
A Proof-Producing Translator for
Verilog Development in HOL
Andreas Lööw

Chalmers University of Technology
Gothenburg, Sweden

Magnus O. Myreen
Chalmers University of Technology

Gothenburg, Sweden

Abstract—We present an automatic proof-producing translator
targeting the hardware description language Verilog. The tool
takes a circuit represented as a HOL function as input, translates
the input function to a Verilog program and automatically proves
a correspondence theorem between the input function and the
output Verilog program ensuring that the translation is correct.
As illustrated in the paper, the generated correspondence theo-
rems furthermore enable transporting circuit reasoning from the
HOL level to the Verilog level. We also present a formal semantics
for the subset of Verilog targeted by the translator, which we
have developed in parallel with the translator. The semantics is
based on the official Verilog standard and is, unlike previous
formalization efforts, designed to be usable for automated and
interactive reasoning without sacrificing a clear correspondence
to the standard. To illustrate the translator’s applicability, we
describe case studies of a simple verified processor and verified
regexp matchers and synthesize them for two FPGA boards. The
development has been carried out in the HOL4 theorem prover.

I. INTRODUCTION

When building fully-verified systems, so called verified
stacks [1]–[3], software and hardware cannot be treated as
separate, disconnected worlds. For a system to be fully correct,
it is not enough that its software and the hardware constituents
are correct considered independently of each other: the software
and hardware components must also be integrated correctly. To
be able to state and prove all-encompassing system correctness
claims, the software, hardware, and all integrations between
them must be made available inside the same formal system.

In a recent paper [4], we present a methodology to construct
verified stacks inside the HOL4 interactive theorem prover [5].
For the software side of the stacks, we rely on (and extend) the
CakeML project [6]. For the hardware side, we introduce a new
hardware development methodology. In this paper, we provide
the technical details of this hardware development methodology.

Formal verification already has an established position in
(industrial) hardware development, but only in a limited sense.
The dominating formal verification approach consists of relying
on so-called automatic verification tools, offering e.g. model
checking and equivalence checking. Such tools, in any form
resembling the current state-of-the-art,
• cannot handle the intricacies of reasoning inside an

explicitly stated formal semantics for an industry-relevant
hardware description language (HDL), such as Verilog
or VHDL, and consequently do not formally relate their
guarantees to such semantics,

• nor can they handle complex full-system specifications;
instead, system-externally justified simplifications, trans-
lations, and decompositions must be introduced to make
the complexity manageable for the tools.

The alternative approach of interactive theorem proving
(ITP) has the potential, we claim, to overcome the limitations
listed above. This would be because, inside ITP systems, such
as HOL4, automatic and manual proofs can be combined in
logically safe ways. The ITP approach has been taken many
times before (see Sec. VIII), and there has been previous
work on formalizing the semantics of mainstream low-level
HDLs, and previous work on formally verifying the correctness
of concrete, or parameterized, circuits, inside ITP systems.
However, to the best of our knowledge, there has not been
prior work combining these two efforts, i.e. verification of
non-trivial circuits with respect to a detailed explicitly stated
formal semantics for one such description language.

Our hardware development methodology is designed to
make hardware verification easy in HOL, and at the same
time, support a solid connection to a formal semantics of a
subset of Verilog. The heart of the approach is an automatic
proof-producing tool that, given a functional version of a
Verilog program in HOL, produces Verilog code and proves
a correspondence theorem stating that the Verilog code and
the functional code have the same behavior according to a
formal semantics of Verilog we have developed. Furthermore,
the correspondence theorem enables transporting system cor-
rectness results for the functional code to the Verilog code, as
illustrated in Sec. II.

This paper makes the following contributions:

• We elaborate on our previously published hardware de-
velopment methodology that is centered around functional
versions of Verilog programs in HOL. (Sec. II, III, IX)

• We present the details of our automatic tool that makes
the methodology have a solid connection to our explicitly
defined operational semantics for Verilog. (Sec. VI)

• The description of our formal semantics for a subset of
Verilog is also a contribution. The semantics is carefully
carved out to be faithful to the Verilog standard, manage-
able in complexity for HOL proofs, and sufficiently large
to express interesting synthesizable hardware. (Sec. V)

All source code for this work can be found at https://

github.com/CakeML/hardware.

https://github.com/CakeML/hardware
https://github.com/CakeML/hardware

II. EXAMPLE

This section illustrates the ideas behind our hardware
development methodology through an example. Subsequent
sections provide technical details.

The first step in our methodology is to embed (express) the
circuit-to-be-verified inside HOL. To do this, the user must
first define a new state record type containing the variables
the circuit is to operate over. If the circuit is to interact with
the external world, a second state record representing world
states must be defined also. The user must then define the
circuit in terms of next-state functions operating over these
two state records. For the purposes of our example, consider
the following HOL function AB as a model of a circuit:

A fext s =
if fext .pulse then s with count := s.count + 1w else s

B s = if 10w <+ s.count then s with done := T else s
AB fext init 0 = init
AB fext init (Suc n) = let s ′ = AB fext init n in
〈|count := (A (fext n) s ′).count; done := (B s ′).done|〉

The HOL syntax s with x := y means setting field x to
y in record s , 〈| . . . |〉 constructs a new record instance, and
<num>w is notation for constant words. The AB circuit is a
combination of two circuits, A and B. The A circuit checks for
an external pulse signal: A adds one to count whenever pulse is
detected. The parallel circuit B assigns true to done whenever
count is larger than 10. The combined AB function takes three
arguments: a function fext from time (a natural number) to
the user-defined external-world state record, modeling the
circuit-external world; init , an instance of the user-defined
circuit-internal state record; and a third argument specifying
the number of clock cycles to evaluate the circuit for.

The second step in our methodology is to run the circuit
through our proof-producing translation tool. For AB, the tool
generates an in-logic Verilog AST ABv representing a Verilog
module consisting of two processes corresponding to A and B:

always_ff @ (posedge clk) // A
if (pulse) count <= count + 8’d1;

always_ff @ (posedge clk) // B
if (8’d10 < count) done = 1;

The tool is proof-producing, meaning that each run of the
tool automatically proves a correspondence theorem stating
that the generated Verilog code ABv behaves the same as the
input function AB – thereby guaranteeing the correctness of the
translation. Crucially, these correspondence theorems moreover
allow us to transport properties proved about AB (by any means
inside HOL) to the generated Verilog code ABv without any
manual reasoning involving Verilog semantics.

The third step in our methodology is proving and transporting
circuit properties. For our running example of the AB circuit,
we prove a simple property as follows. If we assume that the
input pulse is true infinitely often,

pulse_spec fext ⇐⇒ ∀n. ∃m. (fext (n + m)).pulse,

then we can easily prove that done will eventually be set to true:

` pulse_spec fext ⇒ ∃n. (AB fext init n).done.

Properties proved of HOL functions such as AB can easily be
transported to properties of its generated Verilog code thanks
to the automatically proved correspondence theorems. For our
running example, we can prove the following, (to repeat:)
without manual reasoning about the Verilog semantics:

` pulse_spec_verilog fext ∧ vars_has_type Γ ABtypes ⇒
∃n Γ ′.

mrun fext ABv Γ n = Inr Γ ′ ∧
mget_var Γ ′ “done” = Inr (VBool T).

Here mrun is the top-level Verilog semantics. The theorem
states that there exists some number of clock cycles n such
that the Verilog semantics successfully produces a state for the
nth clock cycle, and in that state mget_var tells us that done
is set to true, i.e. Verilog value VBool T.

For synthesis, we ship a Verilog pretty-printer that can be
used to print the generated Verilog code ABv to file to be used
(after adding the necessary module boilerplate code) as input
for off-the-shelf synthesis toolchains that target (e.g.) FPGAs.

A. Larger examples

The example above was intentionally kept simple for ease
of presentation. However, the methodology has been shown
to work on larger examples. Sec. VII describes how we have
applied it in our paper on verified stacks [4] to produce a
verified implementation of a processor for execution of CakeML
programs. In the same section we also describe how to build
circuits that perform matching against regular expressions.

III. HARDWARE DEVELOPMENT METHODOLOGY SUMMARY

Fig. 1 summarizes the flow the translator enables, from high-
level specifications down to runnable FPGA application, as
exemplified in the previous section.

We want to stress that just because we are working in HOL
does not mean that our approach is an instance of high-level
synthesis (HLS). As can be seen in the example from the
previous section, the input and output languages are at the
same (relatively low) abstraction level. Even when writing
HOL circuits, we are still thinking in terms of hardware: we
are thinking in terms of clock cycles and logical gates. From
one perspective, a HOL circuit is just another HOL function
(in other words, a functional program), expressed in a restricted
subset. This perspective is what enables using HOL circuits
for reasoning. But from another perspective, we have a circuit
in almost Verilog, that can be turned to actual Verilog by our
proof-producing translator.

IV. OVERVIEW

The following sections provide more technical detail: We will
first describe the subset of Verilog we target and its semantics
(Sec. V), followed by the internals of the translator (Sec. VI).
We then explain how we have applied our methodology in
two case studies (Sec. VII). Lastly, we discuss related work
(Sec. VIII) and consider trusted base issues (Sec. IX).

(1) Circuit specification

(2) Circuit as HOL function

(3) Circuit as Verilog AST in HOL

(4) Circuit as Verilog text file

(5) Circuit bitstream for specific FPGA

Manual correspondence proof
(in HOL)

Automatic proof-producing
translation (in HOL)

Automatic pretty-printing
(simple SML function)

Verilog compilation/synthesis
(using an external toolchain)

Fig. 1. An overview of our hardware development methodology. For non-trivial
circuits, human-guided proofs are needed for the connection between layers
1 and 2, whereas the other steps are always automatic. The correspondences
above the dotted line are proved functionally correct, and the correspondences
below the dotted line are not covered by our formal development. The main
focus of this paper is the translator connecting layers 2 and 3.

V. VERILOG

In this section we describe the syntax and formal semantics
of the subset of Verilog targeted by the translator. Verilog
is a large language, the current standard [7] is more than
1300 pages long. But many parts of the standard are irrelevant
for describing hardware: these, non-synthesizable, parts of
the standard include, e.g., concepts used to express test
benches and other testing infrastructure. We have not included
all synthesizable constructs in our formalization; rather, the
subset we target consists of synthesizable constructs needed
in synthesizable behavioral process-based Verilog programs.
Our aim is that this subset should be large enough to describe
simple synchronous hardware. The subset has already been
sufficient for the case studies we present in Sec. VII.

Our Verilog formalization is based on the standard’s event-
driven simulation semantics, which the standard defines in
informal English prose. Two criteria have guided our formal-
ization work. First and foremost, we wanted a sound semantics,
in the sense that the functional correctness of a circuit in our
semantics implies functional correctness with respect to the
standard. Furthermore, it has been important to us that our
semantics is usable for reasoning inside an ITP. We have
addressed both of these concerns by keeping the semantics
intentionally small, and have tried to only including well-
understood constructs.

A. Abstraction level (Verilog as an output language)

Verilog is the exit representation used in our hardware
methodology, meaning that Verilog is the communication
medium used for interaction with external synthesis pipelines.

v ::= bool | [v]
op ::= + | * | < | & | >> | . . .
e ::= v literal constant

| x variable reference
| e[e] indexing
| e[n:m] slicing, for n,m ∈ N
| ¬e unary not
| e op e binary operator
| e ? e : e ternary if

s ::= s ; s sequential sequencing
| if e then s else s if-statement
| case e [e : s] endcase case-statement
| e = e blocking assignment
| e <= e non-blocking assignment

p ::= [always_ff @ (posedge clk) s]

Fig. 2. Verilog values v, expressions e, statements s, and programs p. Variable
declarations are not included in the figure.

We target behavioral process-based Verilog, with concepts
such as integer addition and multiplication available as primitive
notions. We chose this level because it is important to not work
at a too low level of abstraction when using Verilog as the
input language for synthesis tools.

It is all too easy to fall into the trap of thinking that “real”
hardware consists of “the standard gates”, such as ANDs
and XORs, and flip flops, and consequently that this should
be our target representation. This is incorrect, as what real
hardware consists of is a technology-dependent question. In the
case of FPGAs, real hardware consists of LUTs, DSP blocks,
BRAMs, etc., rather than some homogeneous collection of
gates. For example, if we compile away the notion of addition
by compiling to ANDs, XORs, etc. before handing of our
circuits to a synthesis pipeline, the pipeline might fail to exploit
special-purpose hardware constructs available for efficient
addition computations (as noted by e.g. Beyer et al. [8]).

B. Subset of Verilog included

We will now discuss the Verilog constructs included in our
semantics, and how they relate to the standard. Fig. 2 gives an
overview of the constructs included.

Programs. In Verilog, programs consist of hierarchically
connected modules. Each module has a set of input and
output ports, which are used to connect the different modules
together. Common top-level constructs inside a module beyond
other instantiated modules include data declarations, procedural
blocks and continuous assignments.

In our formalization, to restrict the scope of the initial version
of our project, we consider a flattened module hierarchy (i.e.,
programs consist of a single module). This can be understood
as saying that we do not (formally) consider code used to
“glue” modules together. (Meredith et al. [9] take the same
approach in their Verilog semantics in the K framework, see
the discussion in Sec. VIII.) We did not find an immediate
use for continuous assignments in our case studies as they
did not include three-state buses and as all combinational
logic could be placed inside procedural blocks, so we did

not include such assignments in the formalization. As we are
only interested in single-clock domain synchronous hardware,
all procedural blocks in our formalization are always_ff
blocks waiting for a positive edge (posedge) from a program-
common clock. Consequently, a Verilog program p (Fig. 2) in
our formalization consists of a data declarations section and
a list of always_ff blocks. We use the terms process and
procedural block synonymously throughout.

Statements and expressions. In our formalization, state-
ments s and expressions e (both in Fig. 2), the syntactical ele-
ments inside procedural blocks, consist, beyond non-blocking
assignments, mostly of standard imperative-language constructs.
The state update of a non-blocking assignment is not visible
until the next clock cycle, and such assignments are used for
communication between processes.

We only allow pure expressions, because the standard does
not enforce an evaluation order, and we want our generated Ver-
ilog programs to be portable between Verilog toolchains. This
means, e.g., that our expressions cannot contain assignments.

Variables and nets. In Verilog, there are two kinds of data
objects, namely: variables and nets. Variables are included in
our formalization as they are used for holding temporary values
(in other words, wiring subcircuits), and describing registers
capable of holding state between cycles. (Whether a variable
corresponds to a register is up to the synthesizer in use to
decide, i.e., nothing we have to concern ourselves with on
our abstraction level [9].) Nets, however, are mainly useful for
handling cases where there are multiple (continuous) drivers,
which we are not interested in.

Values. Values v (Fig. 2) in our formalization consist of
Booleans and nestable (balanced) arrays.

Boolean values. Verilog Booleans can take on four values:
0, 1, X, and Z. However, we can still use standard Booleans in
our formalization. We do not include Z as a possible Boolean
value because it is only used for nets (with multiple drivers),
and nets are not covered in our formalization. The value X
represents an unknown value. Such value might be useful in
simulation-based testing, but for proving we do not need an
explicit representation of “unknown”, because inside ITPs we
already have access to such concepts directly in the logic. For
example, if we want to prove that a circuit is correct regardless
of the initial value of some particular Boolean variable (as we
did in the example in Sec. II), we simply quantify our theorem
statement over all possible Boolean values for that variable.

Array values. We support packed arrays, both 1-dimensional
and nested variants, in our formalization. Arrays are indexed
as if all levels were declared as logic[msb:lsb] arr with
msb ≥ 0 and lsb = 0. The formalization includes modulo-
arithmetic operations over 1-dimensional arrays. Arrays are
represented as nested HOL lists in our formalization.

Array resizings. Verilog is well known for its many
idiosyncrasies. We have tried to the extent possible to avoid
including any obscure or complex constructs in our formal-
ization, to minimize the risk of formalization bugs caused by
us misunderstanding the Verilog standard. But for Verilog’s
idiosyncratic handling of array resizings and signed numbers,

one is not left with much choice, as these concepts are implicitly
part of every Verilog expression.

In particular, some Verilog expressions are context-
determined, both with respect to size and signedness. The
size and signedness of a context-determined expression are
not decided just by the subexpressions of the expression, but
also by the context the expression is part of. For example,
for three Verilog arrays a, b, and c, where a and b are of
length 16 and c of length 32, the addition in the expression
c = a + b will be a 32-bit addition as c is considered part
of the context of the addition. To limit the amount of context
taken into consideration by context-determined expressions,
one can nest expressions inside the concatenation operator,
whose operands are self-determined: e.g., c = { a + b }
expresses a 16-bit addition. As for signedness, i.e. (here) if a
and b are zero-extended or sign-extended, c is not considered
part of the context even in the concatenation-less expression.
That is, if a and b are signed, then they will be sign-extended,
regardless of the signedness of c. But if one of a and b is
unsigned and the other signed, then both will be zero-extended.

Not only are context-determined expressions an obstacle to
overcome when formalizing the language, they also make
up an obstacle when translating to Verilog from strongly
typed languages with explicit resizing annotations, such as
the subset of HOL we are using to describe circuits. Such
resizing annotations cannot blindly be removed in translation, as
Verilog’s implicit resizings semantics do not necessarily result
in the same kinds of resizings. Fortunately, explicit resizing
annotations are also available in Verilog. In our formalization
all resizing operations are explicit, so we can translate explicit
resize operations to explicit resize operations in our translator.

This should be sound for Verilog programs produced by the
translator, but is not entirely satisfactory. A better approach
would be to also formulate the implicit resizing rules, so that
the translator could have proved that no such implicit resizings
occur in its translated expressions (i.e., even in the presence
of the implicit resizing rules, the translation is still correct).
(Furthermore, the translator could have also removed explicit
resize operations where the implicit resize rules already imply
the resizing, making the output code a little cleaner.)

Signed and unsigned operations. Signedness matters not
only for resizings, i.e. to decide whether to do zero-extension
or sign-extension, but also for operations such as arithmetical
shifts, less-than comparisons, and similar comparison operators.
For example, whether a < b is a signed or unsigned less-than
operation in Verilog depends on whether a and b are both
signed or not (and more generally, the signedness of various
elements in the context the operation occurs in). We do not
formalize these signedness rules directly, but instead keep all
variables and expressions unsigned (so that we can ignore all
signedness rules), and only convert to signed values (and then
directly back to unsigned values) temporarily when needed
using explicit sign casting. For example, to make sure to get
a signed less-than operation one can write { $signed(a)
< $signed(b) } where the single-element concatenation
operation again limits the context considered. Concretely, this

means that in the formalization there are two different (e.g.) less-
than operands, one for signed less-than and one for unsigned
less-than, and in pretty-printing sign casts are introduced for
the signed variant.

Types. We have not formalized Verilog’s static type system.
Instead, type errors are checked at runtime in our formalization.

C. Formal semantics

Our formal semantics is a clocked functional operational
semantics in three layers. The two first layers consist of an
evaluation function erun for expressions and an evaluation
function prun for stepping a process one clock cycle. Stepping
processes one clock cycle always terminate in finite time, so
there is no need for clocks in these layers. The third layer
consist of a clocked evaluation function mrun (for “module
run”) that steps a program forward a specified number of clock
cycles, by stepping every process in the program once per cycle
by calling the prun function. Runtime errors are handled by
returning a sum value, indicating either failure, Inl, or success,
Inr. If an error occurs in a process, then the entire program
execution is aborted (by returning failure).

Most concepts on the expression and statement level, such
as array indexing, if-statements, and case-statements are for-
malized in a straightforward manner. For example, in relational
style, because it is easier to show part of the semantics in this
way, if-statements follow the obvious rules:

erun fext s c = Inl err

prun fext s (IfElse c pt pf) = Inl err
,

erun fext s c = Inr (VArray a)

prun fext s (IfElse c pt pf) = Inl TypeError
,

erun fext s c = Inr (VBool T) prun fext s pt = s ′

prun fext s (IfElse c pt pf) = s ′
,

erun fext s c = Inr (VBool F) prun fext s pf = s ′

prun fext s (IfElse c pt pf) = s ′
.

Here, the parameter s represents the current circuit state, and
we recognize fext from the example from Sec. II, allowing
modeling of circuit-external behavior, such as e.g. memory
modules or non-deterministic input sources. In the expression-
level and statement-level Verilog semantics, fext is a function
from variable names (strings) to Verilog values, as time is
handled on the module level, as will be illustrated. The semantic
rule for reading external inputs is straightforward as well:

fext var = res

erun fext s (InputVar var) = res
.

We will now focus on the most interesting part of the
formalization, namely, how concurrency is handled, how the
Verilog event queue is modeled, and how blocking and non-
blocking assignments interact with the event queue.

For the module level, a Verilog program is a list of processes,
with an association list Γ assigning values to variables. During

execution of a cycle, all non-blocking assignments are stored
in another association list ∆ (of the same type as Γ) used
as a queue. The semantics is defined in monadic style in the
actual development, but here we present functions (that we
have proved equal to the original functions) with the monadic
combinators unrolled for clarity. A function

mstep fext [] s = Inr s
mstep fext (p::ps) s = case prun fext s p of

Inl e ⇒ Inl e
| Inr s ′ ⇒ mstep fext ps s ′

steps all processes in a given list one clock cycle starting in
state s . Another function

mstep_commit fext ps Γ = case mstep fext ps (Γ ,[]) of
Inl e ⇒ Inl e
| Inr (Γ ′,∆′) ⇒ Inr (∆′ ++ Γ ′)

constructs a new initial state for a new cycle (with an empty non-
blocking writes queue), executes all given processes, and, lastly,
“commits” all of the queued non-blocking writes by appending
them to the program variables. The top-level function

mrun fext ps Γ 0 = Inr Γ
mrun fext ps Γ (Suc n) = case mrun fext ps Γ n of

Inl e ⇒ Inl e
| Inr Γ ′ ⇒ mstep_commit (fext n) ps Γ ′

allows for stepping a collection of processes, that is, a program,
a specified number of cycles.

Note that mrun runs processes in the order they occur in its
input list ps . In Verilog, processes are executed concurrently
in an interleaved and non-deterministic manner. But we are
only interested in processes that do not “interfere” with each
other, so program execution can be modeled faithfully without
considering non-deterministic interleavings. If we let vwrites
denote the variables written to blockingly by a process, vnwrites
denote the variables written to non-blockingly by a process,
vreads denote the variables read by a process, and disjoint de-
note that two sets are disjoint (i.e., disjoint s t ⇐⇒ s ∩ t = ∅),
then we can formalize non-interference as follows:

valid_program ps ⇐⇒
∀ i j .

0 ≤ i ∧ i < length ps ∧ 0 ≤ j ∧ j < length ps ∧ i 6= j ⇒
let p = el i ps; q = el j ps in
disjoint (vreads p) (vwrites q) ∧
disjoint (vnwrites p ∪ vwrites p) (vwrites q ∪ vnwrites q).

The definition makes sure that processes only communicate
through non-blocking assignments. As non-blocking assign-
ments do not propagate during cycle execution, the order of
execution among processes does not matter – and Verilog’s
event-driven semantics collapses into what we have above –
which simplifies matters significantly, as the semantics can
stay deterministic. As valid_program is purely syntactical,
satisfaction can be checked by evaluation inside HOL.

As for the expression-level and statement-level semantics,
the only construct that interacts with the queue of non-blocking

writes is in fact non-blocking assignments; meaning that
reads are always based on Γ. The semantics of (successful)
blocking (=) and non-blocking assignments (<=) for, e.g.,
Boolean variables are given by the following rules:

erun fext (Γ, ∆) e = Inr v
(x, v′) ∈ Γ same_shape v v′

prun fext (Γ, ∆) (x = e) = Inr ((x, v)::Γ, ∆)
,

erun fext (Γ, ∆) e = Inr v
(x, v′) ∈ Γ same_shape v v′

prun fext (Γ, ∆) (x <= e) = Inr (Γ, (x, v)::∆)
.

Two points are worth making here. Firstly, we make sure that
the assigned variable’s type does not change by ensuring that
the value shape is the same before and after (using same_-
shape), rather than utilizing a separate static type system.
Secondly, assignment rules for arrays (not shown here) are
similar, but more complex. For arrays, one has to support
writes to part of an array (e.g., a[5] <= a[3]), but such
generalizations are straightforward. Conceptually, such writes
only update part of the array written to, but, for simplicity, in
our semantics we store the entire updated array in the queue
of non-blocking writes.

D. Validation

To validate our reading of the Verilog standard we have
compared the result of running 30 small handwritten expression-
level examples (available in the source code repository) in
our semantics to simulating them using Icarus Verilog (10.2),
Xilinx Vivado Design Suite (2018.2), and Verilator (3.926).
The examples exercise a subset of the operators supported by
the semantics, and include array resizings and computations
involving signed numbers. We focused on the expression level,
rather than the statement level, as we in particular wanted
to validate that our current handling of resizings and signed
numbers work at least for small expressions. The arrays the
examples operate over are all of short length (3–5 elements),
meaning that testing all possible inputs was feasible. We did
not find any discrepancies between our semantics and the three
simulators. (When experimenting, we did, however, find bugs
in Icarus Verilog related to resizing and sign handling. The
bugs were resolved immediately by the maintainers.)

Another source of validation, which exercises also the
statement-level semantics, is that our case studies (Sec. VII)
worked as expected.

VI. THE TRANSLATOR

For any formal hardware development methodology, it is
important to consider how circuits are modeled in the prover:

1) Are the circuits shallowly embedded? In other words:
are circuits just normal logic functions that ought to be
understood as circuits?

2) Or are the circuits deeply embedded? In other words: is
the syntax of circuits explicitly modeled and a separate
evaluation function/relation gives them their meaning?

Reasoning about shallow embeddings is significantly sim-
pler than reasoning about deep embeddings. However, deep
embeddings offer a far more clear correspondence between
the embeddings and the entity being modeled than shallow
embeddings do.

Our proof-producing translator allows users to do reasoning
in a shallow embedding and yet have the benefit of the deep
embedding (i.e., a clear correspondence to the target represen-
tation) since properties proved of the shallow embedding can
effortlessly be transported to the deep embedding.

A. Input language

The input language of the translator should be thought
of as a hardware description language in the same sense as
Verilog is a hardware description language. More precisely, the
input language should be thought of as a language describing
Verilog programs, which in turn describe hardware. When a
programmer writes their HOL circuits (that is, HOL functions),
they should have in mind what the translator’s Verilog output
will look like, and what in turn those Verilog constructs
mean in terms of hardware. In this sense, we are doing
Verilog development.

We decided to use standard HOL words (bit vectors) and
Booleans for the input language rather than some custom data
types modeling the Verilog data types in a more direct fashion
because using standard data types allows us to re-use theories
and proof tools from the HOL standard library when proving
circuits correct. For example, there are pre-built tools for bit-
blasting HOL words for using SAT solvers to find HOL proofs.

B. Implementation overview

As the translator is proof-producing, to trust the output of the
translator we only need to trust the correctness of our Verilog
formalization (that is, that it correctly captures the standard
document) rather than the translator implementation itself; an
implementation bug in the translator can at most result in the
translator failing to produce a translation correctness proof.

As shown in the example in Sec. II, the translator takes a
circuit represented as a next-state function consisting of smaller
next-state functions as input. The translator translates the top-
level circuit function into a Verilog program, with one process
per inner next-state function. In cases where processes com-
municate, the translator introduces non-blocking assignments.

The translator implementation is split into two passes. A
first, proof-producing pass that operates on one function at
a time turns each function into a Verilog process, where all
assignments are blocking. A second, verified pass replaces
blocking assignments with non-blocking assignments where
needed, and combines the processes produced by the first pass
into a single complete Verilog program.

C. Pass one: process translation

The first pass is a proof-producing SML function, operating
through the HOL4 API. To exemplify, the first pass turns the
A function from the example from Sec. II into:

always_ff @ (posedge clk)
if (pulse) count = count + 8’d1;

Note that the assignment is not yet non-blocking, as introducing
such assignments is the responsibility of the second pass.

The first pass operates on one function at a time. Each input
function is turned into a process (except the top function, which
is AB in the example of Sec. II). There is no need to support
auxiliary helper functions since all helper functions can be
inlined by rewriting rules in HOL before translation.

The translator constructs its proofs using relations be-
tween various HOL (shallow) and Verilog (deep) entities.
The translator defines relS to relate the input circuit’s state
record with Verilog states. Similarly, relS_fextv relates the
external-state representations. These relations are used to define
EvalS, which is central to the proof automation. We define
EvalS fext s Γ s ′ vp to say that, if states s and Γ are related,
then execution of Verilog program vp results in some Verilog
state Γ ′ that is related to new shallow state s ′:

EvalS fext s Γ s ′ vp ⇐⇒
∀ fextv ∆.

relS s Γ ∧ relS_fextv fextv fext ⇒
∃Γ ′ ∆′.

prun fextv (Γ ,∆) vp = Inr (Γ ′,∆′) ∧
relS s ′ Γ ′.

We write EvalS fext s Γ (f s) vp to state that Verilog program
vp is related to HOL function f .

Internally, the first pass, following the Verilog process se-
mantics, is separated into two layers: one layer for expressions
and one layer for statements. For the expression level, there is
an EvalS-like Eval relation, used to state translation correctness
on the expression level:

Eval fext s Γ P e ⇐⇒
∀ fextv ∆.

relS s Γ ∧ relS_fextv fextv fext ⇒
∃ v . erun fextv (Γ ,∆) e = Inr v ∧ P v .

In our semantics, evaluating an expression never changes the
program state; evaluation simply results in to some Verilog
value. Because of this, the Eval predicate is parameterized
by a post-condition predicate P that can be instantiated to
various predicates stating what an expression should evaluate
to. The translator uses the predicates BOOL, WORD, and
WORD_ARRAY for expressing translation correspondences
between Booleans, words, and functions from words to words
(representing arrays), respectively. For example, the definition
of BOOL is simply that the corresponding HOL Boolean should
be wrapped in the Verilog semantics’ Boolean constructor:

BOOL b v ⇐⇒ v = VBool b.

To make things more concrete, consider the expression
translator (which produces Eval theorems) and consider the
simple HOL expression 1w ⊕ 2w. For this input, the translator
responds with

` Eval fext s Γ (WORD (1w ⊕ 2w))
(ABOp (Const (w2ver 1w)) BitwiseXor

(Const (w2ver 2w))),

where (ABOp . . .) is the resulting Verilog code as represented
in the internal AST. To produce the above theorem, the
translator utilizes the pre-proved theorem

` Eval fext s Γ (WORD w1) v1 ∧
Eval fext s Γ (WORD w2) v2 ⇒
Eval fext s Γ (WORD (w1 ⊕ w2))
(ABOp v1 BitwiseXor v2).

To discharge the antecedent of the theorem, the translator
recursively calls itself with the operands of the input expression.
These recursive calls can be resolved directly as translating
literals is a base-case in the translator’s recursive algorithm;
so, the calls will return the needed Eval theorems directly.

This kind of syntax-directed divide and conquer approach
is the main mechanism behind the entire translation process.
The algorithm has access to a repertoire of similar pre-proved
theorems, and can use them to translate other operations, such
as arithmetic operations and array indexing. The same kind of
decomposition is possible on the statement level, for, e.g., if-
statements, where the following theorem is used for translations:

` Eval fext s Γ (BOOL C) Ce ∧ EvalS fext s Γ L Lv ∧
EvalS fext s Γ R Rv ⇒
EvalS fext s Γ (if C then L else R) (IfElse Ce Lv Rv).

For if-statements, the statement-level algorithm calls the
expression-level algorithm to discharge the Eval part of the
antecedent, and recursively call itself to discharge the two
EvalS parts in the antecedent.

Not all constructs can be translated by specializing pre-
proved theorems. Some constructs, such as case-expressions,
need special, but ultimately straightforward and uninteresting,
machinery for their translation. We leave out most of such
details here, but make a few remarks in what follows.

One construct that needs special translation treatment is vari-
ables. Because our input is shallowly embedded circuits, some
hardware concepts must be modeled indirectly. Temporary local
immutable variables are modeled natively as let-expressions,
but imperative concepts, such as state between clock cycles and
local mutable variables, are modeled indirectly through HOL
state record fields. Both types of variables (let-expressions
variables and state record fields) are translated to standard
(mutable) variables in Verilog. For example, the HOL function

R s = let s ′ = s with 〈|a := 1w; b := 2w|〉;
s ′′ = s ′ with a := s ′.a + 1w;
tmp = 1w

in case s ′′.c of
0w ⇒ s ′′ with c := tmp
| v ⇒ s ′′ with c := 0w

produces the following output when used as an input circuit:
always_ff @ (posedge clk)
b = 8’d2; a = 8’d1;
a = a + 8’d1; tmp = 8’d1;
case c
8’d0 : c = tmp;
default : c = 8’d0;

endcase

In the example we see that let-expressions are used both
for binding intermediate states and local (immutable) variables.
Both types of let-expressions are, unsurprisingly, translated by
divide and conquer. For let-expressions used for binding inter-
mediate state, input functions are only allowed to refer to the
most recent “state variable” (in R first s , then s ′, and then s ′′),
which makes translating such let-expressions straightforward.
Let-expressions used to introduce local variables require more
work. When an unknown variable is reached during translation,
the output EvalS and Eval theorems will be weakened by
preconditions on their environment Γ constraining it to include
the encountered variable. The constructed Verilog code and the
generated precondition are coupled using a free HOL variable,
and when the recursion, on its way up, reaches the relevant
let-binding site, the precondition can be weakened to only
require that the variable in question has the correct shape. The
shape precondition is required for the blocking assignment the
matching let-binding site introduces to not fail with a (runtime)
type error. The shape precondition is then propagated to the top
because we need to keep track of which variables to declare
at the top level in the generated Verilog program.

Furthermore, in the same example we see that the translator
supports nested record updates. Some care must be taken when
translating such expressions, consider e.g. 〈|a := 0w; b :=
s.a|〉 and 〈|b := s.a; a := 0w|〉, where s is the current state
record: in HOL the expressions are equivalent, but if refined
naively into Verilog as sequential mutable variable updates
they are no longer equivalent. This is an important point, as for
an expression to be translatable, its syntax must allow a dual
reading in which the HOL and Verilog semantics coincide.

Lastly, we have yet to discuss multidimensional arrays. Such
arrays are represented as functions from words to words in the
input language. The current machinery for multidimensional
arrays is simple and quite limited, and only supports arrays up
to three dimensions.

Returning to the input language discussion, the function R
above is fairly representative of what kind of functions are
accepted as input by the translator. That is, functions consisting
of nested let-expressions, in turn consisting of operations
that fairly directly, in a syntactical sense but not necessarily
semantical sense, map to our subset of Verilog. Of course,
larger functions than R, with more nesting, can be translated.

The translation approach taken here is inspired by Myreen
and Owens’ HOL to CakeML proof-producing code genera-
tor [10]. Translating from HOL to Verilog is both easier and
more difficult. It is easier, at least in our case, because we
accept a smaller and more specialized subset of HOL as input,
and it is more difficult because the distance between HOL and
Verilog is larger than the distance between HOL and CakeML.

D. Pass two: full program translation

The second pass takes EvalS theorems produced by the first
pass and composes them into a theorem for a whole Verilog
program. In terms of the example from Sec. II, the first pass
produces two EvalS theorems, one for A and one for B, and the

second pass takes them as input and produces a correspondence
theorem for the whole circuit AB.

The second pass is verified instead of proof-producing, and
consist of a HOL function intro_cvars and associated proof
infrastructure. The function operates over Verilog syntax and
takes a user-provided list of “communication variables” (in
the Sec. II example, just count) and replaces all assignments
to these variables with non-blocking assignments. The proof
infrastructure helps to build a whole-program correspondence
theorem out of the process theorems produced by the first pass.

The second pass requires that processes do not read from
communication variables they have written to earlier in the
same cycle. This style requirement should be seen as a strategy
to shallowly embed non-blocking assignments, as, process-
locally, if a variable is not read after being written to, it does
not matter if the writes to it are blocking or non-blocking.
More precisely, the style requirement ensures that intro_cvars
is semantic preserving in the sense that for any Verilog process
p without non-blocking assignments, prun fext (Γ,∆) p =
Inr (Γ′,∆′) implies that there exist Γ′cs and ∆′cs such that
prun fext (Γ,∆) (intro_cvars cs p) = Inr (Γ′cs,∆

′
cs), and

(Γ′,∆′) and (Γ′cs,∆
′
cs) only differs in that writes to com-

munication variables cs have been moved from Γ′ to ∆′cs.
The correspondence theorems for whole programs, the target

output of second pass, are on the same form as the process-level
EvalS theorems. Namely, state equivalence between a HOL
state and a Verilog state is invariant under stepping. The proof
infrastructure available for intro_cvars in combination with a
small amount of circuit-specific boilerplate setup code can be
used to combine the collection of processes generated by the
first pass into a single complete Verilog program and generate a
whole-program correspondence theorem if the processes satisfy
the above style requirement and the valid_program predicate.

VII. CASE STUDIES

We present two case studies: a verified processor, built to
be usable in verified stack constructions, and a method to
construct verified regexp (regular expression) matchers.

A. Processor case study

As part of our paper on verified stacks [4] referred to in the
introduction, we showed how we have designed, verified, and
synthesized a simple processor using the hardware development
methodology that is elaborated in this paper. The processor
is capable of hosting programs compiled by the (verified)
CakeML compiler [6], including the compiler itself. One of the
main results in the paper is a theorem stating that running the
compiler correctly compiles programs even when running on
top of the processor (down to the Verilog level). The processor
and CakeML compiler work that was required for this result
is described in more detail in our verified stacks paper, but
we briefly recapitulate some hardware-relevant points here as
the case study illustrates that the translator scales beyond the
small examples presented in the paper so far.

The processor implements a small custom RISC instruction
set architecture. We designed the processor to be as simple

as possible (it is, e.g., not pipelined) but still capable enough
to host compiled CakeML programs. For this case study we
targeted a PYNQ-Z1 board, using the board’s DRAM for
data and instruction memory. The processor has support for
hardware accelerators and consists of two processes: one for
the processor itself, and one for the hardware accelerator
currently in use. (We have yet to develop any hardware
accelerator beyond a placeholder integer addition accelerator.)
The processor’s external environment, such the DRAM module
and an interrupt interface used for communicating with the
external world, is modeled by a fext function. An earlier
unverified but translatable version of the processor consisted
of three processes, where the third process modeled a BRAM
module used for data and instruction memory; illustrating that
BRAMs can also be modeled in the translator’s input language
(modulo a minor problem with packed vs. unpacked arrays).

Running the Verilog translator on the processor takes just a
few seconds (compiling everything from scratch, including the
“pre-proved theorems” needed by the translator, takes a few
minutes). The output Verilog code is around 300 lines of code.

Using the Vivado toolchain, the synthesized processor can
be clocked at 40 MHz. The processor loaded onto the FPGA
board is capable of running programs compiled by the CakeML
compiler. In particular, as the compiler can compile itself, we
have been able to run the compiler itself on top of the processor.

B. Regexp matcher case study

Our second case study is a method to construct verified
regexp matchers implemented in Verilog. The method is based
on an existing HOL tool1 that can compile regexps to DFAs
represented as a simple driver function and a (potentially large)
next-state table. To enable this new hardware-producing flow,
we first translated the driver function to a circuit in HOL. The
circuit is a one-process program, and has a serial interface that
can receive one character per clock cycle, and one output bit
indicating whether the string formed by the characters seen so
far is accepted or not. There is also a reset input bit to start a
new match. We then proved that the circuit accepts the same
language as the original DFA when they both follow the same
next-state table.

To show that the flow works, we constructed a matcher
implementation for the simple regexp fo+bar. The regexp-
to-DFA compiler tool is proof-producing, and as our Verilog
translator is proof-producing as well, running the flow, we
were able to compose the above manual circuit correctness
theorem and the two generated correspondence theorems into
a theorem stating that the Verilog circuit accepts the same
language as the initial regexp. Being able to compose theorems
from different developments in this way illustrates one of the
advantages of embedding circuits inside ITPs over relying on
traditional verification methods such as model checking. We
also synthesized the Verilog circuit with some glue code for a
Basys 3 FPGA board connected to a keyboard, and the circuit

1The tool is located in examples/formal-languages/regular in
the HOL4 distribution

worked as expected. As only the table differs between different
regexp matchers, generating matchers for other regexps is
straightforward. (Our driver is register based; for larger regexps,
a BRAM-based driver would be more appropriate. Such a driver
would require another round of manual verification.)

VIII. RELATED WORK

Producing correct hardware with the help of an ITP has been
addressed in many ways. For example, two earlier verified
stack projects [2], [3] report synthesizing for FPGAs: The pre-
Verisoft PVS VAMP processor was specified in a custom-built
gate-level language which relied on an unverified pvs2hdl
tool [8] for translation to Verilog for synthesis, and a tool with
similar functionality was available for the Isabelle/HOL version
of VAMP [11]. In contrast, the DeepSpec Kami project [12]
targets the high-level HDL Bluespec, and relies on the usual
unverified Bluespec toolchain for synthesis.

More generally, it seems that one common synthesis strategy
is to do verified or proof-producing compilation down to a
“simple” or “low-level” language (or simply start from such a
language) that can “easily”, but without proof, be translated to
some mainstream low-level HDL, such as Verilog or VHDL,
and then feed this output to some external synthesis toolchain.
For example Iyoda [13], Pizani Flor et al. [14], and Braibant
and Chlipala [15] follow this approach. But also the opposite
direction is possible; Hunt et al.’s [16] tool instead loads final-
product Verilog programs into their ACL2 setup. In the context
of hardware security, tools capable for loading (subsets of)
VHDL and Verilog into Coq are available [17], [18]. The vital
difference between our project and earlier projects, is that
earlier projects have not provided proofs all the way down to
an explicitly stated Verilog/VHDL semantics.

As for Verilog semantics work, the most complete Verilog
formalization we are aware of is Meredith et al.’s rewriting
logic-based K framework formalization [9], later ported to
Isabelle/HOL by Khan et al. [19]. Meredith et al. model a
larger subset of Verilog than we do, including e.g. continuous
assignments and non-synthesizable concepts such as delayed
statements. This requires a more complete, and complicated,
event queue model and event execution model. For other
previous Verilog semantics work, see the related work section
of Zhu et al. [20]. But whereas we have applied our Verilog
semantics for verification by utilizing it in our translator, by in
turn having applied the translator by extracting our case studies,
missing from the mentioned and earlier Verilog formalization
initiatives are convincing applications, where the authors apply
their semantics in non-trivial circuit verification work. For
example, Khan et al. prove that multiplication by two and left-
shifting by one are equivalent in their semantics, and then note
that “proving more general theorems about complex designs
would be extremely difficult”.

IX. DISCUSSION

We will now discuss the trusted computing base (TCB)
of our hardware development methodology. To trust our
methodology it is necessary to trust, beyond the usual suspects,

an external synthesis toolchain (to be used in the final step of the
methodology), and the soundness of our Verilog formalization.

Ideally, analogously to the situation in software develop-
ment [21], our circuits would exit our ITP at the lowest possible
level of abstraction. In hardware development, what the lowest
level is depends on what technology we are targeting. For
FPGAs, which we are interested in, the lowest level is at
the level of FPGA bitstreams. Targeting this level from our
input level would require access to a combination of proof-
producing and verified tools for technology mapping, placement
and routing, etc. At the time of writing, no such toolchain exists.
There are multiple reasons for this; one of them being that
the FPGA bitstream formats rarely have publicly available
documentation. Instead, for transporting our Verilog circuits
to FPGA bitstreams, our hardware development methodology
relies on existing unverified tools.

Synthesis toolchain. Here, to trust a synthesis toolchain
means trusting it to compile our generated Verilog code to an
FPGA bitstream in a semantics preserving manner with respect
to Verilog’s simulation semantics. When relying on external
tools, some confidence in the correctness of the final bitstream
can be built by employing standard industrial techniques such
as testing and formal equivalence checking. Unfortunately, the
evidence produced via testing and equivalence checking is not
connected to any formal semantics and can thus not be properly
connected to our proofs.

Verilog formalization. Also the communication channel
between our ITP developments and the external synthesis tools
must be trusted. As Verilog is our communication medium
between these two parts, trusting our methodology means
trusting our reading and formalization of the Verilog standard.

An inherent risk with targeting a large standard-defined lan-
guage like Verilog without an official formal semantics is that
it is impossible to prove readings of such language standards
correct. Consequently, when arguing for our formalization’s
correctness, we have to fall back on empirical methods, such as
testing our semantics against Verilog simulators, and carrying
out case studies based on our methodology. An alternative
means of validation, which we have not pursued, would be to
prove a correspondence between our semantics and a semantics
at the level of detail of Meredith et al.’s semantics [9]. In this
approach, one would, e.g., show that the order of process
execution order does, indeed, not matter for Verilog programs
satisfying valid_program. This would validate our semantics
further, but would not address the question why the more
detailed (and therefore more complicated) semantics is correct.

X. CONCLUSION

We have constructed a proof-producing translation tool from
HOL circuits to Verilog circuits, and, as a prerequisite for this,
developed a formal semantics for a subset of Verilog. The
semantics is carefully written to faithfully model the Verilog
standard, while still being simple enough to use for reasoning.
The latter is important for our proof-producing translator,
which must carry out automatic reasoning to construct proofs
guaranteeing that its translations are correct.

The translator enables a hardware development flow where
users develop theorems and theories based on shallowly
embedded HOL circuits that can easily be transported to
corresponding deeply embedded Verilog circuits.

Acknowledgments. We thank Carl-Johan Seger and Koen
Claessen for helpful feedback. This work was partly supported
by the Swedish Foundation for Strategic Research.

REFERENCES

[1] J Strother Moore, “A grand challenge proposal for formal methods: A
verified stack,” in 10th Anniversary Colloquium of UNU/IIST, 2003.

[2] E. Alkassar, M. A. Hillebrand, D. Leinenbach, N. W. Schirmer, and
A. Starostin, “The Verisoft approach to systems verification,” in Verified
Software: Theories, Tools, Experiments (VSTTE), 2008.

[3] A. W. Appel, L. Beringer, A. Chlipala, B. C. Pierce, Z. Shao, S. Weirich,
and S. Zdancewic, “Position paper: The science of deep specification,”
Philosophical Transactions of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, vol. 375, no. 2104, 2017.

[4] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish, O. Abra-
hamsson, and A. Fox, “Verified compilation on a verified processor,” in
Programming Language Design and Implementation (PLDI), 2019, to
appear.

[5] K. Slind and M. Norrish, “A brief overview of HOL4,” in Theorem
Proving in Higher Order Logics (TPHOLs), 2008.

[6] A. Fox, M. O. Myreen, Y. K. Tan, and R. Kumar, “Verified compilation
of CakeML to multiple machine-code targets,” in Certified Programs
and Proofs (CPP), 2017.

[7] “IEEE standard for SystemVerilog–unified hardware design, specification,
and verification language,” IEEE Std 1800-2017, 2018.

[8] S. Beyer, C. Jacobi, D. Kroening, and D. Leinenbach, “Correct
hardware by synthesis from PVS,” Tech. Rep., 2002. [Online]. Available:
http://www-wjp.cs.uni-sb.de/publikationen/BJKL02.pdf

[9] P. Meredith, M. Katelman, J. Meseguer, and G. Roşu, “A formal
executable semantics of Verilog,” in Formal Methods and Models for
Codesign (MEMOCODE), 2010.

[10] M. O. Myreen and S. Owens, “Proof-producing translation of higher-order
logic into pure and stateful ML,” Journal of Functional Programming
(JFP), vol. 24, no. 2–3, 2014.

[11] S. Tverdyshev, “Formal verification of gate-level computer systems,”
Ph.D. dissertation, Saarland University, 2009.

[12] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: A platform for high-level parametric hardware specification and
its modular verification,” Proceedings of the ACM on Programming
Languages (PACMPL), vol. 1, no. ICFP, 2017.

[13] J. Iyoda, “Translating HOL functions to hardware,” University of
Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-682, 2007.

[14] J. P. Pizani Flor, W. Swierstra, and Y. Sijsling, “Pi-Ware: Hardware
description and verification in Agda,” in Types for Proofs and Programs
(TYPES 2015), 2018.

[15] T. Braibant and A. Chlipala, “Formal verification of hardware synthesis,”
in Computer Aided Verification (CAV), 2013, vol. 8044.

[16] W. A. Hunt, M. Kaufmann, J Strother Moore, and A. Slobodova,
“Industrial hardware and software verification with ACL2,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, vol. 375, no. 2104, 2017.

[17] X. Guo, R. G. Dutta, P. Mishra, and Y. Jin, “Automatic code converter
enhanced PCH framework for SoC trust verification,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 12, 2017.

[18] M. Bidmeshki and Y. Makris, “VeriCoq: A Verilog-to-Coq converter for
proof-carrying hardware automation,” in IEEE International Symposium
on Circuits and Systems (ISCAS), 2015.

[19] W. Khan, A. Tiu, and D. Sanán, “VeriFormal: An executable formal
model of a hardware description language,” in Singapore Cyber-Security
RandD Conference (SG-CRC), 2017.

[20] H. Zhu, J. He, and J. P. Bowen, “From algebraic semantics to denotational
semantics for Verilog,” Innovations in Systems and Software Engineering,
vol. 4, no. 4, 2008.

[21] R. Kumar, E. Mullen, Z. Tatlock, and M. O. Myreen, “Software
verification with ITPs should use binary code extraction to reduce the
TCB,” in Interactive Theorem Proving (ITP), 2018.

http://www-wjp.cs.uni-sb.de/publikationen/BJKL02.pdf

