
They’re the same picture:
a software-verification flow adapted for hardware verification

Andreas Lööw
Imperial College London

London, UK

Magnus O. Myreen
Chalmers University of Technology

Gothenburg, Sweden

ABSTRACT
Software verification and hardware verification are traditionally
considered separate enterprises, but our experience suggests that
activities in software verification have natural counter parts in
hardware verification and vice versa. We believe that there ought
to be more technology transfer between the two. In this text, we
describe one such instance of technology transfer from the world of
interactive theorem proving: we outline how we have adapted the
functional-programming-based software-verification flow of the
CakeML project to a hardware-verification flow for Verilog. The
work described here has been carried out in the HOL4 interactive
theorem prover.

CCS CONCEPTS
• Hardware → Hardware description languages and compila-
tion; Theorem proving and SAT solving; • Software and its
engineering → Software verification; Compilers.

KEYWORDS
software verification, hardware verification, compiler verification

1 INTRODUCTION
The combination of software development inside of, and with the
help of, interactive theorem provers (ITPs) and verified compilers,
developed inside the same ITPs, forms the basis of a development-
and-verification flow that addresses the following fundamental ten-
sion in software development: (a) we want to reason about software
at the same abstraction level as we are used to writing software,
that is, at the source level of a programming language such as Rust,
C, or SML, and, simultaneously, (b) have the correctness guarantees
we establish carry over to the compiler-generated machine code
that actually runs.

The flow based on ITPs and verified compilers addresses this
tension by decoupling the problem into three separate subproblems:
(1) artefact development and verification at the source level, (2)
transfer of the source-level artefact to the compiler target level,
and (3) transfer of source-level verification results to the compiler
target level.

From the perspective of a developer following the development
flow: the complexity of subproblem (1) depends on the complexity
of the software artefact under interest; subproblem (2) is automated
away by the verified compiler; and subproblem (3) boils down to a
trivial composition of the artefact-correctness theorem proved in
subproblem (1) and the correctness theorem of the verified compiler.

The same fundamental tension is found in hardware develop-
ment: if we in the above replace “Rust, C, or SML”with, e.g., “Verilog,
VHDL, or Bluespec” and “machine code” with “netlists”, the above
now applies to hardware development. We believe a viable solution

to this hardware tension is the same as the solution to the soft-
ware tension: ITPs and verified compilers; or, in the vocabulary of
hardware development: ITPs and verified synthesis tools.

In this short text, we describe how we have exploited the similar-
ities between software and hardware development to adapt an ex-
isting realisation of the software-verification flow described above,
designed for CakeML, to a hardware-verification flow, for Verilog.

2 THE SOFTWARE-VERIFICATION FLOW
The CakeML project [3, 9] is a realisation of the above-described
software development-and-verification flow inside the HOL4 in-
teractive theorem prover, with which some nontrivial software
artefacts have been produced, e.g., a verified clone of the HOL Light
interactive theorem prover [2].

The CakeML project is based on an SML dialect called CakeML.
Two pieces of the project are relevant for our discussion here: its
proof-producing translator-based verification infrastructure and
its verified CakeML compiler.1 The CakeML language comes in
two variants: one shallowly embedded variant, enabling embedding
CakeML programs as standard monadic functional programs, which
is convenient for verification, and a deeply embedded variant, which
can be used as input for the CakeML compiler. The job of the
CakeML translator is to automatically translate shallowly embedded
CakeML programs to their equivalent deeply embedded variant
and produce a correspondence theorem for each translation.

In short, the subproblems (1)–(3) of the development flow are
addressed as follows in the CakeML project:

(1a) Implement your program in the shallow embedding variant
of the CakeML language;

(1b) Prove that your shallowly embedded program is correct,
i.e., prove the source-level correctness of your program;

(1c) Translate your shallow embedded program into the deeply
embedded CakeML language using the CakeML translator;

(2) Run the CakeML compiler inside the logic to produce ma-
chine code implementing the given CakeML code and a
theorem certifying that the machine code is the result of
evaluating the CakeML compiler function;

(3) Simply compose the theorems from the above steps and the
CakeML compiler correctness theorem so that the correct-
ness property proved at the source level is carried down to
the compiler-generated machine code.

3 THE HARDWARE-VERIFICATION FLOW
We now describe how we have adapted the CakeML software de-
velopment flow to a hardware development flow. In short, for our
adaptation [4, 5, 8] we have introduced the following new semantics

1There is also a verification flow based on separation logic, which we do not cover here.



Andreas Lööw and Magnus O. Myreen

and tools, and made the following adaptations to the flow:
the CakeML

programming language → the Verilog hardware-
description language

a mechanised semantics
for the CakeML language → a new mechanised

semantics for Verilog
a shallow embedding

of the CakeML language → a new shallow
embedding of Verilog

machine code and its
mechanised semantics → netlists and their

mechanised semantics
the proof-producing
CakeML translator → a new proof-producing

Verilog translator
the verified

CakeML compiler → a new verified Verilog
synthesis tool called Lutsig

With the above in place, the CakeML flow described in the pre-
vious section is now applicable to hardware development: (1a) im-
plement your circuit as a shallowly embedded Verilog module; (1b)
verify that the module is correct; (1c) translate the module to a
deeply embedded Verilog module using the proof-producing Ver-
ilog translator; (2) run Lutsig to synthesise the deeply embedded
Verilog module; (3) transport your correctness theorem about the
shallowly embedded Verilog module to the netlist level by com-
posing the module-correctness theorem with the correspondence
theorem produced by the proof-producing Verilog translator and
the correctness theorem of Lutsig.

The CakeML flow and the adapted hardware-development flow
are similar but not identical. We highlight some differences next.

Inspired by the CakeML project, we shallowly embed Verilog
module as functional programs. Our hardware-development flow
handles synchronous hardware and models such hardware as next-
state functions, describing the cycle-by-cycle behaviour of circuit.
Both CakeML and Verilog contain features not found in the purely
functional language of HOL4; to support such features they must be
modelled indirectly in the respective shallow embedding (e.g., both
CakeML and Verilog feature mutable state). Among the features
of Verilog that require extra care to model are so-called block-
ing and nonblocking assignments and concurrently executing pro-
cesses (blocking assignments correspond to traditional imperative-
language assignments and nonblocking assignments are a Verilog
construct allowing race-free communication between processes).

One problem we did not have to address in our CakeML work is
language standard interpretation and correspondence. Although a
dialect of SML, the CakeML language is an invention by the CakeML
project. In contrast, the Verilog language is a language defined by a
standard document [1] written in English prose. The standard is in
places ambiguous (e.g., see Lööw [6] for one example of a potential
problem with the standard), making mechanisation of the standard
difficult. In ongoing work, we are exploring visual formalisation as
a way to validate our interpretation of the standard.

The problems associated with Verilog do not stop at its standard.
Although the most popular hardware-description language today,
the Verilog language itself is known for its many idiosyncrasies
and peculiarities. Of particular interest for verification and without
a clear analogue in software development are so-called simulation-
and-synthesis mismatches. This type of mismatch refers to when

the behaviour of a Verilog circuit differs before and after synthesis.
Such mismatches do not arise from synthesis-tool bugs but from the
fact that Verilog has two semantics: Verilog’s so-called simulation
semantics and synthesis semantics. In our work on Lutsig, we ad-
dress simulation-and-synthesis mismatches and suggest what roles
the two semantics should play in verified-hardware development.

As for the CakeML compiler and Lutsig, we find both similarities
and dissimilarities. Among the similarities we find, e.g., that the
correctness theorems of the CakeML compiler and Lutsig are largely
the same: both are variants of semantics preservation. There are also
natural counter parts between various software-compilation steps
and hardware-synthesis steps: e.g., in compilation we do instruction
selection to translate a program to a particular machine architecture
and in synthesis we do technology mapping to translate a hardware
design to a particular technology (such as FPGAs). Dissimilarities
exist as well, such as the types of optimisations applicable. E.g., the
X-value construct in Verilog, which allows hardware designers to
signal to their synthesis tool that the tool can freely fill in any value
in the X-value’s place, opens up for optimisation opportunities in
hardware synthesis. Exploiting this opportunity, Lutsig includes
a simple optimisation pass for X-values. The pass required us to
wrestle with the semantics of X-values, which is a (yet another)
tricky part of the Verilog language.

4 SOFTWARE-HARDWARECO-VERIFICATION
After embedding both software and hardware development inside
the same ITP, a next logical step is to consider the development of
artefacts consisting of both software and hardware, such as com-
puter systems. In computer systems, software and hardware meet
at the so-called instruction set architecture (ISA) boundary. Exam-
ples of ISAs include x86, ARM, and RISC-V. In Lööw et al. [7] we
report on our experience on developing a small verified processor
and connecting it at the ISA boundary to verified software devel-
oped using the CakeML software development flow, all inside the
HOL4 ITP, resulting in a computer system with a remarkably small
trusted computing base.

REFERENCES
[1] 2018. IEEE Standard for SystemVerilog–Unified Hardware Design, Specification,

and Verification Language. IEEE Std 1800-2017 (2018). https://doi.org/10.1109/
IEEESTD.2018.8299595

[2] Oskar Abrahamsson, Magnus O. Myreen, Ramana Kumar, and Thomas Sewell.
2022. Candle: A Verified Implementation of HOL Light. In ITP. https://doi.org/10.
4230/LIPIcs.ITP.2022.3

[3] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.
CakeML: A Verified Implementation of ML. In POPL. https://doi.org/10.1145/
2535838.2535841

[4] Andreas Lööw. 2022. Reconciling Verified-Circuit Development and Verilog
Development. In FMCAD. https://doi.org/10.34727/2022/ISBN.978-3-85448-053-
2_15

[5] Andreas Lööw. 2021. Lutsig: A Verified Verilog Compiler for Verified Circuit
Development. In CPP. https://doi.org/10.1145/3437992.3439916

[6] Andreas Lööw. 2022. A small, but important, concurrency problem in Verilog’s
semantics?. In MEMOCODE. https://doi.org/10.1109/MEMOCODE57689.2022.
9954591

[7] Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen, Michael
Norrish, Oskar Abrahamsson, and Anthony Fox. 2019. Verified Compilation on a
Verified Processor. In PLDI. https://doi.org/10.1145/3314221.3314622

[8] Andreas Lööw and Magnus O. Myreen. 2019. A proof-producing translator for
Verilog development in HOL. In FormaliSE. https://doi.org/10.1109/FormaliSE.
2019.00020

[9] Magnus O. Myreen. 2021. The CakeML Project’s Quest for Ever Stronger Correct-
ness Theorems. In ITP. https://doi.org/10.4230/LIPIcs.ITP.2021.1

https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.4230/LIPIcs.ITP.2022.3
https://doi.org/10.4230/LIPIcs.ITP.2022.3
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_15
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_15
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1109/MEMOCODE57689.2022.9954591
https://doi.org/10.1109/MEMOCODE57689.2022.9954591
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.4230/LIPIcs.ITP.2021.1

	Abstract
	1 Introduction
	2 The software-verification flow
	3 The hardware-verification flow
	4 Software-hardware co-verification
	References

