and updates are
significant especially when a recovery action is taken against a violation of contract. In such scenarios
one would like to start the monitoring again with clock valuation recorded before the violation occurred.
The clock valuations once recorded are then added to the variable valuation snapshot received from the
logger. RSA is also responsible for storing the history of service executions and passing the augmented
snapshots to the monitoring engine.



The runtime information passed to the monitoring engine from the RSA consists of one or several
steps. A step is a pair of consecutive snapshots, represented as “source” and “target” states. The states
define immediately previous (source) and current (target) clock and variable valuations recorded for the
service. An example step for the case study in section 4, is illustrated in Listing 2 below.

<m o d e l f i l e>Repa i r . xml< / m o d e l f i l e>
<s t e p>
<s o u r c e>
<component name=” RepairCompany ”>
<c l o c k name=”x ”>3< / c l o c k>

< / component>
<va r name=” maxRepairRequestT ime ”>7< / va r>

< / s o u r c e>
< t a r g e t>
<component name=” RepairCompnay ”>
<c l o c k name=”x ”>5< / c l o c k>

< / component>
< / t a r g e t>

< / s t e p>

Listing 2. Snapshot from RSA to the monitoring engine

Any component of a source or a target such as a clock valuation, or a variable valuation can be omitted.
Thus each set can range from containing only the system states (no values given at all) to a single state
(every component is specified).

3.2. The monitoring engine

The monitoring engine is the core component responsible fortesting the conformance of runtime service
behaviour presented as an input from the RSA, against the prescribed TADD specification of the service.

Each execution step passed to the engine is encoded and its conformance to the TADD specification
is tested by means of the model checking approach described in Section 2.4. Our SAT-based verification
method does not need to construct the complete model forA, which could be unfeasible for both the
explicit-state [10] and BDD-based methods [17]. Instead the timed automaton is encoded as a proposi-
tional formula, but testing of its satisfiability is postponed until the concrete source and target states of
an execution step are provided. This significantly reduces the computational cost as information about
concrete states prunes the state space to be searched.

The engine monitors if the service has taken an execution step from the source set to the target set
of states in accordance with its prescribed TADD. In addition, it checks if it is possible to reach a target
red state from a given set of source states. In the general case the system consists of several components
represented by automata; if at least one component of a location reachable as a result of the transition is
red, then this fact is reported.

Monitoring results : The engine checks at runtime whether the stream of execution steps received as
inputs from the RSA, conforms with its symbolic representation of all possible behaviours. For each
execution step, the answer returned by the monitoring engine is one of the following:

• GREEN - This represents the fact that the step is conforming with the specification, i.e., there is a
contract compliant transition between the source and target states.



• RED - This represents the fact that a red state is reached as a target of the transition given, i.e., a
contract has been violated as a result of the transition. This also signifies the fact that the inputs do
not comply with the extended format of the TADD for the service.

• INVALID TRANSITION - This represents the fact that the step does not conform to the specifi-
cation, i.e., there is no such transition.

• ERROR - This represents the fact that the specification is incorrect; for example syntax errors are
detected, or undefined variables occur at specified locations.

Results reported at runtime may be analysed in several ways.In case of contract compliant transi-
tions, the service can continue executing as per the orchestrated workflow. For contract violating tran-
sitions, the service administrator may impose on the service to execute one of the prescribed recovery
transition. In other cases the administrator may choose to override the violations reported and allow the
service to continue execution. For a continuous contract violating transition being reported, the service
may be stopped. Finally, the outputs generated may be storedin a log file for future offline analysis.

4. A vehicle repair contract: case study

We now present a description of a case study – the vehicle repair, which is a web-service coming from an
industrial usecase in an actual project. This is followed bya detailed discussion on the local monitoring
and analysis of one of the agents in the composition.

We consider a service composition scenario that defines a repair contract between a client (C) and
a vehicle repair company (RC). Communication betweenC and RC is facilitated via web service
interfaces. A repair contract specifies details concerninga particular repair, i.e., the type of repair to be
performed, price, dates, pickup and delivery locations etc. For simplicity we only model the behaviour
of RC. Table 1 identifies some of the contract clauses governing the actions taken byRC, the deadlines
against which the contracts are monitored, if the clause canbe violated, and, if a violation is recorded,
whether any recovery is possible. Note that in some casesRC may take an “offline” action, in response to
a violation from which no recovery may be possible. For example consider clause 6: “For any violation
take recovery action withinmaxRecoveryT ime - number of days”. If the recovery action is not taken,
C may take an offline legal action againstRC.

The informal behaviour ofRC is described as follows. WhenRC receives a request fromC to
undertake a repair job, it sends a repair proposal. In response, C sends an acceptance or rejection
message. If accepted,RC sends a contract initiation message toC. RC then waits for the vehicle
to arrive, failing which it sends two reminders toC. If the vehicle fails to arrive, it takes an offline action.
As per the contract,RC is obliged to assess the damage, repair the vehicle and send a report toC. On
receiving the report,C is obliged to send payment toRC. If the payment is not sent,RC sends two
reminders toC and then takes an offline action.

The actions taken byRC in response to messages sent byC are monitored to meet the deadlines
set for various activities as per the contract. Failure to meet deadlines is considered a violation of the
contractual obligations. In some cases a recovery from the violation may be possible.

We assume the contract has been negotiated offline and obligations, defined in terms of their respec-
tive contract clauses, have been agreed by each of the contract parties.



clause Contract regulated actions Deadline Violation Recovery

1 Receives a repair request
by C

5 days - -

2 Sends a repair proposal to
C

7 days - -

3 Assess damage to the ve-
hicle

3 days yes yes

4 Execute repair 30 days yes yes

5 Send repair report toC 5 days yes yes

6 For any violation take re-
covery action

3 days yes no (take offline action)

Table 1. Some contract regulated actions forRC

4.1. Monitoring the runtime behaviour of the Repair Company

The full set of behaviours of the repair company is represented by a TADD4. As described in Section 4,
deadlines for various activities are decided during contract negotiation between the parties. Deadlines
are defined in terms of number of days. For example consider two contract clauses to be monitored:

• If RC accepts a repair request it sends a proposal toC within 5 days- clause (2) in table 1. A
snippet of the TADD for the clause is shown in the Figure 4.

• If C sends a damaged vehicle toRC, it assess the damage to the vehicle within 3 days- clause (3)
in table 1. A snippet of the TADD for the clause is shown in the Figure 5.

s1=AcceptedRequest
x<=7

s2=SentProposal
x<=5

s0=ReceivedRequest
x<=5

s

!sentProposal

sentProposal SendProposal!
x=0

acceptRequest AcceptRequest!
x=0

!acceptRequest receivedRequest
ReceiveRequest?

x=0

Figure 4. TA specification of clause (2)

Figure 6 describes for clause (2) the timeline in number of days, status ofRC in terms of tasks executed,
snapshots taken by the logger and sent to the RSA, snapshots sent to the monitoring engine by the RSA
and the results from monitoring. Here,x denotes the clock against which deadlines are monitored. Since
deadlines for this contract is in days, the tick for clock update is defined to be 1 day.

4The complete TADD for the example being too large, we do not include it in the paper



s8=notAssessed
x<=2

s7=Assessed
x<=30

s5=Received Vehicle

x<=3

s4=Contract Initiated
x<=7

!damageAssessed

clause=003,x=0

damageAssessed

SendAssessed? x=0

vehicleSent
SendVehicle!

x=0

Figure 5. TA specification of clause (3)

Figure 6. Runtime valuations for clause (2)

The first snapshot is passed to RSA atx = 0 from the logger, when a request for repair is received.
The request is accepted atx = 3 by the service and a new snapshot is passed by the logger. The clock
x is reset as part of the TA specification. As per the contract, once a request has been accepted, the
repair proposal has to be sent within 9 days. WhenRC accepts the proposal, a snapshot is again sent
by the logger to the RSA atx = 2. The snapshot taken atx = 3, before reset and atx = 2 after reset
are sent by the RSA as a pair - or as a “step” to RMCS. The resultsreturned by the monitoring engine
are{GREEN, reset}. GREEN signifies that the step is a valid step, i.e., a valid transition andreset
indicates that the clock has been reset. Execution steps areevaluated for valid transitions as per the
methodology described in Section 2.

Figure 7. Runtime valuations for clause (3)



Step state Explanation

step 1 source RC waits to receives the request for repairing cars.

target RC receives the request for repairingx cars. In table 3 we present an example
of the clock and variable valuations for three cars.

step 3 source RC accepts the request for repairingx cars.

target RC sends repair proposals for repairingx cars.

Table 2. Explanation of trace contents for steps1 and3

step nr nr of cars nr of int variables nr of clocks Nc/Nvars time
[s]

answer

1

10 10 10 6779/16528 <1

YES20 20 20 17738/43455 <1

300 300 300 265741/652852 4.3

3

10 10 10 6743/16431 <1

NO30 30 30 26781/65822 <1

300 300 300 265811/653052 5.4

Table 3. The experimental results. Parameters of the example are described in the text; size of encoding:
Nc/Nvars is the number of clauses/Boolean variables in the result CNFformula; time refers to checking this
formula using the tool Minisat.

Figure 7 describes for clause (3) the timeline in number of days, a snapshot passed to RSA atx = 0
from the logger when a vehicle for repair arrives, snapshotssent to the monitoring engine by the RSA
and the results from monitoring. As per the contract, once a damaged vehicle has arrived the damage
has to be assessed within 3 days. A snapshot is again sent by the logger to the RSA atx = 5. The
snapshot taken atx = 0 and atx = 5 are sent by the RSA as a pair - or as a “step” to RMCS. The results
returned by the monitoring engine are{RED, reset, 003}. RED signifies that a violation has occurred,
i.e., the damage was not assessed within the deadline,reset indicates that the clock has been reset and
003 indicates the clause index that has been violated.

4.2. Experimental results and Discussion

In order to validate our methodology, we implemented the above case study and monitored several run-
time execution steps for the service. To provide an indication of the number of variables the toolkit can
monitor at the same time we scaled the example described above parametrizing the number of cars in
the contract. As one clock and one integer variable are associated with every car, numbers of clocks and
int variables grow respectively. Notice that the bigger thevalues these vars can have, the more bits are
needed for encoding them.

We scaled the example above so that the client is now interested in gettingx cars repaired. The
request for all these repairs is included as a single contract.



Table 2 explains the contents of traces for contract clauses1 and3 (see Table 1). Table 3 presents exper-
imental results. It can be stated that the approach performsextremely well against explicit approaches,
which, although more immediate in their construction, typically fail to scale due to their memory foot-
print. This phenomenon could be even more visible if we couldhave a network of automata instead of a
single automaton defining a contract. The experiments show the approach can monitor effectively several
hundreds of variables. This is sufficient for very complex monitoring of key aspects of a service. We
did not optimise the monitoring process in any way; we expectour results to improve significantly by
tailoring the approach to a particular problem we wish to monitor. Indeed, observe that the methodology
above could be parallelised over several engines on top of the web service with each engine monitoring
different independent contracts or clauses in a contract.

As can be seen from the tables above, we found the only time consuming step of our methodology
to be the construction of the automaton representing all behaviours. However this only needs to be done
once, tools to assist the user in the design exist, and it can then be used for all monitoring purposes.
Additionally it is to be noted that for complex applications, a representation of the service composition
in an automata-based framework (or something equivalent) is expected to be produced during the de-
sign phase, so the construction above may in practice be derivable from existing formalisations of the
composition under analysis.

5. Related work and conclusions

In this paper we presented a symbolic approach based on timedautomata for the runtime monitoring
of contract regulated agent based WS. Several previous efforts have investigated various formalisms
and frameworks for the monitoring of functional and non-functional properties of services. Within the
multi-agent community, Modgil et al [18] present a somewhatsimilar approach, where norms defin-
ing compliance or violation are specified as augmented transition networks. The monitoring technique
adopted here is corrective, whereas we propose apredictiveapproach where agents could be warned if
one of the next states on transition would be a red state. An alternative approach is presented in [11]
whereoverhearingis used as a monitoring technique. In contrast, the agents inour system explicitly
communicate their state to the monitoring engine.

In [20] the authors propose an approach based on Aspect Oriented Programming. The methodology
is based on QoS requirements and does not consider complex contract like constraints. The monitoring
problem has also been considered for several formalisms in papers [25, 2, 4, 23, 19, 16, 14, 3]. Table 4
presents a brief summary.

Timed automata have been used in earlier work such as [13] on monitoring and fault diagnosis of
systems, while [24] presents an approach which also uses timed automata for monitoring SLAs. The
aims of the above approaches are however quite different from our objectives in this paper. However
[13, 24] are not concerned with local monitoring of contract-based executions.

Further none of the approaches above is based on a symbolic technique, which as shown in this
paper offers a significant performance advantage. This is due to the fact that, differently from explicit
approaches, in our framework histories and pending contracts are not stored in memory during the moni-
toring. This positively impacts the scalability of the approach and is particularly useful when monitoring



Properties Monitoring spec Web service spec

[25] general ITL-formulae OWL-S

[2] boolean, time-related and
statistic properties

RTML BPEL, java

[4] general Algebraic specification BPEL

[23] protocols Automata, EaGLe -

[19] rights and obligation FSMs B2B Object middleware

[16] general Event calculus BPEL

[14] interaction constraints FSAs OWL-S

[3] timeouts, external errors,
contracts

Assertions languages BPEL, C#

Table 4. Summary of approaches

multiple and long running contracts between several services. As a case study we presented the mon-
itoring of contracts for a repair company. Although the TADDfor the service is not large enough to
exploit the full capabilities of RMCWS, we believe it is still sufficiently significant to demonstrate the
methodology and scope of the proposed approach. Experiments demonstrate that larger scenarios would
be handled just as well by the technique.

While verification is still an aspect of systems validation we are not aware of symbolic attempts to
the runtime monitoring of these notions. It seems to us that it may be of interest to investigate whether
this could be achieved in ways related to the technique presented here.

Much work remains to be done. An important part of our future work is the translation to TADDs
from high level specification standards such as WSBPEL. Developing such a translation is non trivial as
most standards do not support the explicit representation of timing constraints on prescribed activities.
These standards therefore need to be augmented with such support. Additionally, we are interested in
developing an interactive compiler for services specified in WSBPEL to be compiled into our TADD
representation.
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