
October 2012, PREPRINT

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Assume-guarantee reasoning with local specifications

Alessio Lomuscio

Department of Computing, Imperial College London, 180 Queen’s Gate

London SW7 2AZ, UK

a.lomuscio@imperial.ac.uk

Ben Strulo

BT Innovate, Adastral Park, Martlesham Heath

Ipswich IP5 3RE, UK

ben.strulo@bt.com

Nigel Walker

BT Innovate, Adastral Park, Martlesham Heath

Ipswich IP5 3RE, UK

nigel.g.walker@bt.com

Peng Wu∗

State Key Laboratory of Computer Science, Institute of Software

Chinese Academy of Sciences, P.O.Box 8718

Beijing 100190, China

wp@ios.ac.cn

Received
Revised
Accepted

Communicated by

We investigate assume-guarantee reasoning for global specifications consisting of con-
junctions of local specifications. We present a sound and complete assume-guarantee
methodology that enables us to establish properties of a composite system by checking
local specifications of its individual modules. We illustrate our approach with an exam-
ple from the field of network congestion control, where different agents are responsible
for controlling packet flow across a shared infrastructure. In this context we derive an
assume-guarantee system for network stability and show its efficiency to reason about
any number of agents, any initial flow configuration, and any topology of bounded degree.

Keywords: assume-guarantee reasoning; compositional model checking; distributed sys-
tem

∗Corresponding author

1

October 2012, PREPRINT

2 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

1. Introduction

Assume-guarantee reasoning [1, 2, 3] is one of the key techniques to alleviate the

state explosion in model checking. In this paradigm a system composed of a num-

ber of reactive modules is analysed by considering each module as interacting with

an abstract environment (representing the rest of the system). Properties are then

verified with the aid of assumptions characterising the environment of each module.

General assume-guarantee rules have been proposed for safety and liveness prop-

erties over the last decade [4, 5, 6, 7]. However, many studies have demonstrated

that assumptions may become too large to be treated effectively [8, 9, 10, 11]. The

motivation of this paper is to investigate possible ways to reduce the size of the

assumptions to be identified and to reuse them for compositional model checking,

particularly in the context of network control protocols.

Our starting point is the observation that a module in a system typically reacts

directly with relatively few other modules. However, under the general assume-

guarantee rules, the assumptions generated from a system property do not exploit

this neighbourhood dependency. Consequently, assumptions for a module may con-

tain redundant information about parts of the system that the module does not di-

rectly interact with. Moreover, any new modules added to the system can contribute

with further redundancy in the assumptions. This growth in the local assumptions

causes inefficiencies in the general assume-guarantee techniques.

In this paper we show that for a system property that can be formulated as the

conjunction of local specifications on individual modules, these scalability issues

can be resolved by generating assumptions with respect to local specifications. Our

main contribution consists in a number of assume-guarantee rules reasoning with

local specifications to derive conclusions on properties of the system as a whole.

Firstly, we present a simple assume-guarantee rule R1 that we prove to be

sound. Through a counterexample, we show that this simple rule is not complete,

as it exploits only the direct dependency between modules.

We then extend rule R1 to achieve completeness. This leads us to a bounded

assume-guarantee rule Rπ that we prove to be sound and complete. Rπ encodes

interactions between modules only up to π hops away from each other. We use

this rule to propose a bounded assume-guarantee reasoning approach, in which the

dependency between modules is exploited incrementally.

In doing so we are inspired by the topological properties of networked systems in

which the components, or hosts, interact only through their immediate neighbours.

We evaluate the approach through a case study of an optimisation based congestion

control system as proposed in [12]. The optimisation approach allows a distributed

solution for network congestion control. A congestion control system is stable if

each source in the system reaches an equilibrium flow configuration on the routes

available to the source. We analyse the stability of the system by reasoning about the

local stability of its individual sources. The case study shows that an instantiation

of rule Rπ for system stability can be applied for reasoning about any number

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 3

of sources, any initial flow configuration, and any topology of bounded degree. To

the best of our knowledge, previous work on model checking of networked systems

has so far focused on verifying network protocols under given topologies only. By

contrast, the assume-guarantee framework developed here supports verification of

network-wide objectives irrespective of the underlying network topologies.

In the case study we analyse the direct neighbourhood dependency is enough for

establishing the stability of the system. This shows the potential of our approach

when used to reason about global properties of a distributed network within a

relatively near neighbourhood.

Related Work. The history of compositional verification of concurrent systems

dates back to the late 70s and 80s [13, 14, 1]. Since then, considerable effort has

been devoted to studying the soundness of circular assume-guarantee reasoning.

[15] showed that compositional circular assume-guarantee rules cannot be both

sound and complete. [9] presented an automata-theoretic approach to model check-

ing assume-guarantee assertions.

More recently, [4, 5, 6, 10, 11] developed sound and complete non-circular assume-

guarantee reasoning approaches for safety properties, with support for automated

learning of assumptions. [16, 17] presented a symbolic implementation of learning-

based assume-guarantee reasoning. [10, 11] proposed an alphabet refinement tech-

nique to reduce the size of assumptions. [7] extended the assume-guarantee rea-

soning approaches to liveness properties, based on the observation that ω-regular

languages preserve the essential closure properties of regular languages. This was

further developed in [18] where a general formalisation framework is presented to

use learning in the context of assume-guarantee reasoning.

The starting point for this paper is work on reasoning about local specifications,

including studies on compositional verification [19, 8], where only sound circular

assume-guarantee rules were proposed for safety properties. We first show that

local dependencies can be exploited to generate smaller, hence computationally

more attractive, assumptions. The bounded methodology here presented is shown

to be sound and complete with respect to liveness properties. Our approach is

amenable to implementation using symbolic representation, and integration with

learning algorithms for automated assumption generation. Additionally, learning-

based methodologies can also benefit from our approach by exploiting assumptions

over local alphabets, instead of the global alphabet.

Some of the ideas here developed were put forward in previous, preliminary work

[20]. However, the material here presented gives more emphasis to the proofs of the

technical parts and shows the applicability of the methodology in greater detail.

The rest of this paper is organised as follows. Section 2 defines the terminologies

of assume-guarantee reasoning. The simple rule R1 and the bounded rule Rπ are

presented in Section 3. Section 4 illustrates a case study of network congestion con-

trol, with the experimental results reported and discussed in Section 5. Conclusions

are summarised in Section 6.

October 2012, PREPRINT

4 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

2. Assume-guarantee reasoning

In this section we first introduce the notions of module, specification and assumption

in concurrent systems. Then, we present two general assume-guarantee rules sym

and asym that have been applied to reason about individual modules over global

specifications.

2.1. Modules

We adopt the notion of reactive module [21] to represent concurrent systems that

consist of multiple interacting agents. A module is associated with two classes of

variables: state variables and input variables. The former is controlled by the module

and thus defines the module’s state; the latter is controlled by other modules that

the module reacts directly with.

We assume a domain D for all types of variables. Given a set X of variables, let

DX be the set of all valuation functions on X . For valuation ρ :X→D and Y ⊆X ,

ρ↾Y :Y →D is the restriction of ρ to Y , i.e., (ρ↾Y)(x) = ρ(x) for any x∈Y .

Two valuations ρ1 :X1→D and ρ2 :X2→D are compatible, denoted ρ1∼ ρ2, if

ρ1(x) = ρ2(x) for any x ∈X1 ∩ X2. Given two compatible valuations ρ1 :X1→D

and ρ2 :X2→D, ρ1∪ρ2 :X1∪X2→D is the extension of ρ1 and ρ2 to X1∪X2,

i.e., (ρ1∪ρ2)(x) = ρ1(x) for x ∈ X1\X2, (ρ1∪ρ2)(x) = ρ2(x) for x ∈ X2\X1 and

(ρ1∪ρ2)(x) = ρ1(x) = ρ2(x) for x∈X1∩X2.

Definition 1 (Module) A module is a tuple M = (X, I,Q, T, λ, q0), where

• X is a finite set of state variables controlled by M ;

• I is a finite set of input variables that module M directly depends on;

• X∩I = ∅;

• Q is a finite set of states;

• λ :Q→DX labels each state q∈Q with a valuation λ(q) :X→D;

• T ⊆Q×DI×Q is a transition relation; each transition (q, α, q′)∈T , denoted

q
α
−→T q′, models the evolution of M from state q to state q′ under input

α :I→D;

• q0∈Q is the initial state.

Specifically, module M is said to be closed if I = ∅.

An infinite trace of module M is an infinite sequence σ = q0α0q1α1 . . . such

that qi
αi−→T qi+1 for any i≥0. Let inf (σ) be the set of all the states that are visited

infinitely often in σ.

DX is referred to as the local alphabet of module M , where each ρ∈DX is a

valuation on X . An infinite word w = ρ0ρ1 . . . on the local alphabet DX is derived

by M if there exists an infinite trace q0α0q1α1 . . . of module M such that ρi = λ(qi)

for any i≥0.

DI is referred to as the input alphabet of module M , where each α ∈DI is a

valuation on I. An infinite word θ = α0α1 . . . on the input alphabet DI is admitted

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 5

by M if there exists an infinite trace q0α0q1α1 . . . such that qi ∈Q for any i≥ 0.

Let I(M) be the set of the input words admitted by M .

For simplicity of presentation, we consider only deadlock-free modules. A state

is a deadlock state if there do not exist any α ∈ DI and q′ ∈ Q such that q
α
−→T q′.

A module is deadlock-free if it contains no deadlock state. This hypothesis does not

restrict the applicability of our approach because a deadlock state could be regarded

here as a steady state that remains constant under any input.

We now define the composition operator for compatible modules. Two modules

M1 = (X1, I1, Q1, T1, λ1, q01) and M2 = (X2, I2, Q2, T2, λ2, q02) are compatible if

λ1(q01)∼λ2(q02). We choose a notion of composition that explicitly supports asyn-

chrony. This is because in distributed environments factors external to the mod-

ules, such as network latency or communication scheduling, make asynchronous

modelling essential.

Definition 2 (Composition) The composition of two compatible modules M1 =

(X1, I1, Q1, T1, λ1, q01) and M2 = (X2, I2, Q2, T2, λ2, q02) is a composite module

M1|M2 = (X1∪X2, (I1∪I2)\(X1∪X2), Q, T, λ, (q01 , q02)), where

• Q ⊆ Q1×Q2 is the maximal set such that λ1(q1) ∼ λ2(q2) for each state

(q1, q2)∈Q;

• λ : Q→DX1∪X2 labels each state (q1, q2) ∈ Q with the valuation λ1(q1) ∪

λ2(q2);

• T is the minimal transition relation derived by the following composition

rules:

asynL

q1
α1−→T1

q′1 q2
α2−→T2

q′2

(q1, q2)
α
−→T (q′1, q2)

asynR

q1
α1−→T1

q′1 q2
α2−→T2

q′2

(q1, q2)
α
−→T (q1, q′2)

syn
q1

α1−→T1
q′1 q2

α2−→T2
q′2

(q1, q2)
α
−→T (q′1, q

′
2)

where α = (α1∪α2) ↾(I1∪I2)\(X1∪X2), λ(q1)∼ λ(q2), λ(q
′
1)∼ λ(q2), λ(q

′
2)∼

λ(q1), λ(q
′
1)∼λ(q′2), λ(q2)∼α1, λ(q1)∼α2, and α1∼α2.

• (q01 , q02)∈Q is the initial state (note that λ1(q01)∼λ2(q02) because M1 and

M2 are compatible).

Note that rule asynL (respectively, asynR) models transitions in which onlyM1

(respectively,M2) evolves; while by rule syn bothM1 andM2 evolve simultaneously.

The composition rules above are applicable for the concurrent systems considered

throughout this paper. In the presence of a number of modules these composition

rules permit one, some, or all the modules to evolve simultaneously. The notions

of module and composition can be implemented by existing modular languages,

such as the input languages of MOCHA [22] and NuSMV [23]. However, in these

modelling languages asynchrony is implemented as a non-deterministic choice of the

modules themselves.

October 2012, PREPRINT

6 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

For an infinite word w = ρ0ρ1 . . . derived by M1|M2, we define the notion

of stuttering projection to hide asynchronous transitions that do not affect the

variables in X1 or X2. A stuttering projection of w on a subset Y of X1 ∪X2,

denoted w|Y , is an infinite word ρ′0ρ
′
1 . . . , where there exists 0 = j0<j1< · · · such

that ρ′i = ρji ↾Y = ρji+1 ↾Y = · · · = ρji+1−1 ↾Y for any i ≥ 0. As a special case of

stuttering projection, the restriction of w on Y , denoted w ↾Y , is the infinite word

ρ′0ρ
′
1 . . . , where ρ′i = ρi ↾Y for any i≥0.

Thus, the composition of n modules Mi = (Xi, Ii, QMi
, TMi

, λMi
, q0Mi

), where

Xi∩Xj = ∅ for any 1≤ i 6=j≤n, and
n
∪
i=1

Ii⊆
n
∪
i=1

Xi, constitutes a closed concurrent

system M1| · · · |Mn with a finite set of state variables X =
n
∪
i=1

Xi. D
X is then

referred to as the global alphabet of the system. Since Xi ∩Xj = ∅ for any 1≤ i 6=

j≤n, each x∈X is exclusively controlled by module Mi such that x∈Xi.

2.2. Specifications

We now recall the syntax and the semantics of the Linear-time Temporal Logic

(LTL) with Presburger constraints [24], that we will use as the specification lan-

guage. A constraint system is a pair C = 〈D, (Ri)i〉 where (Ri)i is a countable

family of relations on domain D. An atomic C-constraint is a term of the form

R(x1, . . . , xk), where x1, . . . , xk ∈X , R is interpreted as a relation on domain D and

k is the arity of R. A valuation ρ : X → D satisfies the C-constraint R(x1, . . . , xk)

if (ρ(x1), . . . , ρ(xk)) ∈ R, where R is the relation in domain D associated with the

symbol R. For instance, 〈D,=〉 defines the equality constraints on domain D.

The logic CLTL(C) is then defined as an extension of LTL where propositional

variables are refined by atomic C-constraints over terms. A term, denoted X
lx,

represents the variable x prefixed by a number l ≥ 0 of operators X for “next” (see

below). This can be interpreted as specifying the value of x at the l-th next state.

Specifically X
1x is abbreviated as x′, representing the value of x at the following

state. The syntax of CLTL(C) can be defined in BNF form as follows:

ϕ := R(Xj1x1, . . . , X
jkxk) | ¬ϕ | ϕ1∧ϕ2 | Xϕ | ϕ1Uϕ2

The symbols X and U are the classical “next” and “until” LTL operators, respec-

tively [25, 26, 27]. The Boolean values tt and ff are defined as standard. We use the

usual notations Fϕ and Gϕ as the abbreviations for tt U ϕ and ¬F¬ϕ. Observe that

the symbol X is here overloaded as in [24]. The semantics of CLTL(C) is defined

with respect to a closed module M = (X, ∅, Q, T, λ, q0), i.e., a module with no input

variables. For a formula ϕ and an infinite word w = ρ0ρ1 · · · , let (w, i) � ϕ represent

that the formula ϕ holds on the suffix of the word w from the (i + 1)-th position.

The satisfaction relation � is defined inductively as follows:

• (w, i) � R(Xj1x1, . . . , X
jkxk) if (ρi+j1 (x1), . . . , ρi+jk(xk)) ∈ R;

• (w, i) � ¬ϕ if (w, i) 2 ϕ;

• (w, i) � ϕ1∧ϕ2 if (w, i) � ϕ1 and (w, i) � ϕ2;

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 7

• (w, i) � Xϕ if (w, i + 1) � ϕ;

• (w, i) � ϕ1Uϕ2 if there exists j ≥ i such that (w, j) � ϕ2 and for every

i ≤ k ≤ j, we have that (w, k) � ϕ1.

A module M = (X, I,Q, T, λ, q0) satisfies a formula ϕ, denoted M �ϕ, if (w, 0)�

ϕ for any word w derived by M . In the following we only consider specifications

expressed in the syntax above.

2.3. Assumptions

Assumptions characterise the abstract environments that individual modules could

possibly interact with to make the given specifications hold. For verification pur-

poses assumptions can be defined as modules extended by accepting states. We here

focus on liveness properties; therefore, we adopt the formalism of Büchi automata for

the definition of assumptions. However, it can be shown that the assume-guarantee

rules presented in the following are also valid in the context of safety properties, for

which assumptions are defined as finite automata [5]. We do not pursue this here.

Definition 3 (Extended Module) An extended module is a tuple A =

(X, I,Q, T, λ, q0, F), where X, I,Q, T, λ, q0 are as in Definition 1, and F ⊆ Q is

a finite set of accepting states.

The terminology defined above for modules also applies to extended modules.

An infinite word ρ0ρ1 . . . is accepted by an extended module A if there exists an

infinite trace σ = q0α0q1α1 . . . of the module A, referred to as an accepting trace,

such that inf (σ) ∩ F 6= ∅ and ρi = λ(qi) for any i≥0. The language L(A) accepted

by the module A consists of all the infinite words accepted by the module A. Let coA

be the complement of the module A accepting the complement language ΩX\L(A),

where ΩX is the set of infinite words on alphabet DX . We here rely on existing

techniques [28] to compute complements of Büchi automata.

For a module M = (X1, I1, Q1, T1, λ1, q01) and an extended module A =

(X2, I2, Q2, T2, λ2, q02 , FA), the composition of M with A is an extended module

M |A=(X, I,Q, T, λ, q0, F), where F = {(q1, q2)∈Q | q2∈FA} and the rest of the

components are as in Definition 2. Moreover, let M |A � ϕ denote that the extended

module M |A satisfies a formula ϕ, where only the accepting traces of M |A are

checked with respect to ϕ. It follows that assumptions can be formally represented

as the extended modules that characterise the acceptable executions in question.

Similarly, for extended modules coAi = (Xi, Ii, Qi, Ti, λi, q0i , Fi) (i ∈ {1, 2}),

the composition of coA1 with coA2 is an extended module coA1|coA2 =

(X, I,Q, T, λ, q0, F), where F = {(q1, q2) ∈ Q | q1 ∈ F1, q2 ∈ F2} and the rest of

the components are as in Definition 2. Since our work is motivated by local as-

sumptions, the extended modules coA1 and coA2 might not be associated with the

same set of variables, i.e., in general X1 6= X2. Given this we cannot compute the

intersection of L(coA1) and L(coA2) as in the literature of modular languages.

October 2012, PREPRINT

8 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

The following definition formalises the notion of guarantee in the context above

by linking assumptions to the system’s behaviour.

Definition 4 (Guarantee) For k ≥ 1 modules Mi = (Xi, Ii, Qi, Ti, λi, q0i), and

an assumption A = (XA, IA, QA, TA, λA, q0A , FA) such that

• Xi∩Xj = ∅ for any 1≤ i 6=j≤k;

• Mi1 , . . . ,Mik′
(1 ≤ i1, . . . , ik′ ≤ k) are all the k′ ≤ k modules such that

XA⊆
k′

∪
j=1

XMij
and XA∩XMij

6= ∅ for 1≤j ≤k′;

then M1| · · · |Mk guarantees the assumption A, denoted M1| · · · |Mk � A, if for any

infinite word w derived by M1| · · · |Mk and any stuttering projection w′ of w on
k′

∪
j=1

XMij
that can be derived by Mi1 | · · · |Mik′

, w′ ↾XA
is accepted by the assumption

A.

Specifically, if k′ = k, i.e., XA ∩Xi 6= ∅ for any 1≤ i≤k, then M1| · · · |Mk � A

simply means that for any infinite word w derived by M1| · · · |Mk, we have that

w ↾XA
is accepted by the assumption A.

2.4. General assume-guarantee reasoning

For a system M1| · · · |Mn and a global specification ϕ (i.e., a specification defined on

the whole state variables
n
∪
i=1

Xi), assume-guarantee approaches [4, 5, 6, 7] establish

conditions on the individual modules that lead to the satisfaction of ϕ on the overall

system. For example, the symmetric rule sym shown in Fig. 1 uses an assumption Ai

for each module Mi such that Mi|Ai satisfies ϕ, and a further check as to whether

these assumptions may cause mutual conflict between each other. By contrast, the

asymmetric rule asym shown in Fig. 1 uses only assumption A1 for module M1

such that M1|A1 satisfies ϕ, and a further check as to whether this assumption A1

is satisfied by all other modules.

sym

∀i :1≤ i≤n, Mi|Ai � ϕ

L(coA1| · · · |coAn) = ∅

M1| · · · |Mn � ϕ
asym

M1|A1 � ϕ

M2| · · · |Mn � A1

M1| · · · |Mn � ϕ

Fig. 1. General Assume-Guarantee Rules

A rule is sound if the conclusions (represented under its rule line) drawn from the

hypotheses (represented above its rule line) are valid. Conversely, a rule is complete,

if whenever the conclusions hold, the hypotheses also hold [5, 15]. The rules sym

and asym are sound and complete; so the system satisfies the global specification

if and only if there exist certain specific assumptions constrained by the global

specification. In the literature these assumptions in question are identified from the

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 9

perspective of the global system, i.e., these assumptions are generated with respect

to global specifications.

3. Local assume-guarantee reasoning

3.1. The rules R0 and R1

We here observe, however, that it is often the case that each module of a concurrent

system controls its state variables under inputs from only a small proportion of the

other modules. Therefore, in general assume-guarantee methodologies:

• Each assumption Ai for a module Mi may contain valuations of state vari-

ables that module Mi does not actually depend on. This may make the size

of assumption Ai larger than necessary.

• If the system is extended with the addition of other modules, each assump-

tion Ai may have to be regenerated to incorporate the state variables of the

additional modules. Hence, assumptions already generated for the existing

modules cannot be reused for verifying the extended system.

In the following we aim to exploit these considerations by identifying assumptions

from the perspective of individual modules.

We focus on global specifications ϕ that can be formulated as the conjunction

of local specifications ϕi (i.e., specifications defined on Xi∪Ii) such that ϕ⇔
n
∧
i=1

ϕi.

Under this condition the rule sym above can be modified as:

R0

∀i :1≤ i≤n, Mi|Ai � ϕi

L(coA1| · · · |coAn) = ∅

M1| · · · |Mn �
n
∧
i=1

ϕi

Note that rule R0 is not simply an instance of rule sym. We investigate below the

soundness and completeness of rule R0.

Crucially, while in rule sym assumptions Ai are all checked with respect to the

global specification ϕ, in rule R0 each assumption Ai is tested with respect to the

corresponding local specification ϕi. In this way the size of each assumption Ai may

be reduced because only variables in Xi∪Ii ⊆ X are involved in assumption Ai.

However, as a side effect of rule R0, such an assumption Ai may admit more

interactions with module Mi than can be admitted by the assumptions checked with

respect to the global specification ϕ. This is because the variables in X\(Xi∪Ii)

are not constrained by the local specification ϕi. For example, consider a system

consisting of the four modules Mi (1≤ i≤n) shown in Fig. 2.

For each module Mi, the CLTL(〈D,=〉) formula

FG (∧
x∈Xi∪Ii

(x′ = x)) (1)

specifies that the values of the variables in Xi∪Ii will always eventually remain

unchanged for ever, i.e., they will stabilise. Observe that the formula x′ = x encodes

October 2012, PREPRINT

10 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

Mi Xi Ii Transition Function

M1 {x1} {x2, x3} x′
1 = x2 − x3

M2 {x2} {x4} x′
2 = x2 − x4

M3 {x3} {x4} x′
3 = x3 + x4

M4 {x4} {x2, x3} x′
4 = 1

Fig. 2. A counterexample for the soundness of rule R0

an equality constraint in 〈D,=〉 applied on terms x(i.e., X0x) and x′(i.e., X1x) [24].

Consider an initial state (x1, x2, x3, x4) = (u− v, u, v, 1) for any u>v≥0. It can

be seen that

M1|M2|M3|M4 2
4
∧
i=1

FG (∧
x∈Xi∪Ii

(x′ = x))

because M2 and M3 evolve by diverging from each other. However, the modules

M1,M2 and M3 themselves could stabilise under certain inputs. So, there exist

assumptions Ai such that Mi|Ai satisfies the local specification (1) for i ∈ {1, 2, 3}.

Obviously, module M4 is already in a stable state no matter what inputs may

be. So, an assumption A4 that accepts any word on DI4 satisfies the premise

M4|A4 � FG (∧
x∈X4∪I4

(x′ = x)).

Then, we have that L(coA4) = ∅. Hence, for any assumptions Ai (i ∈

{1, 2, 3}) such that Mi|Ai satisfies the local specification (1), we have that

L(coA1|coA2|coA3|coA4) = ∅.

We conclude that the tentative rule R0 above does not preserve soundness,

although its completeness is not affected by the weaker assumptions, as we show

below.

Theorem 5 (Completeness of R0) If M1| · · · |Mn �
n
∧
i=1

ϕi, then for each mod-

ule Mi there exists an assumption Ai such that Mi|Ai � ϕi and

L(coA1| . . . |coAn) = ∅.

Proof. For each module Mi assume that WAi is the weakest assumption with

respect to ϕi [5, 16], i.e.,

• L(WAi)⊆I(Mi) and Mi|WAi � ϕi;

• L(Ai) ⊆ L(WAi) for any assumption Ai such that L(Ai) ⊆ I(Mi) and

Mi|Ai � ϕi.

Since M1| · · · |Mn �
n
∧
i=1

ϕi and
n
∧
i=1

ϕi implies ϕj for any 1≤j≤n, such weakest

assumption does exist for each module Mi.

We show the result by contradiction. Suppose there exists an infinite word w

accepted by coWA1 | · · · |coWAn . Hence, there exists a stuttering projection of w

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 11

on each Xj∪Ij (1 ≤ j ≤ n), denoted wj , that is accepted by coWAj . So, for any

1≤j≤n, there exists an infinite word w′
j accepted by Mj |coWAj such that w′

j does

not satisfy ϕj . Thus, there exists an infinite word w′ derived by M1| · · · |Mn such

that w′
j is a stuttering projection of w′ on Xj∪Ij for any 1≤ j≤n. Therefore, w′

does not satisfy
n
∧
i=1

ϕi. This conflicts with the premise M1| · · · |Mn �
n
∧
i=1

ϕi.

In the following we intend to regain soundness of local assume-guarantee rules by

exploiting the neighbourhood dependency between individual modules. For modules

M1 = (X1, I1, Q1, T1, λ1, q01) andM2 = (X2, I2, Q2, T2, λ2, q02), M1 directly depends

on M2 if X2 ∩ I1 6= ∅, i.e., module M1 depends on the inputs from, reacts directly

with, or, in other words, is one hop away from module M2. In this case, module M2

is referred to as a direct neighbour of module M1.

Let D = {(Mi,Mj) | 1≤ i, j≤n, Ii∩Xj 6= ∅} be the direct dependency relation

between the modules of the system M1| · · · |Mn. For module Mi let Ni be the set

of all the modules Mj such that (Mi,Mj) ∈ D, and Ci be the composition of all

the modules in Ni. Note that D is irreflexive because Ii∩Xi = ∅ for each module

Mi = (Xi, Ii, Qi, Ti, λi, q0i). Then, we introduce rule R1, which is inspired by rule

asym.

R1

∀i :1≤ i≤n,
Mi|Ai � ϕi

Ci � Ai

M1| · · · |Mn �
n
∧
i=1

ϕi

Theorem 6 shows the soundness of rule R1 with respect to local specifications.

Theorem 6 (Soundness of R1) Assume that for any module Mi (1 ≤ i ≤ n)

there exists an assumption Ai such that Mi|Ai � ϕi and Ci � Ai. Then we have that

M1| · · · |Mn �
n
∧
i=1

ϕi.

Proof. By contradiction. Consider an infinite word w = ρ0ρ1 . . . on the global

alphabet DX (i.e., each ρi is a valuation on X) that makes the conclusion fail on

some ϕj (1≤ j ≤ n). Since, by the definition of the system M1| · · · |Mn, the state

variables in Xj are exclusively controlled by Mj , any stuttering projection w|Xj∪Ij

is not accepted by Mj|Aj and so any stuttering projection w|Ij is not accepted by

Aj .

However, for each Mjl ∈ Nj , the variables in Xjl are exclusively controlled by

Mjl . By the composition rules in Definition 2, there exists a stuttering projection of

w on ∪
Mjl

∈Nj

Xjl , denoted w′, that is derived by Cj . Recall that Cj is the composition

of all the modules in Nj , that is, Cj is composed of all the modules that module Mi

directly depends on. So we have that Ij⊆ ∪
Mjl

∈Cj

Xjl . Then, by the premise Cj � Aj ,

we have that w′ ↾Ij is accepted by Aj . This is a contradiction because w′ ↾Ij is also

a stuttering projection of w on Ij .

October 2012, PREPRINT

12 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

While rule R1 is sound, it is not complete. This is because Ci may constitute

an over-approximation of module Mi’s environment without being constrained by

the other modules in the system. For example, consider a system consisting of the

following four modules Mi (1≤ i≤4) shown in Fig. 3.

Mi Xi Ii Transition Function

M1 {x1} {x2, x3} x′
1 = x2 − x3

M2 {x2} {x4} x′
2 = x2 − x4

M3 {x3} {x4} x′
3 = x3 + x4

M4 {x4} {x2, x3} x′
4 =

1 x2>x3 and x4>0

−1 x2<x3 and x4<0

0 otherwise

Fig. 3. A counterexample for the completeness of rule R1

Consider an initial state (x1, x2, x3, x4) = (u−v, u, v, 1) for any u>v≥0. It can

be seen that

M1|M2|M3|M4 �
4
∧
i=1

FG (∧
x∈Xi∪Ii

(x′ = x))

because M2 and M3 evolve by converging in step of size x4, until x2 and x3 meet or

just cross over each other. Then, the system M1|M2|M3|M4 reaches a stable state

where x4 = 0.

However, by M2|M3 itself, x2 and x3 may diverge from each other. Hence, such

divergent sequence of inputs (x2, x3) cannot stabilise x1 (in M1), and so cannot be

accepted by any assumption A1 that satisfies the premise

M1|A1 � FG ∧
x∈X1∪I1

(x′ = x).

3.2. Bounded assume-guarantee reasoning

In this subsection we modify rule R1 to achieve completeness by generalising the

neighbourhood dependency between modules. This results in a “bounded” rule Rπ,

which defines a bounded assume-guarantee reasoning approach.

For the modules of the system M1| · · · |Mn let Dk denote the irreflexive k-

dependency relation defined recursively as follows:

Dk =

{

D k = 1

Dk−1∪{(Mi,Mj) | 1≤ i 6=j ≤n and (Mi,Mj) ∈ Dk−1◦D} k>1

where ◦ is the composition operator of binary relations. So, (Mi,Mj) ∈ Dk encodes

the fact that module Mj is within the range of k hops away from module Mi. Recall

that D itself is irreflexive by definition.

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 13

For module Mi let N k
i be the set of all the modules Mj such that (Mi,Mj)∈Dk,

and Cki be the composition of all the modules in N k
i . Then, rule R1 can be modified

as follows:

Rk

∀i :1≤ i≤n,
Mi|Ai � ϕi

Cki � Ai

M1| · · · |Mn �
n
∧
i=1

ϕi

Observe that while rule R1 considers only the direct neighbours of Mi, rule Rk

checks all the modules within the range of k hops away from module Mi. It can be

proved that rule Rk is sound for any k≥1.

Theorem 7 (Soundness of Rk) Assume that for any module Mi (1 ≤ i ≤ n),

there exists an assumption Ai such that Mi|Ai � ϕi and Cki � Ai, k≥ 1. Then we

have that M1| · · · |Mn �
n
∧
i=1

ϕi.

Proof. By contradiction. The proof is similar to that of Theorem 6.

Observe that if the modules within k hops away from module Mi can guarantee

an assumption Ai, then such guarantee is preserved by the modules within k + 1

hops. This is because the additional modules do not influence the behaviours of

those modules within k hops. Based on this observation, Theorem 8 relates rule Rk

with rule Rk+1.

Theorem 8. Let Ai be an assumption for module Mi. Then, if Cki � Ai, then we

have that Ck+1
i � Ai.

Proof. By the definition of Dk, we have that N k
i ⊆ N

k+1
i . So, Ii ⊆ ∪

Mj∈Nk
i

Xj ⊆

∪
Mj∈Nk+1

i

Xj . For any infinite word w derived by Ck+1
i , there exists a stuttering

projection of w on ∪
Mj∈Nk

i

Xj , denoted w′, that can be derived by Cki . Since C
k
i � Ai,

w′ ↾Ii would be accepted by Ai for any such w′.

Since the systemM1| · · · |Mn consists of a finite number n of state variables, there

exists an irreflexive transitive dependency closure Dπ (π≥1) such that Dπ = Dπ+1.

Theorem 9 shows that rule Rπ is complete with respect to local specifications.

Observe that rule Rπ is the instantiation of rule Rk with k = π.

Theorem 9 (Completeness of Rπ) Suppose Dπ is the irreflexive transitive de-

pendency closure of the system M1| · · · |Mn. If M1| · · · |Mn �
n
∧
i=1

ϕi, then for each

module Mi there exists an assumption Ai such that Mi|Ai � ϕi and Cπi � Ai.

Proof. By construction. Suppose Mj = (Xj , Ij , Qj , Tj, λj , q0j) and Cπj =

(Xπ
j , I

π
j , Q

π
j , T

π
j , λ

π
j , q

π
0j) for any 1≤j≤n. For each module Mj , we can build an as-

October 2012, PREPRINT

14 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

sumption Aj = (Ij , I
π
j , Q

π
j , T

π
j , λAj

, qπ0j , Q
π
j), where all the states in Qπ

j is accepting

states and λAj
is the restriction of λπ

j on Ij , i.e., λAj
= λπ

j ↾Ij .

By the definition of Dπ, we have that Ij ⊆ Xπ
j and hence Cπj � Aj for any

1≤ j≤n. Note also that
n
∧
i=1

ϕi implies ϕj for any 1≤ j≤n. Since the variables in

any Xj are exclusively controlled by module Mj irrespective of the modules not in

Mj |Cπj , we have that Iπj ⊆Xj and hence Mj |Cπj � ϕj for any 1≤j≤n.

As a corollary of Theorem 7, 8 and 9, rule Rπ can be reformulated as rule Rπ

(shown below), which can similarly be shown to be sound and complete with respect

to local specifications.

Rπ

∀i :1≤ i≤n,
Mi|Ai � ϕi

∃di :1≤di≤π, Cdi

i � Ai

M1| · · · |Mn �
n
∧
i=1

ϕi

With ruleRπ the scalability issues discussed in Section 3 can be avoided. Indeed,

we note that:

• All assumptions Ai in rule Rπ are checked with respect to local specifica-

tions ϕi that contain only the variables in Xi∪Ii. Thus, all assumptions Ai

concern only the variables (in Xi) that modules Mi control and the ones

(in Ii) that modules Mi directly depend on, rather than the whole system

variables (in X).

• Whenever the system is extended with additional modules, the assumptions

Ai may still be reused for the verification of the extended system, without

taking the additional variables into account.

Compared to rule asym, ruleRπ requires only local assumptions that are defined

with respect to local specifications. As shown later in a case study, the overall

verification task may benefit from this reduction. Moreover, these local assumptions

are not valid for the general assume-guarantee rules such as rule asym. For instance,

in the aforementioned counterexamples, any local assumption A1 satisfying the

premise

M1|A1 � FG(∧
x∈X1∪I1

x′ = x)

is too weak to satisfy the premise

M1|A1 �
4
∧
i=1

FG(∧
x∈Xi∪Ii

x′ = x).

because the variables in
4
∪
i=2

Xi ∪ Ii are not constrained properly in the assumption

A1.

To apply rule Rπ we are required to generate the assumptions Ai in the an-

tecedent of the rule. Given considerations of generality and reusability, we use the

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 15

weakest assumptions WAi that accept the maximal set of input sequences to indi-

vidual modules Mi without violating their local specifications ϕi. Thus, rule R
π can

be applied for the compositional verification of concurrent systems in an incremental

manner.

As shown in Algorithm 10, the verification task for checking whether the sys-

tem M1| · · · |Mn satisfies the global specification
n
∧
i=1

ϕn can be decomposed into n

BAG routines operating on a pair of module Mi and local specification ϕi. The

BAG routines can run independently, each exploring just one module’s dependency

neighbourhood, and therefore amenable to parallelisation. If BAG(Mi, ϕi,D) re-

turns false for some i, then the module Mi can never meet the local specification

ϕi. Whenever this happens, the algorithm returns false directly as this entails that

the system cannot meet the global specification ϕ (Line 4). Otherwise, the algorithm

exits with a positive answer (Line 7).

Algorithm 10. Bounded Assume-Guarantee Reasoning

Inputs: System M1| · · · |Mn and global specification ϕ1 ∧ · · · ∧ ϕn

1: D = {(Mi,Mj) | 1≤ i 6=j≤ n, Ii ∩Xj 6= ∅};

2: for each pair (Mi, ϕi) do

3: if not BAG(Mi, ϕi,D) then

4: return false;

5: end if

6: end for

7: return true;

8: function BAG(Mi, ϕi,D)

9: Generate WAi with respect to ϕi;

10: di ← 1;

11: Ddi ← D;

12: N di

i ← {Mj | (Mi,Mj) ∈ Ddi};

13: while Cdi

i 2 WAi do

14: Ddi+1 ← Ddi∪{(Mi,Mj) | 1≤ i 6=j ≤n and (Mi,Mj) ∈ Ddi ◦D};

15: N
di+1

i ← {Mj | (Mi,Mj) ∈ Ddi+1};

16: if N di

i 6= N
di+1

i then

17: di ← di + 1;

18: else

19: return false;

20: end if

21: end while

22: return true;

23: end function

The function BAG implements bounded assume-guarantee reasoning with local

October 2012, PREPRINT

16 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

specifications. In each routine BAG(Mi, ϕi,D) called by Algorithm 10, the weakest

assumption WAi is used for checking an increasing number of modules in the while-

loop (Line 13). Since the number of modules is finite, this routine will terminate:

either the assumption WAi is guaranteed (Line 22), or all the modules that Mi

reacts with have been checked (Line 19). Recall that Cdi

i is the composition of the

modules in N di

i .

We will apply the methodology above to a network control problem in Section 4.

4. Verifying stability of network protocols

One of our motivations for investigating assume-guarantee reasoning is to broaden

the range of applications in the area of network control. We particularly expect to

reason about the overall objectives or behaviour of the control algorithm imple-

mented by a protocol. This section illustrates an application of rule Rπ to verify

the stability of an optimisation based congestion control system. Both the dynamic

system and the stability property exhibit compositional structures. We refer to

previous work [29] for more details about the system and the property we consider.

4.1. Multi-path congestion control

This subsection briefly presents an optimisation formulation of a congestion control

problem, and follows the lines presented in [29]. We imagine a network in which

a finite number of sources communicate with a finite number of destinations. Be-

tween each pair of source and destination a number of routes have been previously

provisioned, and a source can split its traffic over these routes. Each route uses a

number of links or, more generally, resources, each of which has a finite capacity

constraint. We formalise this as follows.

Assume a network with a finite set S of sources and a finite set J of resources.

Let R be a set of routes, each identifying a non-empty subset of resources. Each

route connects only one source with its pre-defined destination. Let r∈s denote that

source s can transmit along route r and s(r) be the unique source s such that r∈s.

For example, in the network shown in Fig. 4(a), S = {s1, s2, s3}, J = {j1, j2, j3},

R = {r1, · · · , r6}, and each source si (1≤ i≤ 3) transmits data to its destination

di along two routes r2i−1 and r2i. Fig. 4(b) presents the resource topology of the

network, in which each resource is shared by two routes (i.e., j1 ∈ r1, j1 ∈ r6 and

ji∈r2(i−1), ji∈r2i−1 for i = 2, 3).

Let xr be the flow rate on route r and Cj be the capacity of resource j. It is

convenient to introduce vector notations for the flows and capacity constraints. Let

~x = (xr, r∈R) and C = (Cj , j∈J). Define the resource matrix A = (Ajr , j∈J, r∈

R) such that Ajr = 1 if j∈r and Ajr = 0 otherwise.

The multi-path congestion control problem is to find an assignment of flows ~x

which maximises the overall utility of the network such that no resource is congested.

We assume that the utility Us experienced by each source s depends on the total

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 17

(a) Network Topology

/.-,()*+s3
r6

��✆✆
✆✆
✆ r5

��✾
✾✾
✾✾

j1 j3

/.-,()*+s1

r1
CC✝✝✝✝✝
r2

// j2 /.-,()*+s2r3
oo

r4
[[✽✽✽✽✽

(b) Resource Topology

Fig. 4. A Communication Network

flow xs sent over all the routes available to it, i.e., xs =
∑

r∈s

xr, and that the overall

utility of the network can be expressed as a sum of utilities of all the sources. These

assumptions are standard in the networking literature, and allow the multi-path

congestion control problem to be specified as the following optimisation problem:

max
∑

s∈S

Us(xs) subject to A~x≤C, ~x≥0 (2)

The utility functions Us are strictly increasing and concave in their argument. The

inequalities apply component-wise on the vectors ~x and C.

Congestion control protocols typically feature feedback signals that oblige the

sources to reduce their flow as the load on the resources approaches capacity limits.

These signals carry the interpretation of a price associated with congestion, and

can be identified with the dual variables (Lagrange multipliers) in the optimisation

formulation (2).

As a specific example, and for tractability, we devise a discrete version of the

fluid-flow congestion control algorithm proposed in [12]. We allocate a utility func-

tion Us(xs) = αsln(xs) for each source s. This is a common choice in the networking

literature as it leads to a widely accepted notion of fairness in the equilibrium allo-

cation of flows. For the resources we allocate price functions that increase linearly

with load (with coefficient βj for resource j). Substituting these choices into Equa-

tion (1) in [12] and taking discrete time steps gives, for each source s and route r

available to s, a flow rate xr subject to the following equation:

x′
r =

xr + κrxr

1−
xs(r)

αs(r)

∑

j∈r

βjxj

D

(3)

where the κr is a constant that determines how rapidly the path flows adjust to

prices and xj is the aggregate flow rate at resource j (i.e., xj =
∑

j∈r

xr). In this

October 2012, PREPRINT

18 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

discrete version we have used the notation that, if ⊥D and ⊤D are the minimal and

the maximal value of domain D, respectively, then

[x]D =

⊥D x ≤⊥D

⊤D x ≥⊤D

x otherwise

The full motivation and derivation of the continuous version in [12] draws heavily

on the interpretation of optimisation theory in a congestion control setting. Here we

only mention that the derivative
αs(r)

xs(r)
of the utility function is the price source s(r)

is willing to pay to send flow xs(r). If this is equal to the sum
∑

j∈r

βjxj of the costs

of the resources for route r, then the term in parentheses in Equation (3) becomes

zero and the flow on route r is in equilibrium.

Each source si is modelled as an individual module M . The set of state variables

of source s is defined as

Xs = {xr | r ∈ s}.

The set of input variables for source s is

Is = {xr | r 6∈ s and there exists j ∈ J, r′ ∈ s such that j ∈ r and j ∈ r′},

i.e., Is contains the flow variables xr associated with all the routes sharing resources

with source s. Equation (3) defines the transition relation for the source modules.

Each source s adjusts the flow rate xr on route r∈ s based on feedback βjxj from

every resource j∈r in the network (indicating congestion). The algorithm presented

in [12] assumes that these sources act synchronously. Under this assumption, the

authors proved the stability of the algorithm. Herein, we analyse the fully asyn-

chronous variant of the algorithm under the fairness constraint that every source

acts infinitely often. This asynchronous model captures uncertain delay between

distributed sources. In the following we consider all possible initial states of each

module. This will enable us to evaluate the behaviour of the congestion control

algorithm under any possible initial network configuration.

4.2. Stability

System stability is a key property of interest when reasoning about distributed

congestion control systems. A system is said to be stable if it equilibrates at certain

network-wide flow configuration, i.e., x′
r = xr for every route r. Let si range over

all the sources. Then, the CLTL(〈D,=〉) formula

FG ∧
si
(∧
r∈si

x′
r = xr) (4)

represents system stability, i.e., the fact that all the flows will eventually reach a

permanent value.

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 19

Lagrangian decomposition techniques reduce system stability onto individual

modules [30]. A distributed source is stable if certain permanent flow configuration

is reached on all the routes using the resources consumed by the source. The local

stability for source si is represented by the following CLTL(〈D,=〉)formula

FG (∧
xr∈Xsi

∪Isi

x′
r = xr) (5)

Then, to study the stability of the system, we instantiate rule Rπ as rule SS

(for system stability) below:

SS

∀i :1≤ i≤n,
Mi|Ai � FG ∧

xr∈Xsi
∪Isi

x′
r = xr

∃di :1≤di≤π, Cdi

i � Ai

M1| · · · |Mn � ∧
si
FG ∧

xr∈Xsi
∪Isi

x′
r = xr

where source si is represented as module Mi.

Observe that, given the commutativity of the Boolean connective ‘∧’ with the

universal temporal modalities, the conjunction of the local specifications (5) for all

the sources is equivalent to the global specification (4) as we have ∪
si
(Xsi ∪ Isi) =

∪
si
{xr | r ∈ si}. Therefore, the global specification (4) can be examined by reasoning

about each individual sources under rule SS.

Given the above, our approach can take advantage of the inherent compositional

structure of the congestion control system and its stability property. This can result

in more efficient assumptions for local assume-guarantee reasoning. There are cor-

respondences between our approach and [31] where a method to propagate global

specifications into individual modules for compositional reasoning was put forward.

Indeed, [31] supports the choice of auxiliary assertions over process interfaces. By

doing so one can decompose the task of verifying the original specification G(
n
∧
i=1

ϕi)

into subtasks of checking whether
n
∧

j=1,j 6=i
ϕj could constrain ϕi under those asser-

tions along any computation of each module Mi. But the rule proposed in [31] is

tuned specifically for synchronous systems, thus cannot be directly applied to this

case study. Besides, the specification concerned in each subtask as many variables

as contained in the original specification. Hence, the rule proposed in [31] would

still suffer from the scalability issues observed in this paper.

4.3. Stability assumptions

By rule SS, the assumption Ai for module Mi is such that Mi|Ai satisfies the local

specification (5). Thus, assumption Ai concerns only the variables in Xi∪ Ii, and is

meant to supply sequences of inputs to module Mi such that Mi|Ai can eventually

stabilise at a certain configuration on Xi∪Ii.

Conversely, under rules sym and asym, the assumption Ai has to include all the

variables in X . To meet the global specification (4) a local stable state on Xi∪Ii

October 2012, PREPRINT

20 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

would have to be extended to a stable global state on X . Since module Mi controls

only the variables in Xi, all the variables in X\(Xi∪Ii) can converge to any possible

combinations of values in domain D. Hence, for every local stable state on Xi∪Ii,

the assumption Ai has to cover all the corresponding |D||X\(Xi∪Ii)| stable global

states. This redundancy is avoided under rule SS by generating assumption Ai with

respect to the local specification (5).

In the following we construct assumptions analytically.

Definition 11 (Stability Assumption) For a module

Mi = (Xi, Ii, QMi
, TMi

, λMi
, q0Mi

)

the assumption Ai can be constructed as the tuple

Ai = (Ii, Xi, EAi
∪FAi

, TAi
, λAi

, q0Ai
, FAi

),

where EAi
, FAi

, TAi
, λAi

and q0Ai
are, respectively, the minimal sets of non-

accepting states, accepting states, transitions, the labelling function, and the initial

state defined as follows.

(1) EAi
= {pα | α ∈ DIi}, i.e., for each valuation α on Ii, there exists one and

only one state pα∈EAi
; for each pα ∈ EAi

, λAi
(pα) = α;

(2) FAi
= {pαq | q

α
−→Mi

q}, i.e., for each transition q
α
−→Mi

q of module Mi, there

exists one and only one state pαq ∈FAi
; for each pαq ∈ FAi

, λAi
(pαq) = α;

(3) TAi
= TAi0

∪ TAi1
∪ TAi2

, where

(a) TAi0
= {pα

λMi
(q)

−−−−→Ai
pα

′

| pα, pα
′

∈EAi
, q

α
−→Mi

q′};

(b) TAi1
= {pαq

λMi
(q)

−−−−→Ai
pαq | p

α
q ∈FAi

, q
α
−→Mi

q};

(c) TAi2
= {pα

λMi
(q)

−−−−→Ai
pαq | p

α∈EAi
, pαq ∈FAi

, q
α
−→Mi

q};

(4) q0Ai
= pα0 ∈ EAi

is the initial state where α0 is the given initial configuration

on Ii.

Intuitively, EAi
records all possible inputs to module Mi as the non-accepting

states of assumption Ai; TAi0
traces the state changes of module Mi as the tran-

sitions of assumption Ai; FAi
encodes the accepting states of assumption Ai to

characterise all the configurations on Xi∪Ii where Mi|Ai can possibly stabilise.

Each self-loop transition q
α
−→Mi

q contributes to an accepting state pαq ∈ FAi
with

two additional transitions leading to it(in TAi1
and TAi2

, respectively), as shown

in Fig. 5. Module Mi at state q will remain at this state under constant input α,

which is exactly what the local specification (5) expects.

Thus, by means of the above, we can construct an assumption Ai for module Mi

based on the module itself regardless of the underlying topology. Theorem 12 shows

that the assumption Ai is appropriate for rule SS.

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 21

pα pαq

λMi
(q)

λMi
(q)

λMi
(q)

Fig. 5. Büchi Accepting State in Assumptions

Theorem 12. Given a module Mi, the assumption Ai defined in Definition 11 is

the weakest assumption with respect to the local specification (5).

Proof. By definition, it can be seen that any accepting trace of Mi|Ai will fall into

an infinite loop at some state (q, pαq), where q ∈QMi
admits a self-loop transition

under input α. Correspondingly, the infinite word accepted through such an accept-

ing trace will terminate with an infinite loop of the valuation on λMi
(q) ∪ λAi

(pαq).

Therefore, Mi|Ai satisfies the local specification (5).

We then prove by contradiction that assumption Ai is the weakest assumption

with respect to the local specification (5). Suppose there exists an assumption A′
i

such that L(A′
i)⊆ I(Mi) and Mi|A′

i satisfies the local specification (5), but there

exists an infinite word θ = α0α1 . . .∈L(A′
i) that is not accepted by Ai. Then, by

this hypothesis and the condition 2) in Definition 11, θ cannot be derived by Ai.

Assume α0 . . . αk (k≥0) is the longest prefix that can be derived from Ai. This

means that, for any valuation ρ on Xi, there does not exist a transition pαk
ρ
−→Ai

pαk+1 in Ai. Hence, by the condition 3a) in Definition 11, no transition q
αk−−→Mi

q′

exists for any states q, q′ ∈QMi
. This conflicts with the hypothesis, which implies

θ∈I(Mi).

By removing the condition 4) for Ai in Definition 11, we can generate a super

assumption with the universal set of all possible initial states, each labelled with a

valuation on Ii. The language accepted by the super assumption is then the disjoint

union of the languages accepted by the assumptions under each possible initial

valuation on Ii.

Remark 13. It can easily be seen that the time complexity of this construction

method is linear to the size of module Mi. The worst run-time is O(2|TMi
|). The

size of the resulting assumption Ai is also linear to the size of module Mi. In the

worst case, assumption Ai contains |D||Ii|+|TMi
| number of states and |TMi

||D||Ii|+

2|TMi
| number of transitions.

5. Evaluation

This section illustrates how reduced assumptions can help improve the efficiency

and scalability of assume-guarantee reasoning. Specifically, we show how one set of

verification checks under rule SS can prove the stability of a network of bounded

degree irrespective of the number of sources and their initial flow configurations.

For the purposes of experiments, we consider the simple topology shown in

Fig. 6, where each source is provisioned with two routes and each resource is shared

October 2012, PREPRINT

22 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

by two sources. Thus, each source module has two state variables and two input

variables. Let Mu,v be a source module with an initial configuration (u, v)∈D2. The

transitions of Mu,v are defined by Equation (3) with αs = 36βj, κr = 0.2 for each

source s, resource j, and route r. Then, no matter how many sources a network

may consist of, each source is of the general form Mu,v.

Let Au,v be the super assumption generated by Definition 11 for module Mu,v.

We start by checking whether the composition of any two possible direct neighbour

modules can guarantee these assumptions. This amounts to check whether

Mu1,v′

1
|Mu′

1
,v1 � Au0,v0 (6)

for any initial configuration (u0, v0, u1, v1, u
′
1, v

′
1)∈D

6.

_^]\XYZ[Mu′

1
,v1

v1

��⑧⑧
⑧⑧
⑧⑧

u′

1 // · · ·

j · · ·

_^]\XYZ[Mu0,v0

u0

??⑧⑧⑧⑧⑧⑧

v0
// j′ _^]\XYZ[Mu1,v′

1u1

oo

v′

1

OO

Fig. 6. Resource Topology

For the domain D = [1, 6] there are 66(= 46656) instances of Equation (6)

need to be verified. These checks are done through establishing whether any infinite

word derived by Mu1,v
′

1
|Mu′

1
,v1 can be accepted by coAu0,v0 , the complement of

assumption Au0,v0 .

We use the tool GOAL [28] to compute and simplify each complement coAu0,v0 .

Each assumption Au0,v0 and its complement coAu0,v0 are encoded as Büchi au-

tomata in GOAL. Table 1 reports the size of each automaton in terms of the

number of states (in Columns #st.) and the number of transitions (in Columns

#trans.), and the time used in seconds for complementing each assumption Au0,v0

(in Columns time). Note that Mv0,u0
is equivalent to Mu0,v0 under permutation.

For sake of comparison, Table 1 also reports the size of each assumption Aϕ
u0,v0

,

generated with respect to the global specification (4), and the time used in seconds

for complementing it. The symbol ‘-’ means that the tool did not return a result

within 10 hours. All experiments were ran on a Linux 2.6.18 server with two Intel

2.8GHz Quad Core Xeon processors and 16G memory. Observe that GOAL is not

a tool optimised for speed; faster results are certainly achievable.

It can be seen that the size of assumptions for each module Mu0,v0 is greatly

reduced under rule SS. On average each assumption Au0,v0 is reduced by a factor

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 23

Table 1. Experimental Results for Computing Assumptions

u0 v0
Aϕ

u0,v0
Au0,v0 coAu0,v0

#st. #trans. time #st. #trans. time #st. #trans.

1 1 1332 49248 1511.0 37 108 3.3 73 2628

1 2 1332 49248 1475.1 37 108 1.9 73 2628

1 3 1332 49248 1415.8 37 108 1.7 73 2628

1 4 2016 97200 3292.9 56 180 3.5 110 3960

1 5 2268 144288 4247.5 63 228 4.9 123 4428

1 6 2304 190944 5693.8 64 264 5.0 124 4464

2 2 1332 49248 1477.2 37 108 1.6 73 2628

2 3 4752 195840 14207.2 132 400 19.3 114 4104

2 4 5760 291024 21088.4 160 524 31.5 168 6048

2 5 5796 337680 25180.2 161 560 33.1 169 6084

2 6 6084 431424 - 169 644 34.6 183 6588

3 3 8532 389736 - 237 746 77.3 174 6264

3 4 9648 531720 - 268 910 103.5 233 8388

3 5 9684 578376 - 269 946 106.4 234 8424

3 6 9756 671688 - 271 1018 105.9 236 8496

4 4 8568 436392 - 238 782 74.7 175 6300

4 5 9684 578376 - 269 946 108.1 234 8424

4 6 9684 578376 - 269 946 104.1 234 8424

5 5 10836 767016 - 301 1146 145.1 294 10584

5 6 10836 767016 - 301 1146 138.0 294 10584

6 6 10836 767016 - 301 1146 138.1 294 10584

of 36 times in the number of states and a factor of 569 in the number of transitions

compared with the corresponding assumption Aϕ
u0,v0

. This is because the combina-

torial explosion with the redundant variables in X\(Xi ∪ Ii) for each module Mi is

avoided without loss of expressiveness in the assumptions. The advantage of using

reduced assumptions is particularly apparent when computing their complements.

The tool took no more than 2.5 minutes to complement each assumption Au0,v0 ,

but only 10 out of 21 complementation instances coAϕ
u0,v0

could be computed by

the tool. Considering that simplifying a Büchi automaton is very time-consuming,

we conclude that our approach is significantly more efficient than that of applying

the general assume-guarantee rules with simplified version of assumptions Aϕ
u0,v0

.

Equation (6) was verified in our experiments for all the valuations of the initial

configuration parameters u0,v0, u1,v1,u
′
1,v

′
1 in domain D. As a consequence, any

assumption Au0,v0 can be guaranteed by the composition of any two possible mod-

ules. Thus, our experiments show the stability of such system for any number of

sources and any initial flow configuration under the given topology.

Furthermore, the experiments reported can be extended for any topology of

October 2012, PREPRINT

24 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

bounded degree (i.e., each source is sharing resources with a bounded number of

other sources). Suppose each source has at most m routes, the general form of

each module is M~u, where vector ~u ranges over
m
∪

k=1
Dk. Then, reasoning with any

topology of bounded degree η will amount to check whether

M~u1
| · · · |M~ul

� A~u0
(7)

for any 1 ≤ l ≤ η and ~ui ∈
m
∪

k=1
Dk(i = 1, . . . , l). This is particularly appealing to

us as previous results in the literature on verification of congestion control models

(e.g., [32, 29]) apply only to fixed network topologies.

6. Conclusions and Future Work

This paper presents a methodology for assume-guarantee reasoning for global spec-

ifications that consist of conjunctions of local specifications. The methodology de-

scribed is both sound and complete for local specifications, yet it can be applied to

draw conclusions on global specifications. Thus, a verification task on a concurrent

system can be decomposed onto individual modules and their local specifications.

The methodology is based on an incremental approach to exploit the neighbourhood

dependency between modules. Each increment explores the modules’ interactions

one step further into the neighbourhood. Our case study demonstrated that there

are scenarios of interest where only a limited number of neighbours need to be

considered. In general, however, we cannot provide a bound as to how deeply the

neighbourhood dependency needs to be considered. This is in line with our intuition

as there will be corner cases where the whole neighbourhood needs to be considered.

We applied the rule to verify the stability of a distributed congestion control

system with any number of modules, any initial state, and any topology of bounded

degree. We proved system stability by considering only local stability of each in-

dividual source when interacting with its neighbours. In this way the technique

presented could greatly extend the range of network problems that model checking

can be applied to.

In terms of future work, we note that automated learning algorithms have been

proposed to generate assumptions automatically [4, 5, 6, 16, 10, 11, 17, 7, 18]. We in-

tend to extend these to adapt Algorithm 10 to support generating local assumptions

semi-automatically for each individual module. For instance, candidate assumptions

Ai could in principle be generated through learning with respect to ϕi at Line 8.

The incremental guarantee checking can still be applied, but the exit at Line 14

needs to be replaced by a case analysis on a counterexample w to Cdi

i � Ai:

• If w presents a context in which ϕi can hold but Ai is not weak enough to

incorporate it, then Ai is to be expanded with w for another round of checking;

• If w suggests a context in which ϕi could possibly be violated, then model Mi

fails to meet the local specification ϕi indeed.

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 25

The difficulty to be faced in this direction is to overcome the present limitations in

the automatic generation of assumptions by learning algorithms.

Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments on

an earlier version of this paper. This research was funded by BT Innovate through

a grant to University College London which supported the corresponding author

between 2007 and 2010. The corresponding author was then supported by the Na-

tional Natural Science Foundation of China (NSFC) under Grant No. 61100069,

ANR-NSFC under Grant No. 61161130530, and the National Science and Technol-

ogy Major Project of China under Grant No. 2012ZX01039-004.

References

[1] J. Misra, K. M. Chandy, Proof of networks of processes, IEEE Transactions on Soft-
ware Engineering SE-7 (4) (1981) 417–426.

[2] O. Grumberg, D. E. Long, Model checking and modular verification, ACM Transac-
tions on Programming Languages and Systems 16 (3) (1994) 843–871.

[3] S. Berezin, S. V. A. Campos, E. M. Clarke, Compositional reasoning in model check-
ing, in: Revised Lectures from the International Symposium on Compositionality:
The Significant Difference (COMPOS’97), Lecture Notes in Computer Science 1536,
Springer-Verlag, 1998, pp. 81–102.

[4] D. Giannakopoulou, C. S. Păsăreanu, H. Barringer, Assumption generation for soft-
ware component verification, in: Proc. 17th IEEE International Conference on Auto-
mated Software Engineering (ASE’02), IEEE Computer Society, 2002, pp. 3–12.

[5] H. Barringer, D. Giannakopoulou, C. S. Păsăreanu, Proof rules for automated com-
positional verification through learning, in: Proc. 2003 Workshop on Specification and
Verification of Component-Based Systems (SAVCBS’03), Helsinki, Finland, 2003, pp.
14–21.

[6] J. Cobleigh, D. Giannakopoulou, C. Păsăreanu, Learning assumptions for composi-
tional verification, in: Proc. 9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’03), Lecture Notes in Computer
Science 2619, Springer-Verlag, 2003, pp. 331–346.

[7] A. Farzan, Y.-F. Chen, E. M. Clarke, Y.-K. Tsay, B.-Y. Wang, Extending automated
compositional verification to the full class of omega-regular languages, in: Proc. 14th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’08), Lecture Notes in Computer Science 4963, Springer-Verlag,
2008, pp. 2–17.

[8] T. A. Henzinger, S. Qadeer, S. K. Rajamani, You assume, we guarantee: Methodology
and case studies, in: Proc. 10th International Conference on Computer Aided Veri-
fication (CAV’98), Lecture Notes in Computer Science 1427, Springer-Verlag, 1998,
pp. 440–451.

[9] O. Kupferman, M. Y. Vardi, An automata-theoretic approach to modular model
checking, ACM Transactions on Programming Languages and Systems 22 (1) (2000)
87–128.

[10] M. Gheorghiu Bobaru, C. S. Păsăreanu, D. Giannakopoulou, Automated assume-
guarantee reasoning by abstraction refinement, in: Proc. 20th International Confer-

October 2012, PREPRINT

26 Alessio Lomuscio, Ben Strulo, Nigel Walker, Peng Wu

ence on Computer Aided Verification (CAV’08), Lecture Notes in Computer Science
5123, Springer-Verlag, 2008, pp. 135–148.

[11] C. S. Păsăreanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, H. Barringer,
Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning, Formal Methods in System Design 32 (3) (2008) 175–205.

[12] F. Kelly, T. Voice, Stability of end-to-end algorithms for joint routing and rate control,
ACM SIGCOMM Computer Communication Review 35 (2) (2005) 5–12.

[13] N. Francez, A. Pnueli, A proof method for cyclic programs, Acta Informatica 9 (2)
(1978) 133–157.

[14] C. B. Jones, Tentative steps toward a development method for interfering programs,
ACM Transactions on Programming Languages and Systems 5 (4) (1983) 596–619.

[15] P. Maier, Compositional circular assume-guarantee rules cannot be sound and com-
plete, in: Proc. 6th International Conference on Foundations of Software Science and
Computational Structures (FoSSaCS’03), Lecture Notes in Computer Science 2620,
Springer-Verlag, 2003, pp. 343–357.

[16] W. Nam, R. Alur, Learning-based symbolic assume-guarantee reasoning with auto-
matic decomposition, in: Proc. 4th International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA’06), Lecture Notes in Computer Science
4218, Springer-Verlag, 2006, pp. 170–185.

[17] W. Nam, P. Madhusudan, R. Alur, Automatic symbolic compositional verification by
learning assumptions, Formal Methods in System Design 32 (3) (2008) 207–234.

[18] S. Chaki, A. Gurfinkel, Automated assume-guarantee reasoning for omega-regular
systems and specifications, Innovations in Systems and Software Engineering 7 (2)
(2011) 131–139. doi:10.1007/s11334-011-0148-1.

[19] M. Abadi, L. Lamport, Conjoining specifications, ACMTransactions on Programming
Languages and Systems 17 (3) (1995) 507–535.

[20] A. Lomuscio, B. Strulo, N. Walker, P. Wu, Assume-guarantee reasoning with local
specifications, in: Proceedings of the 12th International Conference on Formal En-
gineering Methods (ICFEM’10), Vol. 6447 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2010, pp. 204–219.

[21] R. Alur, T. A. Henzinger, Reactive modules, Formal Methods in System Design 15
(1999) 7–48.

[22] R. Alur, T. A. Henzinger, F. Mang, S. Qadeer, S. K. Rajamani, S. Tasiran, MOCHA:
Modularity in model checking, in: Proc. 10th International Conference on Computer-
aided Verification (CAV’98), Lecture Notes in Computer Science 1427, Springer-
Verlag, 1998, pp. 521–525.

[23] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, A. Tacchella., NuSMV 2: An opensource tool for symbolic model checking,
in: Proc. 14th International Conference on Computer-Aided Verification (CAV’02),
Lecture Notes in Computer Science 2404, Springer-Verlag, 2002, pp. 241–268.

[24] S. Demri, Linear-time temporal logics with presburger constraints: an overview, Jour-
nal of Applied Non-Classical Logics 16 (3-4) (2006) 311–348.

[25] A. Pnueli, The temporal logic of programs, in: Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science, IEEE Computer Society, Washington,
DC, USA, 1977, pp. 46–57. doi:10.1109/SFCS.1977.32.

[26] J. Edmund M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press, 1999.
[27] M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about

Systems, Cambridge University Press, New York, NY, USA, 2004.
[28] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, W.-C. Chan, GOAL: A graphical tool

for manipulating büchi automata and temporal formulae, in: Proc. 13th International

October 2012, PREPRINT

Assume-guarantee reasoning with local specifications 27

Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’07), Lecture Notes in Computer Science 4424, Springer-Verlag, 2007, pp.
466–471.

[29] A. Lomuscio, B. Strulo, N. G. Walker, P. Wu, Model checking optimisation based
congestion control algorithms, Fundamenta Informaticae 102 (2010) 77–96.

[30] S. H. Low, D. E. Lapsley, Optimization flow control, I: basic algorithm and conver-
gence, IEEE/ACM Transactions on Networking 7 (6) (1999) 861–874.

[31] K. S. Namjoshi, R. J. Trefler, On the completeness of compositional reasoning meth-
ods, ACM Transactions on Computational Logic (TOCL) 11 (2010) 16:1–16:22.

[32] C. Yuen, W. Tjioe, Modeling and verifying a price model for congestion control in
computer networks using Promela/Spin, in: Proc. 8th International SPIN Workshop
on Model Checking of Software (SPIN’01), Lecture Notes in Computer Science 2057,
Springer-Verlag, 2001, pp. 272–287.

