
Formal Methods in Computer-Aided Design 2022

Reconciling Verified-Circuit Development and
Verilog Development

Andreas Lööw
Imperial College London

London, UK

Abstract—In software development, verified compilers like
the CompCert compiler and the CakeML compiler enable a
methodology for software development and verification that allows
software developers to establish program-correctness properties on
the verified compiler’s target level. Inspired by verified compilers
for software development, the verified Verilog synthesis tool
Lutsig enables the same methodology for Verilog hardware
development. In this paper, we address how Verilog features
that must be understood as hardware constructs, rather than as
software constructs, fit into hardware development methodologies,
such as Lutsig’s, inspired the development methodology enabled
by software compilers. We explore this issue by extending
the subset of Verilog supported by Lutsig with one such
feature: always_comb blocks. In extending Lutsig’s Verilog
support with this, seemingly minor, feature, we are, perhaps
surprisingly, required to revisit Lutsig’s methodology for circuit
development and verification; this revisit, it turns out, requires
reconciling traditional Verilog development and the traditional
program-verification methodology offered by verified software
compilers. All development for this paper has been carried out
in the HOL4 theorem prover.

Index Terms—hardware development, hardware synthesis,
Verilog

I. INTRODUCTION

In software development, verified compilers enable the
following interactive-theorem-proving-based verified-program
development (VPD) methodology:

1) develop and compile your program in the same way as
when using an unverified compiler;

2) prove a source-level correctness theorem about your
program (by whatever means you have available – the
methodology is independent of how the correctness
theorem is established); and, lastly,

3) transport the source-level program-correctness theorem
down to your verified compiler’s target level by simple
composition of the source-level program-correctness
theorem and the compiler’s (program-independent) cor-
rectness theorem.

VPD has been successfully deployed in many different
software contexts, such as e.g. imperative programming [1],
functional programming [2], concurrent programming [3],
just-in-time compilation [4], [5], compiler-implementation
correctness (by compiler bootstrapping) [2], [6], usability
such as compositional/separate compilation [7], security such
as constant-time preservation [8], and performance such as
time/space reasoning [9]–[11].

In this paper, however, our interest lies in hardware devel-
opment rather than software development. Previous work on
verified hardware-synthesis tools [12]–[15] – also known as
hardware compilers – show that VPD is equally applicable
to hardware contexts, thereby providing a methodology for
circuit development and verification. In this paper, we augment
existing work on VPD in hardware contexts by considering
source-level language Verilog features that must be understood
as hardware constructs rather than as software constructs.

To handle such hardware constructs, we propose a hardware
development methodology combining VPD and traditional
Verilog development (TVD). While radical methodological
redesign is certainty a worthwhile enterprise [16]–[26], we
here dedicate our energy towards an enterprise in which we
want to maintain as much as possible of the look-and-feel of
both VPD and TVD. Specifically, as we further elaborate in
the next section (Sec. II), we want to maintain both (1) VPD’s
ability to transport source-level correctness theorems down to
the compiler’s target level and (2) TVD’s synthesis-modeling-
idiom-based approach to synthesis.

We validate the proposed methodology combining VPD and
TVD by adapting and extending Lutsig [14], a verified synthesis
tool for synchronous Verilog designs, for the methodology.
Specifically, we extend Lutsig’s Verilog support with one of
Verilog’s features that must be understood as a hardware con-
struct: always_comb blocks, which allows hardware designers
to declare that certain parts of their behavioral Verilog code
are to be synthesized to combinational logic. Combinational
logic is stateless logic and stands in contrast to sequential logic
(modeled as e.g. always_ff blocks), which is stateful logic.

All in all, we make the following two contributions:

• We propose a development methodology combining VPD,
i.e. the traditional development methodology based on
verified compilers, and TVD, i.e. traditional Verilog
development, in a way that inherits the strengths of both
and simultaneously avoids their main weaknesses.

• We validate the methodology by showing that it allows
us to add support for always_comb blocks to Lutsig, the
Verilog semantics used in Lutsig, and a proof-producing
Verilog code generator connected to Lutsig.

All the work for this paper has been carried out in the HOL4
theorem prover [27]. All source code and proofs are available
at https://github.com/CakeML/hardware.

https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_15 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://github.com/CakeML/hardware
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_15
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_15
https://creativecommons.org/licenses/by/4.0/

II. BACKGROUND: VPD AND TVD
This section serves two purposes: firstly, it introduces VPD

and TVD in more detail, and, secondly, it establishes notation
and terminology used in the rest of the paper.

A. Verified-program development (VPD)

We now give a more detailed description of VPD, following
the exposition of Leroy [1]. In VPD, we start off with a
source program PS implemented in a source language S and
a compiled program PT implemented in a target language T
produced by a compiler: Comp PS = OK PT . If the compiler is
unable, for whatever reason, to compile PS , then a compile-time
error is reported: Comp PS = Error. The source language S
has a semantics LS , and the target language T has a semantics
LT . The two semantics LS and LT associate sets of observable
behaviors B to source and target programs. We write P ⇓L B
to denote that a program P executes with observable behavior
B under semantics L.

We say that a compiler Comp is verified when we have
proved ∀PS PT , Comp PS = OK PT =⇒ PS ≈ PT for
some notion of semantic preservation ≈. The only notion
of semantic preservation we use in this paper is backward
simulation: PS ≈ PT ⇐⇒ ∀B, PT ⇓LT

B =⇒ PS ⇓LS
B;

that is, any behavior of the target program must be a behavior
allowed by the source semantics.

Compiler users, however, are not ultimately interested in the
correctness of the compiler Comp they are using; rather, when
compiling a source program PS with a compiler, users are
ultimately interested in the correctness of the target program PT

produced by the compiler. This is, of course, also part of VPD.
Since it is easier to prove the correctness of PS and transport
the result to PT than it is to prove the correctness of PT directly,
VPD is as follows: Following Leroy’s exposition, users are
asked to formalize what they mean by their program being
correct by providing a predicate Spec over observable behaviors.
We write P |=L Spec for ∀B, P ⇓L B =⇒ Spec B. Now,
for a successful compiler run Comp PS = OK PT , if the user’s
compiler Comp has been verified (with backward simulation
as the notion of semantic preservation), then the user can derive
PT |=LT

Spec (i.e., what the user is ultimately interested in)
from PS |=LS

Spec by simple composition.

B. Traditional Verilog development (TVD)

We now turn to TVD. As Weste and Harris [28, p. 699]
put it, hardware description languages (HDLs) like Verilog are
“better understood as shorthand for describing digital hardware”
than programming languages. Continuing, Weste and Harris
describe TVD as follows:

1) “[. . .] begin your design process by planning, on paper
or in your mind, the hardware you want.”

2) “Then, write the HDL code that implies that hardware
to a synthesis tool.”

In TVD, an important concept is modeling idioms, which
enable the hardware designer to express not only the behavior
of their design but what kind of hardware they want. Modeling
idioms are what allow the hardware designer to write Verilog

code that “implies” the hardware design the hardware designer
has formed “on paper or in [their] mind.”

Examples of modeling idioms include e.g. always_ff and
always_comb blocks, allowing hardware designers to specify
if sequential or combinational logic should be inferred by the
synthesis tool. In general, what modeling idioms are available
depends on what technology is targeted. E.g., the synthesis
manual for Xilinx’s (unverified) synthesis suite Vivado [29,
p. 111] contains modeling idioms and guidelines for modeling
block RAMs (BRAMs), a type of memory available in Xilinx
FPGAs. The modeling idioms related to BRAMs are presented
as Verilog design fragments, instructing the hardware designer
how to write their Verilog code such that the synthesis tool will
infer features such as write enable inputs, byte-write-enable
inputs, optional output registers, etc.

III. RECONCILING VPD AND TVD

Having introduced both VPD and TVD, we are now in
a position to combine the best of two worlds: we want
the methodology for circuit development and verification
offered by Lutsig to provide the strengths of both VPD, i.e.,
theorem transportation, and TVD, i.e., synthesis-tool control
by modeling idioms.

As a first step, as we want to apply the VPD methodology to
Verilog hardware development, we must specialize Comp, S,
LS , T , and LT to appropriate hardware instances. Since we, in
this paper, are working with Lutsig, we set: Comp = Lutsig,
S = Verilog (abbreviated “ver”), and T = technology-mapped
netlists for (a class of) FPGAs (abbreviated “nl”). For LT ,
Lutsig uses a simple netlist language. What remains to specify
is LS – and this is where our problems begin.

The problems surrounding LS arise from the fact that,
traditionally conceived, Verilog has two semantics: one simu-
lation semantics and one synthesis semantics. The reason for
having two semantics, we will see, is TVD. This, however,
does not fit cleanly into VPD since in VPD the source
language S is supposed to have one and only one semantics
LS ; since otherwise theorem transportation cannot be carried
out by simple composition.

We now discuss the two semantics in the context of synthesis
tool design and how they relate and fit into VPD and TVD.
We first introduce the two semantics, we then survey the state
of the art, and then conclude by stating how our development
methodology – combining VPD and TVD – as implemented
in Lutsig contributes to the state of the art.

Simulation semantics. The simulation semantics is given
by the (System)Verilog standard [30]. The semantics is large,
complicated, and full of gotchas [31], but at the end of the day,
is an informally specified event-based operational semantics.

Synthesis semantics. The situation for the synthesis seman-
tics is less straightforward.

Firstly, one minor hurdle to overcome is that the authoritative
source for the semantics is unclear. Since the Verilog standard
does not provide a synthesis semantics and the Verilog synthesis
standard [32] has been withdrawn, it is up to each synthesis tool
to provide their own synthesis semantics. Current tool-specific

90

synthesis manuals, such as e.g. the synthesis manuals for
Vivado [29] and Quartus [33], however, largely contain similar
material as the withdrawn synthesis standard (similar modeling
idioms, design and coding-style recommendations, etc.), except
specified in a more detailed fashion since such manuals are
both tool- and target-technology-specific. We therefore use
the withdrawn Verilog synthesis standard as the basis for our
discussion here.

Secondly – the major hurdle – the synthesis semantics, both
as specified in the synthesis standard and the tool-specific
synthesis manuals, is not a full semantics like the simulation
semantics; rather, it is just a collection of modeling idioms
and design recommendations built on top of the simulation
semantics. This ends up causing problems since some of the
modeling idioms prescribe semantics incompatible with the
simulation semantics: specifically, some of the modeling idioms
have not only nonfunctional consequences but also functional
consequences; in other words, some modeling idioms have
consequences for the (functional) behavior of synthesized
circuits! In TVD, the problems this causes are known as
simulation-and-synthesis mismatches. Some mismatches are
highlighted in (the informative) App. B in the synthesis
standard. E.g., we are warned that the following module1

will cause a simulation-and-synthesis mismatch since the
assignments to y and tmp are “mis-ordered” (since the block
is supposed to describe combinational logic – that is, stateless
logic – and tmp is read before being assigned):
module andor1b(output reg y, input a, b, c);
reg tmp;

always @* begin
y = tmp | c;
tmp = a & b;
end
endmodule

State-of-the-art VPD. To some extent, VPD and TVD were
reconciled already in the first version of Lutsig. However,
except for X assignments, which, according to the synthesis
standard, “tells the simulator to treat the signal as having
an unknown value and tells the synthesis tool to treat the
signal as a don’t care” [32, p. 106], not much attention was
directed towards simulation-and-synthesis mismatches. This
was because the supported subset of Verilog was sufficiently
small and software-like that the parts of Verilog that risk causing
simulation-and-synthesis mismatches were, in effect, avoided.2

Now, on the other hand, when adding support for
always_comb to Lutsig, i.e., a feature that must be understood
as a hardware construct rather than as a software construct, i.e.,
a feature that must be understood in terms of modeling idioms,
further reconciliation between VPD and TVD is needed. At
the same time, we should acknowledge that problems similar

1Here presented verbatim, using an always @* block rather than an
always_comb block since the synthesis standard was published before the
first SystemVerilog standard – the synthesis standard based on the Verilog
2001 standard [34].

2Clearly, a discussion concluding “Lutsig takes Verilog’s simulation se-
mantics as its synthesis semantics” [14, p. 50] is insufficient for handling
always_comb blocks.

to our present problems can be found in software development
as well. E.g., one aspect of what has happened is that we have
ended up with nonfunctional expectations on our synthesis tool
– and VPD, in its minimal incarnation, only covers functional
expectations, specifically semantics preservation. Nonfunctional
expectations are, of course, sometimes put on software com-
pilers [35], since functional software-compiler guarantees say
(most commonly) nothing about code size, memory usage,
cache performance, overall performance, security, etc. Indeed,
some of the software VPD work mentioned in the introduction
provide examples of VPD work addressing nonfunctional
properties, such as security [8] and space reasoning [9].

Another point of comparison is how so-called undefined
behavior (UB) is handled in languages such as C [36], [37].
UB leaves some parts of the language in question left with
unspecified semantics (to allow for compiler optimizations).
UB forms a subset of the language to avoid. Simulation-and-
synthesis mismatches are similar to UB in the sense that sources
of such mismatches can be seen as parts of Verilog to avoid.
However, the two are not equivalent since the concept that
induces simulation-and-synthesis mismatches, modeling idioms,
has no analog in UB-based approaches to language semantics.

Recall that we aim to keep the look-and-feel of TVD in Lut-
sig’s combination of VPD and TVD. We therefore must include
modeling idioms in Lutsig’s synthesis methodology rather than
try to formulate a synthesis story under a – potentially more
familiar for software developers – UB framework.

State-of-the-art TVD. Today’s commercial (unverified)
synthesis tools leave much to be desired; within the same
tool, simulation-and-synthesis mismatches are handled along
the whole spectrum of: silently miscompiling Verilog designs,
issuing warnings, and aborting the compilation process entirely.
In consequence, the result of a successful synthesis run is
unclear for hardware developers: since an error-free synthesis
run does not guarantee an actually successful synthesis run,
some form of postsynthesis inspection, e.g. testing or manual
visual inspection, is needed to ensure that the functional and
nonfunctional properties we are interested in survived or were
established during synthesis.

Lutsig’s methodology. The conclusion we draw from the
above discussion is that, to handle both TVD and VPD,
Lutsig must implement both Verilog’s semantics: the simulation
semantics for VPD-style theorem transportation, and the
synthesis semantics, in the form of synthesis idioms, for
synthesis-idiom-based TVD.

In Lutsig, TVD is handled on an informal best-effort basis,
since strict compliance prohibits too many optimizations, and
VPD is handled, as it must, formally.

An interesting question is how much of TVD can be
handled formally. For this paper, to illustrate that part of
TVD can be treated formally, the feature of focus of this
paper, always_comb blocks, diverges in Lutsig from the above
general pattern of treating TVD informally: we prove that if the
two semantics assign different behaviors to an always_comb
block (e.g., because of “mis-ordered” writes) in a given input
design, then Lutsig will abort – since Lutsig cannot abide

91

by both semantics if they point in different directions. It is
Lutsig’s two top-level theorems (Sec. VIII and IX) that together
formally show that Lutsig successfully handles both semantics
for always_comb blocks. We leave the consideration of other
synthesis idioms as future work.

Lutsig’s contribution to establishing functional properties.
Like for the first version of Lutsig, we have proved that Lutsig
is semantics preserving (Sec. VIII). Specifically, after our
discussion, it should now be clear that Lutsig must be semantics
preserving with respect to Verilog’s simulation semantics. We
call Lutsig’s formalization of the simulation semantics Lver;
i.e., in terms of VPD, we have LS = Lver. The semantics
is the same Verilog semantics used as in the first version of
Lutsig, with the exception that we now have added support for
always_comb blocks (as described in Sec. V).

Since Lutsig allows for VPD development, after the hardware
designer has transported a source-level correctness theorem
down to the netlist level, the designer can rest assured that
the synthesis process has not introduced any functional bugs.
For functional correctness, VPD effectively forces Lutsig to
adopt (in stark contrast to other Verilog synthesis tools) a
uniform error handling mechanism: if Lutsig cannot guarantee
semantics preservation, it must abort. Like the first version of
Lutsig, and other verified compilers and synthesis tools, silent
miscompilation is guaranteed to never occur.

Lutsig’s contribution to establishing nonfunctional prop-
erties. We improve the state of the art in establishing nonfunc-
tional hardware property by proving that Lutsig’s synthesis
algorithm correctly implements the modeling idiom that
always_comb must generate combinational logic (Sec. IX),
i.e., enables proven-correct TVD for always_comb blocks.
For other modeling idioms, Lutsig does not improve the state
of the art with respect to establishing nonfunctional properties.

Other approaches to circuit correctness. The first Lutsig
paper [14] compares VPD-style hardware development, as
followed here, to other approaches to circuit correctness, such
as translation validation (known as formal equivalence checking
in the hardware world), so we do not repeat that discussion here.

IV. USING LUTSIG IN PRACTICE

The rest of the paper consists of putting the discussion up
till now into practice by adding support for always_comb to
Lutsig and surrounding components. But before heading into
technical details, we show how all pieces of the development
fit together by demonstrating how hardware designers can use
Lutsig in combination with a proof-producing Verilog code
generator, developed in conjunction with Lutsig, to transport
correctness properties down to the netlist level.3

3We emphasize that what is demonstrated here is one of multiple potential
use cases of Lutsig. Like any Verilog synthesis tool, Lutsig can be made
part of different hardware-development flows. In particular, one can imagine
many different front-ends capable of generating Lutsig Verilog ASTs and, in
various ways, producing proofs of correctness for those ASTs. In this paper,
the proof-producing code generator we use fits our purposes here. Someone
wanting to verify and synthesize existing Verilog code will have other needs.
For developers not interested in verification at all, there is a (unverified)
Verilog-text-file front-end for Lutsig available such that Lutsig can be used
like a conventional Verilog synthesis tool.

module avg(input logic clk,
input logic[7:0] signal,
output logic[7:0] avg);

logic[7:0] h0 = 0, h1 = 0, h2 = 0, h3 = 0;

always_ff @(posedge clk) begin
h0 <= signal; h1 <= h0; h2 <= h1; h3 <= h2;
end

always_comb begin
avg = h0 + h1 + h2 + h3;

// Div by 4 by shifting
avg[0] = avg[2]; avg[1] = avg[3]; avg[2] = avg[4];
avg[3] = avg[5]; avg[4] = avg[6]; avg[5] = avg[7];
avg[6] = 0; avg[7] = 0;
end

endmodule

Fig. 1. Example Verilog module

Example module. The Verilog module in Fig. 1, imple-
menting a moving-average filter, serves as a running example
in this section. The module utilizes Lutsig’s new support
for always_comb blocks. Sec. V provides more details
on Lutsig’s Verilog support.

Proving Verilog designs correct. Lutsig is accompanied by
a proof-producing Verilog code generator. The code generator is
explained in more detail in Sec. VI. In short, the code generator
constructs a Verilog module Pver given a HOL embedding
PHOL of a Verilog circuit. As the code generator is proof-
producing, the code generator enables hardware designers to
transport properties proved about the input HOL circuit PHOL,
e.g. PHOL |=LHOL Spec, to the generated Verilog module Pver,
i.e. Pver |=Lver Spec, by simple composition.

The Verilog module in Fig. 1 was in fact generated by
the code generator from a HOL circuit. With the help of the
code generator, we have proved that, if we by s[n] mean
the value of signal s at clock cycle n, the generated Verilog
module satisfies the specification (in 8-bit modular arithmetic)

avg[n] =

∑︁4
i=1 signal[n− i]

4
, i.e., the module is correct.

Going to the netlist level. Now having both a Verilog
module (Fig. 1) and a correctness result for the module,
we can synthesize a netlist implementation of the module,
by invoking Lutsig, and transport the correctness result to
the netlist implementation, by composing the Verilog-level
correctness result with Lutsig’s correctness theorem (i.e., in
general notation, derive Pnl |=Lnl Spec from Pver |=Lver Spec).
We discuss Lutsig in more detail in Sec. VII and the functional
correctness of Lutsig in Sec. VIII. Since the behavior of the
variable avg is specified using an always_comb block, no
register should be generated for the variable; this is further
discussed in Sec. IX in the context of the nonfunctional
correctness property we have proved about Lutsig.

FPGAs. At this point, our formal development ends. To run
the netlist implementation produced by Lutsig on an FPGA, the
netlist needs to be placed and routed onto an FPGA chip and
then encoded into a bitstream for the chip. In our experiments,

92

we used the unverified synthesis suite Vivado 2020.2 for these
last steps. According to our manual testing, the netlist Lutsig
synthesizes for the Verilog module in Fig. 1 runs correctly on
top of the FPGA board we used for testing.

V. FORMAL SEMANTICS

In this section we first describe the updated source language
of Lutsig (Sec. V-A); that is, we describe the subset of Verilog
that Lutsig supports and Lutsig’s Verilog semantics Lver for
this subset. We then describe the updated target language of
Lutsig (Sec. V-B), that is, Lutsig’s netlist language.

A. Lutsig’s Verilog semantics

In Lutsig, circuits are represented as Verilog modules. A
Verilog module, in turn, in Lutsig, consists of:

• a set of input signals (including a clock signal clk),
• a set of variables, some marked externally visible,
• a set of always_comb blocks, and
• a set of always_ff @(posedge clk) blocks.

Lutsig’s Verilog semantics is a functional operational semantics
that takes the following four inputs:

• a Verilog module m to execute,
• the number of clock cycles n to execute the module,
• a function fext : N → string → value modeling snapshots

of the nondeterministic world outside the module, and
• a function fbits : N → bool modeling a stream of

nondeterministic bits4.
Since Lutsig’s Verilog must be convenient to use in formal

reasoning, Lutsig’s Verilog is not, in contrast to full Verilog,
based on nondeterministic event processing. Since Lutsig
targets synchronous designs, the complexities of an event-
driven semantics can be fully avoided. Of particular interest is
the process-level semantics of Lutsig’s Verilog semantics, since
the expression-level and statement-level semantics have not
been updated for this new version of Lutsig. In short, Lutsig’s
Verilog semantics for executing one clock cycle is:

• For clock cycle zero, i.e. before the first clock tick,
initialize all variables (for a variable without a specified
initial value, assign a nondeterministic value) and then
run all always_comb blocks in dependency order.

• For all other clock cycles, run all always_ff blocks in
declaration order followed by all always_comb blocks
in dependency order.

A module’s always_ff blocks are, in Lutsig’s Verilog,
executed in declaration order since the order of execution does
not affect the final result of execution as long as not more
than one process writes to the same variable and all writes
to variables that are read by processes other than the process
making the writes are nonblocking (a type of assignment used
for communication between processes in Verilog).

A module’s always_comb blocks are, in Lutsig’s Verilog,
executed in dependency order since the order of execution

4See Lööw [14] for a discussion on how X values are treated in Lutsig.
We do not repeat the discussion on X values here since such concerns are
orthogonal to our current concerns.

does matter since blocking writes are used even for variables
shared between processes. All always_comb blocks are sorted
before execution by their variable dependencies in the sense
that no process writes to a variable that has been read
by an earlier process. If the processes cannot be sorted in
this way, the semantics aborts with an error. Sorting the
processes complicates the semantics, since a sorting algorithm
is embedded into the semantics. (We have, however, proved that
the algorithm sorts correctly.) The sorting algorithm picks one
particular permutation, but users of the semantics should think
of it as an arbitrary permutation of the input always_comb
blocks that satisfy the mentioned dependency-order criteria.5

Our intention is that Lutsig’s non-event-driven Verilog
semantics should coincide with the event-driven simulation
semantics of full Verilog, as defined by the Verilog standard,
as long as good coding style is followed; e.g., as mentioned
above, not writing blockingly in an always_ff block to a
variable shared between processes. As part of future work,
we plan to formally prove a correspondence between the two
semantics to make the relationship between them more precise.
Such future semantics work is important for Lutsig when
arguing that Lutsig is a Verilog synthesis tool, but such work
is simultaneously independent of Lutsig in the sense that it
would not require Lutsig’s implementation and proofs to be
updated, as long as the work does not unveil problems in the
non-event-driven semantics (and hence requiring us to revisit
the semantics).

B. Lutsig’s netlist semantics

For this version of Lutsig, to support the compilation
of always_comb blocks, we split netlist registers into two
groups: pseudoregisters and real registers. Pseudoregisters are
only needed to represent intermediate compilation results –
i.e., pseudoregisters are always compiled away before the
compilation process is finished. We explain how pseudoregisters
are used in the compilation process in Sec. VII. After adding
pseudoregisters, a netlist in Lutsig consists of two lists of cells
and two lists of registers: one list of cells for the real registers
and one list of cells for the pseudoregisters.

There is a formal semantics in functional-operational style
associated with Lutsig’s netlists. The semantics takes the same
kind of arguments as Lutsig’s Verilog semantics except a
netlist is given rather than a Verilog module. Netlist execution
is similar to Lutsig’s Verilog execution. First, we define a
netlist step to be running all pseudoregister cells, updating all
pseudoregisters, and then running all remaining cells. Now, with
this terminology in mind, we can describe the full semantics:

• For clock cycle zero, initialize all registers and then do a
netlist step.

• For all other clock cycles, update all real registers and
then do a netlist step.

5Picking one particular permutation rather than an arbitrary permutation
simplifies some proofs in the development. But since picking an arbitrary
permutation would simplify the user-facing presentation of the semantics, it
might be worth revisiting this choice.

93

It is important that the netlist semantics is simple since the
semantics is part of the trusted base of circuits produced with
the help of Lutsig. In fact, for netlists without pseudoregisters,
such as the final output netlists generated by Lutsig, it is easy
to prove that the above semantics collapses into the following
clean semantics Lnl′ :

• For clock cycle zero, initialize all registers and then run
all cells.

• For all other clock cycles, update all registers and then
run all cells.

VI. THE PROOF-PRODUCING VERILOG CODE GENERATOR

For this paper, we have extended the proof-producing
Verilog code generator bundled with Lutsig with support for
translating always_comb blocks, such that we can prove
circuits containing such blocks correct.6

The code generator can generate a deeply embedded Verilog
circuit given a shallowly embedded Verilog circuit. To shallowly
embed a Verilog circuit means to express it as a HOL function
(i.e., a functional program). Shallowly embedded circuits are
convenient to work with since HOL4 has well-developed
infrastructure for reasoning about functional programs. The
code generator is an SML function which is proof-producing in
the sense that it, for every run, proves a HOL theorem (using
the HOL4 API) ensuring that the input circuit and output circuit
have the same behavior.

Since the input language to the code generator is Verilog,
although shallowly embedded, there is no need to provide a
new set of hardware-modeling idioms (i.e., a new synthesis
semantics) for the input language. In other words, the input
circuits should be seen as Verilog circuits, and, when shallowly
embedding Verilog circuits, according to the style the code
generator expects, the hardware developer should think of
themselves as doing Verilog development.

The code generator assumes that circuits are embedded
in the style we now describe. Verilog processes must be
embedded as next-state functions over (module-specific) state
records. For each process, the generated Verilog code closely
mirrors the given input HOL function. E.g., recall that the
always_ff block in the Verilog module in Fig. 1 is simply
“h0 <= signal; h1 <= h0; h2 <= h1; h3 <= h2;”;
the next-state function the block is generated from is:

avg_ff fext s s ′
def
= let

s ′ = s ′ with h0 := fext .signal;
s ′ = s ′ with h1 := s.h0;
s ′ = s ′ with h2 := s.h1 in
s ′ with h3 := s.h2

Note how field updates are translated to assignments in Verilog
in a straightforward manner (the syntax r with f := v means
that field f of record r is updated to value v). Also note how two
state records s and s ′ are passed around; these two state records
are the basis of the nonblocking-assignments embedding style

6Unrelatedly, we have also changed how nonblocking assignments are
shallowly embedded, such that a larger set of Verilog designs can be embedded.

used. The record s contains the values of all variables at the
start of the current clock cycle, and the record s ′ contains
the current values of all variables. To see why both records
are needed, consider e.g. the assignments to h0 and h1 in the
generated always_ff block: since the assignment to h0 is
nonblocking, the updated value of h0 is not available until the
next clock cycle, and the HOL embedding of the h1 assignment
must therefore read the value of h0 from the s record (not the
s ′ record) to model Verilog’s semantics correctly.

The rest of the HOL circuit embedding style closely mirrors
Lutsig’s Verilog semantics. First, there is a function

procs [] fext s s ′
def
= s ′

procs (p::ps) fext s s ′
def
= procs ps fext s (p fext s s ′)

for combining a list of next-state functions into one single
next-state function. The function allows for building one next-
state function for all always_ff blocks in the module and
one next-state function for all always_comb blocks. One
important caveat is that the always_comb blocks must be
provided in dependency order, otherwise the HOL circuit
will not correctly mirror Lutsig’s Verilog semantics since
Lutsig’s Verilog semantics sorts all always_comb blocks by
dependency before execution. The resulting two next-state
functions formed by composing all always_ff blocks and
always_comb blocks, respectively, using procs, can then be
given to the following function, also mirroring Lutsig’s Verilog
semantics, to build a full circuit:

mk_circuit sstep cstep s fext 0
def
= cstep (fext 0) s s

mk_circuit sstep cstep s fext (Suc n)
def
= let

s = mk_circuit sstep cstep s fext n;
s = sstep (fext n) s s in
cstep (fext (Suc n)) s s

E.g., the HOL representation of the Verilog module in Fig. 1
is mk_circuit (procs [avg_ff]) (procs [avg_comb]).

Lastly, one more level of encoding is needed to handle
variable initialization, which is simple and we do not detail here.

VII. LUTSIG

We now discuss Lutsig’s new support for always_comb
blocks. To simultaneously honor both Verilog’s simulation se-
mantics and Verilog’s synthesis semantics – in this paper, specif-
ically, for the latter, the modeling idiom that always_comb
blocks must always be mapped to combinational logic – Lutsig
must take on the responsibility to abort if the two semantics
differ in what semantics they assign to some always_comb
block in a given design. In this section, we discuss how
Lutsig implements this responsibility. In Sec. VIII, we show
that Lutsig successfully achieves its responsibility towards
Verilog’s simulation semantics, by presenting a theorem stating
that Lutsig is semantics preserving with respect to Lutsig’s
formalization of Verilog’s simulation semantics. In Sec. IX, we
show that Lutsig successfully achieves its responsibility towards
Verilog’s synthesis semantics (for always_comb blocks), by
presenting a theorem stating that always_comb blocks are
never be mapped to registers (or other stateful constructs).

94

Concretely, the above responsibility boils down to ensuring
that there is no sequential logic inside any always_comb block.
This is where pseudoregisters come in: all variables written to
by an always_comb block are mapped to pseudoregisters,
and all other variables are mapped to real registers. All
pseudoregisters must then be compiled away before the
synthesis process is over, otherwise Lutsig aborts with an error.

A. Variable-level and element-level analysis

To keep the implementation of Lutsig simple, the decision
whether to map a variable to a pseudoregister or a real register
is done on the level of variables. E.g., all elements of an
array variable are either all mapped to pseudoregisters or to
real registers. In full Verilog, the analysis is instead based on
longest static prefixes [30, p. 282]. Such more fine-grained
analysis allows for different parts of an array to be mapped to
different kinds of logic, which could possibly be practically
useful, but would clutter the solution presented here without
providing additional insight.

Note, however, that some amount of element-level analysis
is still needed. E.g., consider a module containing only one
variable a with type logic[1:0] and the following block:
always_comb begin
a[0] = inp0;
a[1] = inp1;
end

The block represents combinational logic since all elements
of the array are assigned. But if one of the assignments
would have been left out, then the block would not represent
combinational logic. Hence, an analysis on the element level
cannot be fully avoided.

B. Lutsig’s synthesis passes

In Lutsig, pseudoregisters are removed at a late stage in the
synthesis pipeline. The following pipeline passes in Lutsig are
important for our discussion here:

SYNT Synthesize the given Verilog design to a netlist
REM Remove unused registers (variable-level analysis)
DET Remove all nondeterminism from the netlist
MAP Compile and technology-map away array cells
REM Remove unused registers (element-level analysis)

Pseudoregisters are introduced in SYNT and not removed until
MAP. Since MAP is done on the element level (rather than
the variable level as the passes before it), it was natural to
place the removal of pseudoregisters there. The downside of
this approach is that we had to update all intermediate passes
of Lutsig, such as REM and DET, to handle the more complex
netlist semantics with pseudoregisters. (Note that REM is run
twice, which we motivate in the next section.)

C. Problems in compiling combinational logic

We now highlight how Lutsig handles some of the problems
related to compiling combinational logic. Our presentation is
example driven and many of the examples relate to detecting
simulation-and-synthesis mismatches. It is important to consider
not only designs that are rejected by Lutsig but also designs

that are accepted, since compiler-correctness theorems like
Lutsig’s (of the form Comp PS = OK PT =⇒ PS ≈ PT)
do not protect against compiler bugs that cause compilers to
fail on valid input code (i.e., bugs causing the compiler to
return Error when it should have returned OK). To exemplify,
consider the extreme case of a compiler that always returns
Error: such a compiler is vacuously correct, but, of course,
not particularly useful.

1) Combinational logic in always_ff blocks: Code inside
always_comb blocks must always represent combinational
logic only, but code inside always_ff blocks can represent
both combinational and sequential logic. E.g., consider a
module consisting of three variables a, b, and c with type
logic[1:0] with one single block:
always_ff @(posedge clk) begin
a = inp0;
b[0] = inp1;
b[1] = inp2;
c <= a + b;

end

Such code should not generate registers for a and b since those
registers would never be read. REM makes sure the registers
for a and b generated by SYNT are optimized away before
the synthesis process is over. REM is run twice since we want
to catch easy cases (such as a in the example) early but at the
same time also make sure to catch cases requiring element-level
analysis (such as b in the example).

2) Sequential logic in always_comb blocks: Lutsig must
check that all always_comb blocks actually model combina-
tional logic. E.g., Lutsig must reject the following block:
always_comb a = a + 1;

For this paper, we have extended MAP to handle this.
MAP handles the compilation of netlist-level array constructs

such as array cells and array registers, by mapping them to
array constructs natively available or to Boolean subcircuits.
MAP is centered around a map σ from cell inputs to lists of
“marked” cell inputs. MAP visits all netlist cells in order and
the map σ is updated as the netlist is visited to keep track of
mapped cells. For real registers, all inputs are marked legal
from the start of compilation. For pseudoregisters, all inputs are
initially marked as illegal inputs. If an illegal input is referenced
during compilation (i.e. the (relevant part of the) σ entry for
the cell input is marked illegal), the compilation is aborted.

We now consider two examples. First, note that the reference
to a on the right-hand side in the above always_comb block
will cause the compilation to abort. Now, instead consider
the following Verilog code exemplifying code Lutsig accepts
(although note that the illustration is done on the Verilog level
rather than on the netlist level that MAP is actually run at):
always_comb begin
// since b is a pseudoregister, we have:
// sigma(b) = [illegal, illegal]

b[0] = inp0; // sigma(b) = [illegal, inp0]
b[1] = inp1; // sigma(b) = [inp1, inp0]

// we can read the full b here since all
// elements of b are legal

95

b = b + 1;
end

Note that since nonsynthesizable code is rejected by Lutsig,
it is not important what semantics Lutsig’s Verilog semantics
assigns to nonsynthesizable code. For some nonsynthesizable
code, Lutsig’s semantics diverges from Verilog’s simulation
semantics. E.g., recall that all blocks are unconditionally
executed each clock cycle in Lutsig’s semantics. In contrast,
in Verilog’s simulation semantics, always_comb blocks are
only executed when something they depend on is updated.
But since combinational logic is idempotent – that is, we
can execute it multiple times without affecting the result –
executing the same always_comb multiple times is harmless.
However, if the always_comb block does not actually model
combinational logic, this reasoning does not hold, and the two
semantics might diverge.

3) Intrablock order problems: Recall the andor1b module
with “mis-ordered” assignments discussed in Sec. III. The σ-
based MAP pass also handles such code correctly. E.g., Lutsig
rejects the following code with the same problem:
always_comb begin
b = a + 1; // sigma(a) says a illegal here!
a = inp;

end

4) Interblock order problems: Recall that Lutsig’s non-event-
based Verilog semantics sorts always_comb blocks before
execution (see Sec. V). E.g., to assign sensible semantics to
the following code, the order of the blocks needs to be reversed
before execution:
always_comb b = a + 1;
always_comb a = inp;

The same order problem occurs in compilation: To compile the
above code correctly, Lutsig must first sort the always_comb
blocks by their dependencies. To sort, Lutsig uses the same
sorting algorithm as used in Lutsig’s Verilog semantics.

Not all processes can be ordered by their dependencies. Since
combinational logic must not include combinational loops, the
sorting algorithm used in Lutsig rejects code containing circular
dependencies like the following:
always_comb a = b + 1;
always_comb b = a + 1;

5) If statements: Lutsig handles if statements correctly. E.g.
the following code is rejected:
always_comb
if (c)
a = inp;

//else
// a = 'x;

If instead the else branch is uncommented, then Lutsig
synthesizes the code successfully. The original block without
an else branch gets stuck in the synthesis process since SYNT
generates a mux with inp and the pseudoregister generated for
a as inputs and MAP eventually detects that a pseudoregister
is referenced and aborts the synthesis process.

6) Case statements and nested if statements: Compiling case
statements is similar to compiling if statements: if a variable
is assigned in one branch, then it must be assigned in all other

branches as well. Let the variable c have type logic[1:0]
and consider the following code:
always_comb
case (c)
2'b00: a = 1;
2'b01: a = 4;
2'b10: a = 1;
2'b11: a = 2;

//default: a = 'x;
endcase

A sufficiently smart synthesis tool would realize that a is
assigned for all possible values of c. However, Lutsig’s syn-
thesis algorithm is not smart and requires the commented-out
default branch above to realize that all cases are covered. The
same holds for the analogous situation with nested if statements.
In fact, Lutsig handles case statements by expanding them to
nested if statements, so Lutsig’s limited case statement handling
is a consequence of Lutsig’s limited if statement handling.

VIII. FUNCTIONAL CORRECTNESS OF LUTSIG

We now state Lutsig’s functional-correctness theorem,
thereby showing that Lutsig successfully abides by (its for-
malization of) Verilog’s simulation semantics. The theorem
statement is the same as in the previous version of Lutsig; the
HOL4 proof of the theorem, however, has been updated to take
into account the new functionality added in this paper. If we let
P ⇓n,fbits

L S denote that design P ’s externally visible state is S
under the semantics L after n clock cycles with nondeterminism
source fbits , then Lutsig’s correctness theorem is as follows:

Lutsig Pver = OK Pnl =⇒
∃Snl, Pnl ⇓n,fbits

Lnl′
Snl ∧

∃fbits ′, Pver ⇓n,fbits′

Lver
Sver =⇒ Snl = Sver

Per the usual convention, all free variables in the theorem are
implicitly universality quantified. Note that since the netlist
Pnl in the theorem statement never contains pseudoregisters,
we can use the simplified netlist semantics Lnl′ which does
not handle pseudoregisters.

Although the theorem statement is more complex than
straightforward backward simulation as presented in Sec. II-A,
the theorem still allows for theorem transportation from the
Verilog level down to the netlist level by simple composition
(i.e., VPD): Given a circuit-correctness theorem stating that a
Verilog module Pver never crashes (regardless of what fbits is
supplied), say ∃Sver, Pver ⇓n,fbits

Lver
Sver∧Spec Sver for some spec-

ification Spec, if Lutsig successfully synthesize Pver to a netlist
Pnl, then we can easily derive ∃Snl, Pnl ⇓n,fbits

Lnl′
Snl ∧ Spec Snl.

IX. NONFUNCTIONAL CORRECTNESS OF LUTSIG

We now turn to the nonfunctional correctness of Lutsig.
Recall that Verilog’s synthesis semantics enables hardware
designers to express hardware design ideas to their synthesis
tool through modeling idioms. The theorem presented in
this section, which we have proved in HOL4, shows that
Lutsig correctly handles always_comb blocks in the sense that
the theorem captures the modeling idiom that always_comb
blocks must be mapped to combinational logic [30, p. 207].

96

We formalize this modeling idiom as follows: for any run
Lutsig Pver = OK Pnl, if a variable is written to in an
always_comb block in Pver, then no register with the same
name as the variable will be included in Pnl. Formally, the
theorem is as follows:

Lutsig Pver = OK Pnl =⇒
∀var, var ∈ comb_vars Pver =⇒ var ̸∈ regs Pnl

Note that the theorem relates concepts in the input design Pver
(writes) to concepts in the final netlist Pnl (registers) – this
means that we must, in our proofs, carry information from the
very first compilation phase down to the very last.7

X. CONCLUSION

We now conclude. In our discussion on the relationships
between Verilog’s simulation semantics, Verilog’s synthesis
semantics, VPD, and TVD, we identify Verilog’s modeling
idioms as the core cause of tensions between VPD and TVD.
To put our discussion to test, we have added support for
always_comb blocks to the verified synthesis tool Lutsig.

Our discussion on VPD and TVD paves the way for further
Lutsig extensions that add support for Verilog constructs
associated with simulation-and-synthesis mismatches, such as
support for BRAM inference.

Another interesting direction for future work to explore is
how a more detailed hardware semantics would affect the
always_comb discussion. In this paper our Verilog semantics
is at the level of cycle-by-cycle behavior – what are the
alternatives for a more detailed hardware semantics that,
while at the same time as keeping source-level reasoning
feasible, allow us to turn the nonfunctional property we have
proved in this paper into a part of the compiler’s functional
correctness theorem?

Lastly, no approach to hardware development, regardless
of hardware language used, completely shields the hardware
designer from the synthesis aspects we have discussed in this
paper. It would therefore be interesting to consider how much
of our discussion on VPD and TVD translates into hardware
development and synthesis-tool verification for other hardware
languages. The questions we raise in this paper will reappear in
similar form regardless of the hardware language used. After all,
not even so-called high-level synthesis (HLS), i.e., generating
hardware from software languages like C, can completely
hide the synthesis process from hardware developers. E.g., the
manual [38, p. 17] for Vitis, an unverified HLS tool for C, C++,
and OpenCL, states that “arbitrary, off-the-shelf software cannot
be efficiently converted into hardware” and that, moreover,
“even if [a] software program can be automatically converted
(or synthesized) into hardware, achieving acceptable quality
of results, will require additional work such as rewriting the

7Before we started working on the proof, Lutsig did not actually satisfy our
formalization of the always_comb modeling idiom. This was because the
SYNT pass (see Sec. VII) used the presence of writes in the design that was
given to that pass to decide which variables to map to real registers and which
to pseudoregisters rather than the presence of writes in the design as given by
the user (i.e., Pver in the above theorem) – the former does not reliably track
the latter since writes may be optimized away in the compilation process!

software to help the HLS tool achieve the desired performance
goals.” The pessimism of the manual [38, p. 28] continues:
“Software written for CPUs and software written for FPGAs
is fundamentally different. You cannot write code that is
portable between CPU and FPGA platforms without sacrificing
performance.” To prepare its readers for hardware development
using Vitis, the manual informs its readers what they need
to know about the Vitis synthesis process to design efficient
hardware; in other words, the HLS hardware designer, much
like the Verilog hardware designer, must be aware of how to
control their synthesis tool and how to communicate to their
synthesis tool what kind of hardware they want. In total, the
Vitis manual is 660 pages, reflecting the fact that not even
HLS manages to abstract away the complexities of synthesis.

ACKNOWLEDGMENT

We thank Magnus Myreen, Adam Chlipala, David Greaves,
Tom Melham, Warren Hunt, Koen Claessen, Wolfgang Ahrendt,
Philippa Gardner, and Kashish Raimalani for comments on
drafts of this paper. This work was supported by the Swedish
Foundation for Strategic Research.

REFERENCES

[1] X. Leroy, “A formally verified compiler back-end,” Journal of Automated
Reasoning, vol. 43, no. 4, 2009.

[2] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML: A
verified implementation of ML,” in Principles of Programming Languages
(POPL), 2014.

[3] J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell,
“CompCertTSO: A verified compiler for relaxed-memory concurrency,”
Journal of the ACM, vol. 60, no. 3, 2013.

[4] A. Barrière, S. Blazy, O. Flückiger, D. Pichardie, and J. Vitek, “Formally
verified speculation and deoptimization in a JIT compiler,” Proceedings
of the ACM on Programming Languages, vol. 5, no. POPL, 2021.

[5] M. O. Myreen, “Verified just-in-time compiler on x86,” in Symposium
on Principles of Programming Languages (POPL), 2010.

[6] ——, “A minimalistic verified bootstrapped compiler (proof pearl),” in
Conference on Certified Programs and Proofs (CPP), 2021.

[7] D. Patterson and A. Ahmed, “The next 700 compiler correctness theorems
(functional pearl),” Proceedings of the ACM on Programming Languages,
vol. 3, no. ICFP, 2019.

[8] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, and
A. Trieu, “Formal verification of a constant-time preserving C compiler,”
Proceedings of the ACM on Programming Languages, vol. 4, no. POPL,
2019.

[9] A. Gómez-Londoño, J. Åman Pohjola, H. T. Syeda, M. O. Myreen,
and Y. K. Tan, “Do you have space for dessert? A verified space
cost semantics for CakeML programs,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, 2020.

[10] R. M. Amadio, N. Ayache, F. Bobot, J. P. Boender, B. Campbell,
I. Garnier, A. Madet, J. McKinna, D. P. Mulligan, M. Piccolo, R. Pollack,
Y. Régis-Gianas, C. Sacerdoti Coen, I. Stark, and P. Tranquilli, “Certified
complexity (CerCo),” in Foundational and Practical Aspects of Resource
Analysis (FOPARA), 2014.

[11] Z. Paraskevopoulou and A. W. Appel, “Closure conversion is safe for
space,” Proceedings of the ACM on Programming Languages, vol. 3, no.
ICFP, 2019.

[12] T. Braibant and A. Chlipala, “Formal verification of hardware synthesis,”
in Computer Aided Verification (CAV), 2013.

[13] T. Bourgeat, C. Pit-Claudel, A. Chlipala, and Arvind, “The essence of
Bluespec: A core language for rule-based hardware design,” in Conference
on Programming Language Design and Implementation (PLDI), 2020.

[14] A. Lööw, “Lutsig: A verified Verilog compiler for verified circuit
development,” in Conference on Certified Programs and Proofs (CPP),
2021.

97

[15] Y. Herklotz, J. D. Pollard, N. Ramanathan, and J. Wickerson, “Formal
verification of high-level synthesis,” Proceedings of the ACM on
Programming Languages, vol. 5, no. OOPSLA, 2021.

[16] F. Schuiki, A. Kurth, T. Grosser, and L. Benini, “LLHD: A multi-
level intermediate representation for hardware description languages,”
in Conference on Programming Language Design and Implementation
(PLDI), 2020.

[17] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
FIRRTL ground: Hardware construction languages, compiler frameworks,
and transformations,” in International Conference on Computer-Aided
Design (ICCAD), 2017.

[18] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
Scala embedded language,” in Annual Design Automation Conference
(DAC), 2012.

[19] R. Nikhil, “Bluespec SystemVerilog: Efficient, correct RTL from high-
level specifications,” in International Conference on Formal Methods
and Models for Co-Design (MEMOCODE), 2004.

[20] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: Hardware design
in Haskell,” in International Conference on Functional Programming
(ICFP), 1998.

[21] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards, “Cλash:
Structural descriptions of synchronous hardware using Haskell,” in
Euromicro Conference on Digital System Design, 2010.

[22] L. Vega, J. McMahan, A. Sampson, D. Grossman, and L. Ceze, “Reticle:
A virtual machine for programming modern FPGAs,” in Conference on
Programming Language Design and Implementation (PLDI), 2021.

[23] J. P. Pizani Flor, W. Swierstra, and Y. Sijsling, “Π-Ware: Hardware
description and verification in Agda,” in International Conference on
Types for Proofs and Programs (TYPES 2015), 2018.

[24] W. L. Harrison, I. Graves, A. Procter, M. Becchi, and G. Allwein, “A
programming model for reconfigurable computing based in functional con-
currency,” in International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2016.

[25] R. Nigam, S. Atapattu, S. Thomas, Z. Li, T. Bauer, Y. Ye, A. Koti,
A. Sampson, and Z. Zhang, “Predictable accelerator design with time-
sensitive affine types,” in Conference on Programming Language Design
and Implementation (PLDI), 2020.

[26] M. Christensen, T. Sherwood, J. Balkind, and B. Hardekopf, “Wire sorts:
A language abstraction for safe hardware composition,” in Conference
on Programming Language Design and Implementation (PLDI), 2021.

[27] K. Slind and M. Norrish, “A brief overview of HOL4,” in Theorem
Proving in Higher Order Logics (TPHOLs), 2008.

[28] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. Pearson, 2011.

[29] Vivado Design Suite User Guide: Synthesis (UG901, v2020.2), Xilinx,
2021.

[30] “IEEE standard for SystemVerilog–unified hardware design, specification,
and verification language,” IEEE Std 1800-2017, 2018.

[31] S. Sutherland and D. Mills, Verilog and SystemVerilog Gotchas: 101
Common Coding Errors and How to Avoid Them. Springer, 2007.

[32] “Verilog register transfer level synthesis,” IEEE Std 62142-2005, 2005.
[33] Intel Quartus Prime Pro Edition User Guide: Design Recommendations

(UG-20131, v21.1), Intel, 2021.
[34] “IEEE standard for Verilog hardware description language,” IEEE Std

1364-2001, 2001.
[35] L. Simon, D. Chisnall, and R. Anderson, “What you get is what you

C: Controlling side effects in mainstream C compilers,” in European
Symposium on Security and Privacy (EuroS&P), 2018.

[36] C. Hathhorn, C. Ellison, and G. Roşu, “Defining the undefinedness of C,”
in Conference on Programming Language Design and Implementation
(PLDI), 2015.

[37] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall,
R. N. M. Watson, and P. Sewell, “Into the depths of C: Elaborating the
de facto standards,” in Conference on Programming Language Design
and Implementation (PLDI), 2016.

[38] Vitis High-Level Synthesis User Guide (UG1399, v2021.1), Xilinx, 2021.

98

	Introduction
	Background: VPD and TVD
	Verified-program development (VPD)
	Traditional Verilog development (TVD)

	Reconciling VPD and TVD
	Using Lutsig in practice
	Formal semantics
	Lutsig's Verilog semantics
	Lutsig's netlist semantics

	The proof-producing Verilog code generator
	Lutsig
	Variable-level and element-level analysis
	Lutsig's synthesis passes
	Problems in compiling combinational logic
	Combinational logic in always_ff blocks
	Sequential logic in always_comb blocks
	Intrablock order problems
	Interblock order problems
	If statements
	Case statements and nested if statements

	Functional correctness of Lutsig
	Nonfunctional correctness of Lutsig
	Conclusion
	References

