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Abstract

We define a class of parameterised infinite state multi-agent
systems (MAS) that is unbounded in both the number of
agents composing the system and the domain of the vari-
ables encoding the agents. We analyse their verification prob-
lem by combining and extending existing techniques in pa-
rameterised model checking with predicate abstraction pro-
cedures. The resulting methodology addresses both forms of
unboundedness and provides a technique for verifying un-
bounded MAS defined on infinite-state variables. We illus-
trate the effectiveness of the technique on an infinite-domain
variant of an unbounded version of the train-gate-controller.

Introduction

Over the past decade considerable progress has been made in
the development of techniques to verify multi-agent systems
(MAS) against agent-based specifications. These include
SAT-based and BDD-based verification methods (Kacprzak,
Lomuscio, and Penczek 2004; Raimondi and Lomuscio
2005). Current model checkers, such as Verics, MCK and
MCMAS (Kacprzak et al. 2008; Gammie and van der Mey-
den 2004; Lomuscio, Qu, and Raimondi 2015), can effi-
ciently verify large state-spaces.

The methods developed differ in many aspects, including
the specifications supported and the input language used to
represent the MAS to be analysed. However, they all analyse
finite-state MAS that have two fundamental assumptions:
firstly, the number of agents is finite and known at design
time; secondly, the descriptions of the agents in the system
use variables with finite domain. While both these assump-
tions ensure that the verification problem remains decidable
(even PTIME-complete in several cases), their applicability
is hampered in real-world applications.

For example, when analysing open MAS where agents
join and leave the system at run time it may not be pos-
sible to know at design time how many agents the system
will have at runtime. Similarly, in robotic swarms, the num-
ber of agents in a swarm is not known at design time. Re-
cently, proposals to tackle the unbounded nature of agents
have been put forward (Kouvaros and Lomuscio 2013;
2016). Decidable cases have been identified and cut-offs and
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counter-abstraction methods have been developed so that
systems composed with an unbounded number of agents can
be analysed. In these techniques the agents can be described
by variables with finite domain only.

Irrespective of the choice of the programming language,
MAS are typically programmed by using variables with in-
finite domains (integers, reals, etc.). This makes it difficult
to ensure that a finite-state model accurately represents the
system to be verified. To overcome this predicate-abstraction
methods for infinite-state models have recently been put for-
ward (Lomuscio and Michaliszyn 2015; 2016).

These two streams of work can independently deal with
two sorts of unboundedness and potential undecidability
of the verification problem: infinite state variables and un-
bounded number of agents. However, they work in isolation
and cannot presently be combined. It follows that MAS with
an unbounded number of components where each of them
has at least one infinite-state variable cannot be analysed.
In the present paper we develop a solution to this problem
by introducing a technique that combines cut-off generation
and predicate abstraction. The technique first uses predicate
abstraction on the templates on the agents, thereby generat-
ing finite abstractions. Sufficient conditions are given for a
cut-off of the system to be generated automatically. Having
established a cut-off, the specification can then be checked
on a three-valued semantics on all systems up to the cut-off.
If the specification is found either to be true or false, then we
can derive a conclusion on the original, infinite state system.

The rest of the paper is organised as follows. In Section 2,
we give the syntax and semantics for the logic-based tech-
nique. In Section 3, we derive the main formal results and
give an algorithm for the verification of MAS. We exemplify
the methodology on a widely-adopted scenario in Section 4.
We conclude in Section 5.

Related work. The technique here introduced is related
to the two independent lines of work mentioned above (pa-
rameterised verification and predicate abstraction). None of
them can address the infinite-state systems we work with
in this paper. The technique here proposed can be seen as
a combination of parameterised verification with predicate
abstraction in the MAS domain. To achieve this, not only
stronger conditions on cut-offs need to be identified, but also
a three-valued semantics on these needs to be given so that
they can be algorithmically checked.



Techniques to tackle both forms of unboundedness con-
sidered here were previously put forward in the context of
reactive systems (John et al. 2012). However the semantics
are incomparable to the semantics of this paper which are
Al-based and thus require a different technical treatment.
Also, (John et al. 2012) considers temporal specifications
only and no attempt is made to analyse epistemic properties.

PIIS with Unbounded Variables

Parameterised interleaved interpreted systems (PIIS) extend
interleaved interpreted systems (IIS) (Lomuscio, Penczek,
and Qu 2010) to reason about the temporal-epistemic prop-
erties of asynchronous MAS with an unbounded number
of agents (Kouvaros and Lomuscio 2013). Below we out-
line the PIIS semantics as presented in (Kouvaros and Lo-
muscio 2013), but, differently from the cited work, we here
work on infinite state agents. There are, therefore, two forms
of unboundedness in the systems we consider; one results
from the domain of the variables encoding the agents; the
other from the number of agents composing the system.
We refer to these systems as PIIS with unbounded vari-
ables (PIISYV). A PIISYY consists of the descriptions of an
agent template from which an unbounded number of homo-
geneous agents may be constructed and an environment in
which the agents operate. Note the framework can accom-
modate a finite number of agent templates; for simplicity we
do not pursue this here.

The agent template 7' = (L, ¢, Act, P, t) defines a non-
empty, possibly infinite set of local states L, a unique initial
state ¢ € L, and a non-empty, possibly infinite set of ac-
tions Act = AU AFE U GS. Each action is either an asyn-
chronous action (A) or an agent-environment action (AFE)
or a global-synchronous action (GS). Each type of action
enables a different communication pattern between the con-
crete agents. In particular, asynchronous actions enable the
asynchronous evolution of an agent; agent-environment ac-
tions enable pairwise synchronisation between one agent
and the environment; global-synchronous actions enable full
synchronisation among all the agents and the environment.
The actions are performed in compliance with a protocol
P : L — P(Act) that selects which actions may be per-
formed at a given state. The evolution of the local states is
characterised by a transition function ¢ : L x Act — L re-
turning the next local state given the current local state and
the action performed at the state.

The environment e = (Le, t, Acte, P, t.) is similarly
associated with a non-empty, possibly infinite set of local
states L., a unique initial state ¢, € L., a non-empty, pos-
sibly infinite set of actions Acte = AE U GS, a protocol
P,, and a transition function t.. Note that for the synchro-
nisation purposes described above e admits the same agent-
environment and global-synchronous actions with 7.

We include the asynchronous “null’ actions null and
null. to the sets of actions Act and Act. respectively. It
is assumed that: the protocol P is such that for every | € L
we have that null € P(l) (i.e., the null action is enabled at
every template state); the transition function ¢ is such that
t(l, null) = 1 (i.e, the local state does not change whenever

the null action is performed). The environment’s null action
null is similarly described.

Definition 1 (PIISUY). A parameterised interleaved inter-
preted system with unbounded variables is a tuple S =
(T,e,V), where V : L x AP — {tt,ft,uu} is a labelling
function on the agent template’s states for a set AP of
atomic propositions.

PIISYV give a generic description of an unbounded col-
lection of concrete IIS, each one obtained by setting the
parameter prescribing to the number of agents in the sys-
tem. Given a PIISYV' S and an integer n > 1, the IIS S(n)
of n agents is the result of the composition of n copies of
T with the environment. Atomic propositions in the con-
crete systems are interpreted over three truth values: true
tt, false ff, and undefined uu. We say that a truth value
x is defined whenever x # uu. We write A for the set
A = {1,...,n} of concrete agents instantiated from 7. A
global state g = (ly,...,1,,l.) is a tuple of local states for
all the agents in S(n); it describes the system at a particular
instant of time. For a global state g we write g.¢ to denote the
local state of agent ¢ in g. The system’s global states evolve
over time in compliance with the agents’ local protocols and
local evolution functions. The evolution is described by the
global transition relation.

Definition 2 (Global transition relation). The global transi-
tion relation R C G x Act x G on a set G of global states
is defined as (g, a, ') € R iff one of the following holds:

1. (Asynchronous transition). (i) a € A, (ii) there is i € A
with a € P(g.i) and t(g.i,a) = ¢'.i; (iii) for all j # 1,
95=49"J.

2. (Agent-environment transition). (i) a € AFE; (ii) there is
i € Awitha € P(g.i) and t(g.i,a) = ¢'.i; (iii) a €
P.(g.e) and t.(g.e,a) = ¢'.e; (iv) forall j # i, j # e,
9j=49"J.

3. (Global-synchronous transition). (i) a € GS; (ii) for ev-
ery i € Awe have that a € P(g.i) and t(g.i,a) = ¢'.i;
(iii) a € P.(g.e) and t.(g.e,a) = ¢'.e.

Above R defines only one action to be performed at each
time step. If this is an asynchronous action, then exactly one
agent participates in the global transition; if it is an agent-
environment action, then exactly one agent and the envi-
ronment participate in the global transition; if it is a global-
synchronous action, then all the agents and the environment
participate in the global transition. The agents not partici-
pating in a global transition are assumed to perform the null
action at each time step. Since a global transition may al-
ways be taken by means of a null action, R is serial.

We now define the concrete systems generated from S.

Definition 3 (Concrete semantics). Given a PIISVVS and
n > 1, the IIS S(n) is a tuple S(n) = (G, go, R, V), where
G C L™ x L, is the set of reachable global states via
the global transition relation R from the initial global state
go = (ty...yt,te), and V : G x (AP x A) — {tt, ff,uu}
is the labelling function on the global states defined as
Vg, (p,7)) = z iff V(g.i,p) = x, where g € G, p € AP,
i€ A x e {tt, {ff,uu}.



A PIISUY generates different IIS depending on the param-
eter for the system. Each system is composed of a differ-
ent number of agents. The propositional variables in an IIS
are indexed by each of the concrete agents; (p,4) holds in
a global state if the agent ¢ is at a local state labelled with
p by the template labelling function. This will enable us to
construct specifications independently of the size of the con-
crete system on which they are evaluated.

A path 7 is a sequence 7 = ¢’a®g'a'g?... such that
(¢°,a%, g"tt) € R for every i > 0. We write (i) for the
i-th state in 7 and 7 (¢, Act) for the i-th action in 7. The set
of all paths originating from a state g is denoted by II(g). A
global state ¢ is said to be reachable from a global state ¢’ if
there is a path 7 € II(g’) with 7 (i) = g for some ¢ > 0.

Example 1 (Train-gate-controller). We exemplify the techni-
cal notions introduced above on a variant of the train-gate-
controller (TGC) (Alur, Henzinger, and Kupferman 2002)
where both the number of trains and some of the domains
for the variables in the trains’ programs are unbounded. The
system is composed of a controller and an arbitrary num-
ber of trains. Each train runs along a circular track and all
tracks pass through a narrow tunnel. The tunnel can accom-
modate only one train to be in it at any time. Both sides
of the tunnel are equipped with traffic lights which can be
either green or red. To enter the tunnel each train commu-
nicates to the controller a counter representing the number
of times the train has already entered the tunnel. The con-
troller operates the colour of the traffic lights instructing the
trains enter and exit the tunnel; in doing so priority is given
to the train that communicated the smallest counter. We are
here not interested in strategic play and we assume truthful
communication.

We model the TGC as a PIIS'V® = (T, e, V), where T
represents the trains and e represents the controller. These
are defined as follows.

o L = {(away, i), (wait, i), (tunnel, i) : i € N}. A train
may be away from the tunnel, waiting to enter the tun-
nel, or in the tunnel; in all cases i represents the train’s
counter. L, = {(green, ), (red, u) : p € N*}, where p
is a sorted array representing the counters of the trains
that have requested to enter the tunnel.

e . = (away, 0), t. = (green,€). Initially the trains are
away and there are no pending requests to enter the tun-
nel.

o Act = Act. = {(signal, i), (enter,i) : i € N} U{exit}.
A train can request to enter the tunnel by signalling its
counter, enter the tunnel, and exit the tunnel. All actions
are agent-environment actions.

o — P((away,1)) = {(signal, i)} and
t((away, i), (signal,i)) = (wait,i). Whenever
the train is away from the tunnel it can request to enter
it and go into the waiting state.

- P((wait, i)) = {(enter,i)} and
t((wait, 1), (enter,i)) = (tunnel,i + 1). If in
the waiting state the train can enter the tunnel; in
doing so it increases its counter by one.

— P((tunnel,i)) = {exit} and t((tunnel, i), exit) =

(wait, ©). If in the tunnel, the train can exit the tunnel
and go into the away state.

- P.((green, p)) = {(signal,i) : i € N} U
{(enter, ul0)},  to((green, p), (signal, i) =
(green, insert(u, 1)), and t.((green, 1), (enter,i)) =
(red, remove (i, 1)). The environment handles requests
from all trains but it only accepts the one having the
smallest counter.

- P.((red,u)) = A{exit} and t.((red,p), exit) =
(green, p). Whenever a train is in the tunnel the con-
troller does not handle any new requests.

Specification language

We express specifications in two logics built on the
same syntax but with different semantics: the two-valued
logic indexed ACTLK?%; and the three-valued logic in-

dexed ACTLK?Y,. The logic indexed ACTLK_x ex-
tends ACTLK_x by introducing indexed atomic propo-
sitions and indexed epistemic modalities; intuitively, in-
dexed ACTLK_x formulae quantify over the concrete
agents (Kouvaros and Lomuscio 2016). ACTLK_ x is uni-
versal fragment of the temporal-epistemic logic CTLK with-
out the next time operator. Given a set AP of atomic
propositions, and a set VAR of variable symbols, indexed
ACTLK?Yy and indexed ACTLK?" formulae are defined
by the following BNF grammar:

¢ :=(p,v) [=(p,v) 9N @DV G| A(QUQ) | A(PR9) |

Ky¢ | Voo
where p € AP and v € VAR. The epistemic modality K, ¢
is read as “agent v knows that ¢” (Fagin et al. 1995). The
temporal modality A(¢U1)) stands for “for all paths, at some
point ¢ holds and before then ¢ is true along the path”; and
A(¢R1)) denotes “for all paths, 1 holds along the path up to
and including the point when ¢ becomes true in the path”.

A variable appearing in an indexed ACTLK _ x formula is
said to be free if it is not in the scope of a universal quanti-
fier. An ACTLK_ x formula is said to be a sentence if there
are no free variables appearing in the formula. We here con-
sider only ACTLK _ x sentences. We say that an ACTLK _ x
sentence is an m-indexed formula if there are precisely m
variables from VAR appearing in the formula.

The interpretation of the temporal modalities on an
IIS is given by means of the global transition rela-
tion (Clarke, Grumberg, and Peled 1999), and the epis-
temic modalities are interpreted by using the epistemic pos-
sibility relations (Fagin et al. 1995). The epistemic possi-
bility relation for an agent ¢ is defined as follows: ~;=
{(9,¢') € G x G : g.i = ¢’.i}. In the following we assume
the Kleene semantics for boolean connectives and report the
three-valued satisfaction relation =3. The two valued sat-
isfaction relation =2 can be derived from =3 by restrict-
ing to the clauses for tt and classical negation. We write
((S8(n),g) =3 ¢) = x to mean that the formula ¢ is evalu-
ated to x at g. If S(n) is clear, then we simplify the notation
to (g9 F° ¢) = .

Definition 4 (Satisfaction). The 3-valued satisfaction rela-
tion | =3 for an IIS S(n), a global state g of S(n), and a
Sformula ¢ is defined as follows:



(9 B> (p,9) = V(g, (p,9))-

g(bgﬁ?’tzb_l Ad2) = 6 iff (9 F> 61) = ttand (g F°
(g =3 (bl A ¢o) = ff iff either (g =2 ¢1) = fF or (g 3
¢2) = ff.

(g =2 ¢1 V ¢2) = tt iff either (g =2 ¢1) = tt or (g >
¢2) = tt,’

=3 01V o) = iff (9 F° ¢1) = and (g =2 ¢2) =

(9 B3 A(¢1Ug2)) = tt iff for all = € T1(g), there is
t. (n(i) B2 ¢o) = ttand for all j < i (7(j) 2
t.

g B2 A(¢01Ug2)) = ff iff there is m € 11(g) s.t. for all
> 0 we have (1(i) 2 ¢o) = ff or there is j < i with
m(j) > ¢1) = L.

g B3 A(¢1Reo)) = tt iff for all ™ € (g), either there
s some i > 0 with (7(i) E> ¢1) = tt and for all j < i
7(j) B> ¢2) = tt; orforalli > 0 (7(i) E3 ¢2) = tt.
g B3 A(¢1Rg2)) = fFf iff there is m € T1(g) s.t. there is
i > 0 with (m(i) B3 ¢2) = ff, and for all i > 1 we have
p(i) B3 ¢1) = ff or (p(j) B3 ¢2) = ff for some j < i.
g B Ki¢) = tt iff (¢ B> K;¢) = tt for all g’ with
g~ig.

(9 F° kig) = iff (9 |=° ¢) = ££.

(9 > Yoo) = ttiff (9 > ¢lv = ag]) = tt for all
ag € {1,...,n}.

(9 =5 Vos) = 1 iff (9 = 6lv — ag]) = £ for some
ag € {1,...,n}.

e [n all other cases the value of a formula is undefined.

Remark 1. Following (Lomuscio and Michaliszyn 2015) the
above defines an epistemic formula K;¢ as ff at a state if ¢
is ff at the state. While this is stronger than the standard
definition (that assigns (g |=> K;¢) = ff iff there is g’ with
g ~igand (¢ =2 ¢) = ff), it is crucial for preserving the
value of a formula from the abstract models to the concrete
ones (Theorem 2).

ACTLK _ x generalises indexed CTL (Clarke, Grumberg,
and Browne 1989), a parametric variant of CTL that intro-
duces quantification operators over the system components.
In addition to the next-time operator, the unrestricted nesting
of the quantification operators can be used to represent the
actual number of participants in the system (Clarke, Grum-
berg, and Browne 1989), thereby making the verification
problem undecidable (Clarke et al. 2004). To circumvent
this, indexed CTL typically excludes the next-time opera-
tor and is restricted to its prenex fragment in which all the
quantifiers appear at the front of the formula (Aminof et al.
2014). In light of this, for the rest of the paper, we consider
m-indexed ACTLK _ x formulae complying to the following
schema:

[ ]
—
ks
|_

[ ] [ ] [ ] [ ]
S0~ o~

Yy ... Vo, /\ —(v; = v5) — o({v1,. .., vm})

i,j€{1,...,m}

where ¢ is an ACTLK_ x formula with no quantifiers and
without the next-time operator that is built from precisely

the variables vy, ..., v,,. We simply write ¢ to denote an
m-indexed formula of the above schema.

Example 2. Consider the specification “whenever a train
is in the tunnel it knows that no other train is in the tunnel
at the same time” of the train-gate-controller. This can be
expressed by the following 2-indexed formula:

b = VoV, AG((tunnel, v) — K,—(tunnel, u)).

The evaluation of ¢ on a concrete system is determined
by evaluating the conjunction of all its ground instantiations
under any assignment for the variables. For instance, when
evaluated on a concrete system with two agents, ¢ de-
notes the formula AG((tunnel, 1) — K;—(tunnel, 2)) A
AG((tunnel, 2) — Kp—(tunnel, 1)).

An ACTLK_ x formula ¢ is said to be true in S(n), de-
noted S(n) =2 ¢, if (S(n), go) E2 ¢. We define (S(n) =3
¢) = ttif (S(n), g0) =° @) = tt, (S(n) ° ¢) = fFif
((S(n),90) E* ¢) = . and (S(n) ° ¢) = uu other-
wise. Defined truth values are preserved from the 3-valued
satisfaction relation to the 2-valued one.

Theorem 1 (Relation between =2 and |=3). Let S(n) be an
1IS, g a global state of S(n), and ¢ an ACTLK _x formula.
The following hold:

L (g ¢) =tt=gF"¢.
2. (g o) =ft=g ¢

In the following we exploit the above result to define a
procedure to solve the verification problem for PIISUV .

Parameterised Verification

We now put forward a methodology to assess the correctness
of a MAS formalised as a PIISU". The decision problem,
generally known as the parameterised model checking prob-
lem, is to check that a given PIISYY meets its specifications
irrespective of the number of agents in the system.

Definition 5 (PMCP). Given a PIISUV' S and an m-indexed
formula ¢, the parameterised model checking problem
(PMCP) is the decision problem of determining whether the
following holds:

S(n) =2 ¢ for every n > m.

If this holds, then ¢ is said to be satisfied by S; this is de-
noted by S =2 ¢.

The PCMP is in general undecidable even for finite-state
templates (Apt and Kozen 1986). Moreover, since every con-
crete system has a possibly infinite state space, the plain
model checking problem on any concrete system is also un-
decidable. Thus we face two challenges to address the verifi-
cation problem for PIISV": we need to bound the number of
variables encoding a concrete system and the number of sys-
tems that need to be checked. To do the former we abstract
the agent template and the environment using predicates de-
rived from the PIISYY and the specifications under consid-
eration. We show that defined truth values are preserved
from the systems generated from the abstract PIISYV to the
systems generated from the original PIISUY. As a result,
the PMCP is reduced to checking an unbounded number of



finite-state systems. To address the unbounded nature of the
number of agents to be considered, we identify a sufficient
condition between the agent template and the environment
for determining a natural number, the cut-off, expressing the
number of systems that is sufficient to verify in order to solve
the PMCP. We show how this condition can be checked on
the abstract PIISY". Consequently the PMCP is reduced to
checking the systems generated from the abstract PIISY" up
to the cut-off system. We first describe the predicate abstrac-
tion method and then show how a cut-off can be determined.

Predicate abstraction

Assume an agent template 7', a tuple ps 1 of state predi-
cates, a tuple p, of asynchronous action predicates, a tu-
ple pge of agent-environment action predicates, and a tu-
ple Dy, of global-synchronous action predicates. Intuitively,
each predicate represents a condition on the template’s pro-
tocol or transition relation. The satisfaction of conjunctions
A of state predicates and their negation, called state cubes, on
a template’s state is denoted as | |= . Similarly, the satisfac-
tion of conjunctions « of action predicates and their nega-
tion, called action cubes, on a template’s action is denoted
as a = a. A state (respectively, action) cube is satisfiable iff
it is satisfied by some local state (respectively, action). The
agent template is abstracted via predicates in the following
way.

Definition 6 (Abstract agent template). Given
an agent template T and a list of predicates
(P57 DasDac, Pgs)» the abstract agent template is the

tuple T = (L, i, Act, Pmay  prmust fmay jmust) yypere:

o L is the set of all satisfiable state cubes.
e [ is the initial state cube satisfiable only by .

e Act = AU AE U GS is the union of the sets of all
satisfiable asynchronous, agent-environment and global-
synchronous action cubes.

e the may protocol P is defined as av € P ()\) iff
thereare! € L,a € Act withl =\, a = aanda € P(I).

e the may transition relation tmay is defined as
t"Y (A o, N') iff there are 1,1’ € L, a € Act with
IEANUEN, aEa,andt(la) =1,

o the must protocol P™" is defined as o € Pt (\) iff
foreveryl € L, a € Act, ifl E XA and a = «, then
a € P(l).

e the must transition relation tmust s defined as
tmust(\ o, N') iff for all | € L, a € Act, if |l = X\ and
a =, thent(l,a) =1 for somel' withl' = N

Intuitively the may and must components of T are re-
spectively over- and under-approximations of the tem-
poral evolution of 7. The abstract environment é =
(Leyic, Acto, Py prust fmay gmusty g gimilarly de-
fined over p_ae, p_gs and a tuple p,_. of state predicates.

Definition 7 (Abstract PIISUVY). Given a PIISYV'S and a

list of predicates (Ds T, Pa, Pae, Pgss Ds.c ), the predicate ab-

straction of S is the tuple S = (T, é,V), where T'is the ab-
stract agent template W.r.t Ds 7T, Da_ags Pae> Dgs» € IS the ab-

> )\away )\g'r‘een,e <
)\signal )\signal
)\z;’az't )‘green
)\enter )\enter
)\tu;’znel )\;:ad
)\ea:z't Aem’t

(a) Abstract train. (b) Abstract controller.

Figure 1: The abstract PIISYY of the TGC.

stract environment W.r.t Dy ¢, Dae, Dgs» and V is such that for
any N € L, p € AP, x € {tt,fI}, we have V(\,p) = x iff
V(l,p) =z foralll € Lwithl = A

Example 3 (Train-gate-controller). Figure I depicts the ab-

stract PHSUV & = (T, ¢, V) of the train-gate-controller. T
is constructed w.r.t the state predicates X gy = (away, 0),
Await = (wait, 0), Aynner = (tunnel, 0), and the ac-
tion predicates signqr = (signal, 0), Aenter = (enter, 0),
Aezit = exit; € is built w.r.t the same action predicates
and the state predicates Agreen,e = (green,€), Agreen =
(green, 0), Area = (red,€). In the figure the arrows rep-
resent both the may and must transition relations.

Given a PIISYV'S with predicate abstraction S and an in-

teger n > 1, the abstract IIS S(n) of n abstract agents com-

poses n copies of T with é. Its construction is identical to
the construction of the concrete systems, but it defines a may

global transition relation R™% and a must global transition

relation R™vst, R™av (R™ust  respectively) is defined as in
Definition 2, but considering the may (must, respectively)

protocols and transition functions. R™ s used to interpret
the clauses for tt in Definition 4, whereas R™ust jg used to
interpret the clauses for ff in Definition 4.
Definition 8 (Abstract semantics). Given a PIISUV S with
predicate abstraction S and n > 1, the abstract IIS S (n)is
a tuple S(n) = (G, go, R™, R™st V), where G, gy and
V are defined as in Definition 3.

The abstract systems can be used to interpret ACTLK_ x

formulae as per the 3-valued semantics: for every n > 1
the evaluation of a formula to true (false, respectively) on

S (n) implies the evaluation of the formula to true (false,
respectively) on S(n).
Theorem 2 (Preservation theorem). Let S be a PIISUY with

predicate abstraction S' n > 1 an integer, and ¢ an
ACTLK _ x formula. The following hold:

L (S(n) F° 9) = tt = (S(n) | ) = t;
2 (S(m) | ¢) = — (S(n) ¥ ¢) = .

In view of the theorem above, methodologies can be
devised to derive predicates automatically on the basis of



the system and the specifications under examination. For
instance, procedures for plain, non-parameterised, infinite
state MAS were put forward in (Lomuscio and Michaliszyn
2016). Since the agent template and the environment can
be viewed as agents in the typical MAS setting, the cited
works can be adapted to automatically generate the abstract
PIISYV. By doing so we would obtain an unbounded num-
ber of abstract, finite state interleaved interpreted systems.
It follows that if the specification is tt in all abstractions,
then the specification holds on the original PIISVV; if it is
evaluated to ff in at least one abstract system, then the speci-
fication does not hold on the original PIISYV: otherwise, no
conclusions can be drawn. Note the PMCP is still intractable
since an unbounded number of abstract systems need to be
checked. In the following we solve this problem by bound-
ing the number of systems to be analysed.

Agent-environment simulation

We introduce a notion of simulation between the agent
template and the environment. Intuitively, the states of
the environment of a PIISYY admitting this simulation
represent shared resources that can be accessed by the
agents via agent-environment synchronisations. For a given
PIISY" and an m-indexed formula we show that if this simu-
lation exists, then to solve the PMCP it is sufficient to check
the concrete system of m agents only. We first fix some no-
tation.

Given a local state [ we write [ — I’ to mean that there is
an asynchronous action « and a state I’ with a € P(l) and
t(l,a) = l'. For a set of states X we use X — X' to de-
note that there is a state [ € X such that I — [’ and X' =
X U {l'}. The reflexive and transitive closure of — is de-
noted by % . Concretely, X % X’ represents the set of lo-
cal states X’ in which an unbounded number of agents may
asynchronously move into from X . Given a state [ and either
an agent-environment or a global-synchronous action a we
write [ % I’ to mean that there is a state I’ with a € P(l) and
t(l,a) = l'. For a set of states X and an agent-environment
action a we write X % X' to express that there is a state
lin X with! %" and X’ = X \ {I} U {I'}. For a set of
states X and a global-synchronous action a we use X % X'’
to mean that X’ = {I':3l € X.1%1'}. By X % X'
we mean that there is X” with X = X" % X', In other
words, X %% X' represents the set of local states X’ that
results from an unbounded sequence of asynchronous transi-
tions from X followed by an agent-environment or a global-
synchronous transition. When applied on the environment’s
state the above operators are interpreted in the same way
using the environment’s protocol and transition function. Fi-

nally, we use LA ( Le, , respectively) to indicate that the
operator % is applied to the abstract PIISY" using the may
(must, respectively) protocol and transition function.

We now define an agent-environment simulation.

Definition 9 (Agent-environment simulation). An agent-
environment simulation between T and e is a relation R C
P(L) x L, such that ({1} ,te) € R and whenever (X,1.) €
‘R the following conditions hold:

1 If X =% X' thenl, % 1, and (X',1)) € R.
2.0 X el xtoxdd ot xk o xoxb X1 g
B gk by kL ghen (X UXE,TF) € R,

We write T' < e to denote that there is an agent-
environment simulation between 7' and e. In the rest of
the paper we restrict our discussion to the subclass of
PIISYV admitting an agent-environment simulation. Intu-
itively, this is the subclass of PIISUVin which global-
synchronous actions determine a subclass of the shared
resources the agents can access. We assume that global-
synchronous actions are enabled at every state of the agent
template. Upon performing a global-synchronous action the
system updates the set of accessible shared resources. By
condition 1 not only does the environment always allow this
to happen, but also it always permits an agent to take the
lock on a resource via agent-environment synchronisations.
Following the lock on a resource the agent has to release
the lock before another agent can synchronise with the en-
vironment. In line with this, whenever different agents may
synchronise with the environment in successive time steps,
the last synchronisation of the preceding agent is interpreted
as resource-releasing; thus agent-environment synchrnoni-
sations are not subsequently blocked by the environment, as
expressed by condition 2.

This is a subclass of the PIIS studied in (Kouvaros and
Lomuscio 2016). However, the methodology there presented
considers finite state templates only, and it assumes that all
agent-environment and global-synchronous actions are en-
abled at exactly one state of the environment. As a result,
the original formulation of the agent-environment simula-
tion cannot be applied to the present setting.

We now show that whenever 7' < e the evaluation of an
m-indexed formula on the system with m agents is equiva-
lent to the evaluation of the formula on every bigger system.
Integers following this property are commonly referred to as
cut-offs (Emerson and Kahlon 2000).

Theorem 3 (Cut-off theorem). Ler S = (T,e,V) be a

PIISUVwith T < e, ¢ an m-indexed formula, and n > m
an integer. The following holds:

S(m) E* ¢ iff S(n) [F* ¢.

By Theorem 3 and Theorem 2 the PMCP can be solved by
checking the abstract system with m agents. This assumes
that 7' < e can be established. However 1" and e are pos-
sibly infinite state structures. To circumvent this, we give
a three-valued semantics for the agent-environment simu-
lation thereby enabling the simulation test to be performed
on the abstract PIISUY. We write (T < é) = tt to mean
that the abstract PIISYY admits an agent-environment sim-
ulation, (T < é) = ff to express that it does not, and

(T < é) = uu to denote that it is unknown whether it does.

1 2
a 1 a
l(i*)le—)

Definition 10 (Three-valued semantics for agent-environ-

ment simulations).

o (T < &) = tt if there is a relation & C P(L) x L,
such that ({i},i.) € R and whenever (X, \.) € R the
following conditions hold:



L IFX 229 X7 then Ao = N, and (X', \) € R,
VD QUL UL S (AP L ¢
and M\, fiel AL hia? il AE 0 AR then
(X UX* NF) e R,
o (T < &) = ff if there is no relation ® C P(L) x L,

such that ({i} ,i.) € R and whenever (X, \,) € R the
following conditions hold:

1. If X L0 X0 then \o % N and (X', \.) € R.

?; xb
s

! 2 1

5 lixat -1 l*a Ik Gk v b oy
2. IFX e, gk el Xk XS X and
sat s I ok B S
Ao 295 AL B O N B8 AR phen (XU
XF \F) e R,

e (T < &) = uuin all other cases.

The abstract PIISYY can be used to perform the simulation
test according to the three-valued semantics.

Theorem 4 (Simulation test). Let S be a PIISYY with pred-
icate abstraction S. The following hold:

L (T<é)=tt=T<e
2. (T<é)=ff=T¢%e

With a successful simulation test the analysis of the ab-
stract system with m agents is sufficient to establish the cor-
rectness of the original PIISYV .

Theorem 5 (PMC theorem). Let S = (T,e,V) be a
PIISUV with predicate abstraction S = (T',é,V) such that

(T < é) = tt. Let ¢ be an m-indexed formula. The follow-
ing hold:

1. (S(m) E? ¢) =tt = S =2 ¢

2. (Sm) P ¢)=ff —= S 2 .

The above is the main result of the paper. It provides
the underpinnings for a constructive, sound but incomplete
methodology to solve the PMCP for infinite state MAS.
Concretely, verification of PIISYV can be conducted as fol-
lows. Firstly, the abstract PIISYVis built from predicates
derived from the original PIISYYand an m-indexed spec-
ification. Then it is checked whether or not the abstract
PIISYV admits an agent-environment simulation. If so, then
the abstract system with m agents is checked against the
specification; otherwise, no conclusions can be drawn. If the
value of the specification is defined on said abstract sys-
tem, then we can deduce whether or not the specification
is satisfied on the original PIISYV; if the value is unde-
fined, then the satisfaction of the specification on the original
PIISYV can not be determined. Note that there is no diffi-
culty in performing refinement if either the specification or
the agent-environment simulation is undefined by following
the procedure in (Belardinelli, Lomuscio, and Michaliszyn
2016).

Example 4 (Train-gate-controller). Consider the relation
R = {()\awaya )\green,é)a ()‘wait; /\green)a (Atunnela /\Ted)}

between the abstract train T and the abstract controller é. R
satisfies all the conditions of the first clause of Definition 10.

Therefore (T < ¢é) = tt. Hence, by Theorem 5, the abstract
system of 2 trains can be used to establish the correctness
of the train-gate-controller against ¢, this can be put into
any epistemic model checker which would return true.

Conclusions

In this paper we have introduced a methodology for verify-
ing infinite-state MAS with an unbounded number of com-
ponents. We have given a three-valued predicate abstraction
methodology for deriving finite descriptions of the agents
and established sufficient conditions for the derivations of
cut-offs.

In future work we intend to implement the methodology
here described.
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Appendix
Theorem 1 (Relation between |=2 and =2). Let S(n) be an
IIS, g a global state of S(n), and ¢ an ACTLK _x formula.
The following hold:
1. (g2 ¢) =tt = g 2 ¢.
2 (g ) =t =g £ ¢.

Proof. The proof is by structural induction on ¢.

1.  Suppose that ¢ = (p,i) and (g [=> ¢) = tt. Then
V (g, (p,i)) = tt. Therefore g =2 ¢.

e The boolean cases are straightforward and are therefore
omitted from the proof.

e Assume ¢ = A(¢1Ug2) and (g =3 ¢) = tt. Then for
all m € TI(g) there is i > 0 with (7(i) =3 ¢2) = tt,
and (7(j) 2 ¢1) = ttforall0 < j < 4. Letw € I(g)
be arbitrary. By the inductive hypothesis there is 7 > 0
with (i) 2 ¢2, and 7(j) =2 ¢y forall 0 < j < i.
Consequently g =2 ¢.

e The case of ¢ = A(¢p1 R¢3) can be shown similarly to
the case of ¢ = A(p1U o).

e Consider ¢ = K;¢1 and (g =2 ¢) = tt. Then g’ ~; g
implies (¢’ =2 ¢1) = tt. Let ¢’ € G with ¢’ ~; g be
arbitrary. By the inductive hypothesis g’ =2 ¢;. Hence
9.

2. e Suppose that ¢ = (p,i) and (g > ¢) = ff. Then
V (g, (p,i)) = ff. Therefore g £ ¢.

e The boolean cases are straightforward and are therefore
omitted from the proof.

e Assume ¢ = A(¢1U¢s) and (g 3 ¢) = ff. Then
there is 7 € TI(g) s.t. for all i > 0 we have (7(i) =3
¢2) = ff or there is j < i with (7(j) > ¢1) = ff. By
the inductive hypothesis for all i > 0 we have (i) =2
¢ or there is j < i with 7(j) ~2 ¢1. Consequently
9~ ¢

e The case of ¢ = A(¢p1 R¢p2) can be shown similarly to
the case of ¢ = A(p1U¢ho).

e Consider ¢ = K;¢; and (g E3 ¢) = ff. Then (g 3
¢1) = ff. By the inductive hypothesis g =2 ¢;. Hence
9 ¢.

O

Theorem 2 (Preservation theorem). Let S be a PIISUY with

predicate abstraction S n > 1an integer, and ¢ an
ACTLK _ x formula. The following hold:

L ($(n) E* ¢) = tt = (S(n) * ¢) = tt.
2 (8(n) | ¢) = — (S(n) ¥ ¢) = .

Proof. Define the satisfaction of a tuple § = (A1,...,A,)
of state cubes on a global state g as Vi.g.i = §.i. Denote
this by g = §. We show by structural induction on ¢ that if

g = g, then
(GE ¢)=tt= (g ¢) =tt (a)

and

G ¢)=ff= (g =°¢) =1 (b)

(a) e Suppose that ¢ = (p,i) and (§ =3 ¢) = tt. Then for
all ¢’ with ¢’.i = §.i we have that (¢’ =3 ¢) = tt.
Therefore (g => ¢) = tt.

e The boolean cases are straightforward and are therefore
omitted from the proof.

o Assume ¢ = A(¢1Ud¢) and (§ =2 ¢) = tt. Then
for all # € II™%(g) there is 4 > 0 with (7(i) =3
#2) = tt, and (7(j) B> ¢1) = ttforall 0 < j <
i. Let m € II(g) be arbitrary. Define # = Aoy ...
where, for each ¢ > 0, 7(i) = A; and 7(i, Act) |



«;. By the definitions of P™a and {may for each i >
0, (7 (i), 7 (i, Act), 7(i + 1)) € R™, therefore # €
1% (§). By the inductive hypothesis there is i > 0
with (7(i) =° ¢2) = tt, and (7(j) > 1) = tt
for all 0 < j < 4. Consequently, as m was arbitrary,
(9 F* ¢) =tt.

e The case of ¢ = A(¢1R¢p2) can be shown similarly to
the case of ¢ = A(p1U o).

e Consider ¢ = K;¢; and (§ =2 ¢) = tt. Then §’ ~;
g implies (§' E° ¢1) = tt. Let ¢’ with ¢’ ~; g be
arbitrary. By definition there is ¢’ with ¢’ & ¢’ and
g’ ~i g. By the inductive hypothesis g’ |= ¢1. Hence
(9 % ¢) = tt.

(b) e Suppose that ¢ = (p,i) and (§ => ¢) = ff. Then all ¢’
with ¢'.i = g.i are such that (¢’ =2 ¢) = ff. Therefore
(9 ¢) =

e The boolean cases are straightforward and are therefore
omitted from the proof.

e Assume ¢ = A(p1Ugo) and (§ =3 ¢) = ff. Then
there is # € II™ust(§) s.t. for all i > 0 we have
(7(i) 3 ¢2) = ff or there is j < i with (7(j) >
$1) = ff. By the definitions of P""s* and {5 there is
m € I(g) with 7(¢) = #(¢) and 7 (i, Act) = 7 (i, Act)
for each ¢ > 0. By the inductive hypothesis for all 7 > 0
we have (m(i) 3 ¢2) = ff or there is j < i with
(7(j) B> ¢1) = ff. Consequently (g * ¢) = ff.

e The case of ¢ = A(¢1R¢p2) can be shown similarly to
the case of ¢ = A(p1U o).

e Consider ¢ = K;¢; and (§ =3 ¢) = ff. Then (§ =3
#1) = ff. By the inductive hypothesis (g => ¢1) =
Hence (g =2 ¢) = ff.

Consequently, since gg = do, (a) implies

L (S(n) E* ¢) = tt = (S(n) F° ¢) = tt
and (b) implies

2. (S(n) 2 ¢) = = (S(n) E* ¢) =

O

Theorem 3 (Cutoff theorem). Let S = (T,e,V) be a
PIISUVwith T < e, ¢ an m-indexed formula, and n > m
an integer. The following holds:

S(m) E* ¢ iff S(n) = ¢

To prove the cutoff theorem we require a notion of
behavioural equivalence between system instances. Recall
that m-indexed ACTLK_x formulae are preserved under
m-stuttering-simulation (Kouvaros and Lomuscio 2016).
Let S(n) = (G(n),go(n), R(n),V(n)) and S(n') =
(G(n"),go(n”), R(n"),V(n')). S(n) is said to m-stuttering-
simulate S (n') if there is a relation R C G(n') x G(n) such
that (go(n'), go(n)) € MR and whenever (¢’, g) € R, then:

/

1. V(n ’) (p,z ) = ttiff Vi(n)(g, (p,i)) = tt forall p €
AP,i € {1 .,m};

2. for every n’ € II(¢’), there is a m € II(g), a partition
B{,Bj,... of «/, and a partition By, Ba, ... of 7 such
that for each ¢ > 1, B. and B; are nonempty and finite,
and every state in B is related by R to every state in B;.
If S(n) m-stuttering-simulates S(n'), then S(n) =2 ¢

implies that S(n') =2 ¢ for any m-indexed formula ¢ (Kou-

varos and Lomuscio 2016).

Proof. For the left to right direction we show that S(m) m-
stuttering-simulates S(n). For the right to left direction we
show that §(n) m-stuttering-simulates S(m).

e [—>] Define R C G(n) x G(m) as (g,¢') € R if
gi = ¢g.ifori € {1,...,m}. It is easy to see that
(go(n), go(m)) € R.Let (g9,9") € Rand 7 € II(g) be ar-
bitrary. We construct a path 7’ € II(g’) as required by m-
stuttering simulation. Let 7’ = ¢/, By = g and B} = ¢'.
Then for each j > 1 extent 7’ and define the next blocks
as follows:

— if m(j, Act) is either an asynchronous action or an
agent-environment action performed by an agent ¢ in
{1,...,m}, then 7’ = 7(j, Act)g't, where ¢! is the
state resulting from the agent ¢ performing m(j, Act) at
9. Bjy1=7(j+1)and B}, = g"

— if 7(j, Act) is either an asynchronous action or an
agent-environment action performed by an agent in
{m+1,...,n}, then 7’ = nullg’, where the asyn-
chronous action null can be performed by any agent.
Bji1=m(j+1)and B}, = g".

— if w(j, Act) is a global-synchronous action, then 7' =
7'w(j, Act)g’t, where ¢! is the state resulting from all
the agents performing 7 (j, Act) ing’. Bj+1 = w(j+1)
and Bf,; = g".

By T < e’ is a valid path. Also the state in each B; is re-

lated by R to the state in B3}. Thus 7’ is as required by m-

stuttering simulation. It follows that S(m) m-stuttering

simulates S(n).

e [<] Define R C G(m) x G(n) as (g,9') € R if
gi = ¢.ifori € {1,...,m}. It is easy to see that
(go(n), go(m)) € R.Let (g9,9") € Rand 7 € II(g) be ar-
bitrary. We construct a path 7’ € II(¢g’) as required by m-
stuttering simulation. Let 7’ = ¢/, By = g and B} = ¢'.
Then for each j > 1 extent 7’ and define the next blocks
as follows:

— if m(j, Act) is either an asynchronous or agent-
environment action performed by the agent 7, then 7’ =
m'w(j, Act)g’t, where g'! is the state resulting from the
agent ¢ performing 7(j, Act) at ¢’. Bj41 = w(j + 1)
and Bj,, = g"".

- if w(j, Act) is a global-syncrhonous action, then 7’ =
7'm(j, Act)g't, where g1 is the state resulting from all
the agents performing 7(j, Act) atg’. Bj 41 = 7(j+1)
and Bj,, = g".

It is easy to see that for each Bj, B;, the state in Bj is

related by R to every state in B’. Thus 7’ is as required by

m-stuttering simulation. It follows that S(n) m-stuttering

simulates S(m).
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Theorem 4 (Simulation test). Let S be a PIISYY with pred-
icate abstraction S. The following hold:

I (T<é)=tt=T<e
2. (T<é)=ff=T+%e

Proof.

1. Suppose that (T < é) = tt. Then there is a relation R C

P(L)x L, such that ({i} , i.) € 93 and whenever X ~ )\,
the following conditions hold:

(@) If X 2% X/, then Ao =% X, and (X', )\.) € k.
?; %b

2wk A ~ ~
[$E e Xk, X b g

7 ak 7:b
2 NP 22 \EFL then

(b) If X 75k Xl 75 *xa
7ot ?;a?

and \, —— A\l =
(X UXE ) e R

We have to show that T' < e. Define R C P(L) x L, as

(X,1l.) € R iff there is a set X of state predicates and a

state predicate A, such that:

o (X,)\)ER.

o l. E e

e foreachl € X thereis A € X with E A, and for each

A e X thereis | € X with [ = \. We write X = X to
denote this.

We prove that R is an agent-environment simulation be-

tween T and e. Since ({i},7.) € R we have that

({¢},ee) € R Let (X,l.) € R by means of X, A, be

arbitrary.

e Assume X *% X’. We have to show that [, % [/ and
(X',1)) € R. By the definitions of P and ™% we
have that X —% X’ where a E aand X' = X'
Therefore Ao —% M and (X', )\.) € . By the defi-
nitions of P™us* and £, [, % I, where I, = ).
Thus (X’,1)) € R.

=y Xk, X =b X' and

lo 25 Ll ... e gk b k+l We have to show

that (X U X*I¥) € R By the definitions
of P™®  PmW, tmay  and f;”“y we have that

X ?; xal Xl ?7; xa? ?; % Xk,X 75 b X/ and

L1 C a2 .k .

Ae 295 2L e ot N 50 \k+1 Therefore

(X U Xk XEY € R, Since I = A\F and X U XF* =

X U X it follows that (X U X% 1%) € .

Consequently R is an agent-environment simulation be-
tween 1" and e.

2. Suppose that (I' < é) = ff. Then there is no relation
R C P(L) x L, such that ({i},i.) € & and whenever
X ~ A the following conditions hold:

(@) If X 2% X', then A, =% M and (X', \) € R.

1 2
e Assume X 2% X1 *a5, ...

2 |

5 lixal -1 b*a 1w Sk v L*b Oy
(b) If X X Xk X 5% % and
A 1ot )\1 ;o I

k I ~
. : O, Ak 5D \RHL then (X U
XEF) e R
So there must be a sequence
B A B !. A
{Z} (ENe2t Xl B2 5 O XT
for some r > 1 such that for all sequences

~ Tion 1 T ae e \p
e Ay Ao
either one of the following holds:
N T Ama
(i) X" —— X"l and a ¢ P™(A7).
.. I 15 % LE RS 15 % r+1 15 % Ttk
(i) Xr Bl N X+l @ o XrJrk’
S kb5 It I a2 1otk
X7 25 X' and ) 22— ATFL 22 =

then (X U X% AF) e
ngX,inX/, Zekg)\eﬂ)\/& and o ¢
P." ().
(i) Xy =% X, Ry 20 R T 25 A S0 X and o ¢
P, ().
We have to show that ' £ e. For contradition suppose
that 7' < e. Assume (i) above; the case of (ii) is similarly
shown. By the definitions of P"*%s* and ™" there is a
sequence
2L X S X

As T < e there must be a sequence

2L X, 82

le = le1 2, . 2R, le, & le.

Asa = aand o ¢ P (),;,) we have that a & P, (l.y).

Thus I.;, % [, does not hold. The latter is a contradition.
L]

Theorem 5 (PMC theorem). Let S = (T,e,V) be a
PIISYV with predicate abstraction S = (T, é, \)) such that
(T < é) = tt. Let ¢ be an m-indexed formula. The follow-
ing hold:

1. (S(m) =3 ¢) = tt = S =2 ¢

2. (S(m) F* ¢) =ff = S 2 9.

Proof. From Theorem 2

(S(m) > ¢) = tt = S(m) =% ¢
(S(m) £° ¢) =l = S(m) I ¢.

By assumption and Theorem 4 we have that 7' < e. Thus
Theorem 3 gives

SmE*¢=SE¢

and

and
S(m) F* ¢ = S |£* ¢.
Consequently
L (8(m) E° ¢) = tt = S * ¢.
2. (S(m) E* ¢) = i = S [£2 6.



