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3D Computer Vision

Inference of 3D information from 2D images

Wide variety of real-world applications

Match Moving Kinect

Photo Tourism, Photosynth Dense 3D models of buildings
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3D Computer Vision

Inference of 3D information from 2D images

Wide variety of real-world applications

Faceshift software Avatar motion capture

MPI & 3dMD 4D scanner The Digital Emily Project
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3D Computer Vision

(Thies et al., Face2Face: Real-time Face Capture and Reenactment of RGB Videos, CVPR’16).
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3D Computer Vision: Limitations

Assumption of rigidity:

input 2D images: different viewpoints of exactly the same
3D scene

Multi-camera systems:

equivalent to single camera capturing a rigid scene
expensive acquisition setups

Active sensors:

limitations in the acquisition conditions

Specific class of objects:

unrealistic shape model priors
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3D Computer Vision: Overcoming the Limitations

Core questions:
How can we make detailed 3D reconstruction work in any

real-world scene?

How can we minimise the acquisition requirements?

Vision: robust and fast systems that:
work under almost any condition
use practical, low cost acquisition devices
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3D Computer Vision: Overcoming the Limitations

Core questions:
How can we make detailed 3D reconstruction work in any

real-world scene?

How can we minimise the acquisition requirements?

Vision: robust and fast systems that:
work under almost any condition
use practical, low cost acquisition devices

Applications:
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Dense 3D Reconstruction from Monocular Sequences

Input: monocular sequence of non-rigid scene

���

Goal: estimation of 3D location of every pixel at every frame

Approaches:

model-free: no prior knowledge about the scene object(s)

model-based: object-specific prior shape models
7
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Model-free: Non-rigid Structure from Motion (NRSfM)

Leap from sparse to dense NRSfM

Sparse

(Dai,Li,He, CVPR’12)

 

Dense

(Garg,Roussos,Agapito, CVPR’13)
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Our Pipeline

���

(Roussos, Russell, Garg, Agapito, IEEE ISMAR 2012)
(Garg, Roussos, Agapito, International Journal of Computer Vision 2013)
(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Our Pipeline

���

���

Step 1: Dense

Video Registration ���

(Roussos, Russell, Garg, Agapito, IEEE ISMAR 2012)
(Garg, Roussos, Agapito, International Journal of Computer Vision 2013)
(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Our Pipeline

Step 2: Dense

Shape Inference
���

���

���

Step 1: Dense

Video Registration ���

(Roussos, Russell, Garg, Agapito, IEEE ISMAR 2012)
(Garg, Roussos, Agapito, International Journal of Computer Vision 2013)
(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Our Pipeline

Step 2: Dense

Shape Inference
���

���

���

Step 1: Dense

Video Registration ���

Priors �

(Roussos, Russell, Garg, Agapito, IEEE ISMAR 2012)
(Garg, Roussos, Agapito, International Journal of Computer Vision 2013)
(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Our Pipeline

Step 2: Dense

Shape Inference
���

���

���

Step 1: Dense

Video Registration ���

Low rank.

Spatial smoothness.�

(Roussos, Russell, Garg, Agapito, IEEE ISMAR 2012)
(Garg, Roussos, Agapito, International Journal of Computer Vision 2013)
(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Multi-frame Subspace Flow (MFSF)

Robust Subspace Constraints for Video Registration

The code is now publicly available at:
https://bitbucket.org/troussos/mfsf
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Model-Free Dense 3D Reconstruction from Videos

: input dense 2D tracks, computed with (Garg,Roussos,Agapito, IJCV’13)

, : the unknown rotations and shapes per frame

=

(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Model-Free Dense 3D Reconstruction from Videos

(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Model-Free Dense 3D Reconstruction from Videos

(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Model-Free Dense 3D Reconstruction from Videos

(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Model-Free Dense 3D Reconstruction from Videos

(Garg, Roussos, Agapito, IEEE CVPR 2013)
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Energy Minimisation Approach to NRSfM

Formulation of a single unified energy to estimate:

Orthographic projection matrices

3D shapes for all the frames

E
(
❘ , ❙

)
= λ Edata

(
❘,❙

)
+ Ereg

(
❙

)
+ τ Etrace

(
❙

)

reprojection error over all frames

spatial smoothness prior on 3D shapes

low rank prior on 3D shapes
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Reprojection Error
E
(

,
)

= λEdata

(

,
)

+ Ereg

( )

+ τEtrace

( )

Edata ( , ) = ‖ − ‖2F
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Spatial Smoothness Prior
E
(

,
)

= λEdata

(

,
)

+ Ereg

( )

+ τEtrace

( )

Ereg

( )
=

∑

i

TV (Si)

−−−−−−→

Without regularisation With regularisation
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Low Rank Prior
E
(

❘,❙
)

= λEdata

(

❘,❙
)

+ Ereg

(

❙

)

+ τEtrace

(

❙

)

Etrace

(
❙

)
= ‖❙‖∗ =

∑

i

σi(❙)

lies in−−−−→ span

K ≪ F

Angst et al. ECCV’12, Dai et al. CVPR’12, Angst et al. ICCV’11, Dai et al. ECCV’10
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Minimisation of E
(

,
)

min
,

λ ‖ − ‖2F︸ ︷︷ ︸
Reprojection

error

+
∑

i

TV (Si)
︸ ︷︷ ︸
Smoothness

prior

+ τ ‖ ‖∗
︸ ︷︷ ︸
Low rank

prior
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Minimisation of E
(

,
)

min
,

λ ‖ − ‖2F︸ ︷︷ ︸
Reprojection

error

+
∑

i

TV (Si)
︸ ︷︷ ︸
Smoothness

prior

+ τ ‖ ‖∗
︸ ︷︷ ︸
Low rank

prior

Our Algorithm

Initialize and using rigid factorisation.

Minimize energy via alternation:

Step 1: Rotation estimation.
Step 2: Shape estimation.

Efficient and highly parallelizable algorithm → GPU-friendly
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Minimisation of E
(

,
)

minλ ‖ − ‖2F︸ ︷︷ ︸
Reprojection

error

Step 1: Rotation estimation

Robust estimation by using dense data.

Solved via Levenberg-Marquardt algorithm.

Rotations are parametrised as quaternions.
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Minimisation of E
(

,
)

minλ ‖ − ‖2F︸ ︷︷ ︸
Reprojection

error

+
∑

i

TV (Si)
︸ ︷︷ ︸
Smoothness

prior

+ τ ‖ ‖∗
︸ ︷︷ ︸
Low rank

prior

Step 2: Shape estimation

Convex sub-problem.

Optimisation via alternation between:

Per frame shape refinement: using primal dual algorithm
Enforcing low rank: using soft impute algorithm.
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Results on real sequences
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Quantitative Evaluation

Average RMS 3D reconstruction errors.

Sequence TB MP Ours Ours(τ = 0)

Non-smooth rotations 4.50% 5.13% 2.60% 3.32%
Smooth rotations 6.61% 5.81% 2.81% 3.89%

- TB: Akhter et al., Trajectory space: A dual representation for NRSfM, PAMI’11.

- MP: Paladini et al., Optimal metric projections for deformable and articulated SfM, IJCV’12.

- Synthetic data generated using (Vlasic et al., SIGGRAPH’05). 19
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But what about In-the-wild Videos?

Addressing the challenges of unconstrained, everyday-life
videos

Focusing on human faces
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Our Pipeline

Step 2: Dense

Shape Inference
���

���

���

Step 1: Dense

Video Registration ���

+ Face-specific priors

(Snape, Roussos, Panagakis, Zafeiriou, IEEE ICCV 2015)
(Booth, Roussos, Zafeiriou, Ponniah, Dunaway, IEEE CVPR 2016)
(Booth, Roussos, Ponniah, Dunaway, Zafeiriou, IJCV 2017, under minor revision)
(Booth, Roussos, et al., T-PAMI 2017, submitted)
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Constructing Detailed 3D Face Models: Identity Variation

Synthetic faces generated by our LSFM model

High-resolution 3D statistical model

Automatically built from ∼10,000 3D scans

Largest-scale Morphable Model ever constructed

(Booth, Roussos, Zafeiriou, Ponniah, Dunaway, IEEE CVPR 2016)
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Constructing Detailed 3D Face Models: Identity Variation

2D

0° +90°-90°

3D3D

3D GLOBAL PCA MODEL 

(INITIAL ESTIMATION)

NICP dense correspondence

Automatic pruning

Auto landmarking LSM-BESPOKE PCALSM-GLOBAL PCA

Fully automatic pipeline

State-of-the-art image localisation on synthetic views

Natively 3D approach to dense mesh correspondence

Building global model but also models tailored by
age/gender/ethnicity

(Booth, Roussos, Zafeiriou, Ponniah, Dunaway, IEEE CVPR 2016)
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Constructing Detailed 3D Face Models: Identity Variation

Update:

(Booth, Roussos, Ponniah, Dunaway, Zafeiriou, Large scale

3D Morphable Models, IJCV, under minor revision):

extended evaluation
added texture model

source code for construction pipeline is now available:
https://github.com/menpo/lsfm

shape models will be available very soon:
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Evaluation of Model Fitting on 3D Scans

200 1000 8000

- BFM: Basel Face Model (Paysan et al. AVSS’09)
- Brunton et al.: PCA model of (Brunton et al., CVIU’14)
- 100-7000: Proposed LSM, built with varying size of training set (100-7000 faces) 26



Adding Expression to LSFM models

Overall model of identity & expression by effectively combining:

identity variation from our LSFM models, with

expression variation from (Cao et al., IEEE T-VG 2014)

S(pid,pexp) = µ+Uid pid +Uexp pexp

Synthetised faces, with random identity and expression
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Adding Expression to LSFM models
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Adding Expression to LSFM models

LSFM-bespoke for (White ; over 50 years) with first 4 expression coefficients
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Adding Expression to LSFM models

LSFM-bespoke for (Black) with first 4 expression coefficients
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Face Flow: Face-Specific Video Registration

... ...

(Snape, Roussos, Panagakis, Zafeiriou, IEEE ICCV 2015)
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Face Flow: Face-Specific Video Registration

... ...

Evaluation on synthetic videos with challenging conditions:

(Snape, Roussos, Panagakis, Zafeiriou, IEEE ICCV 2015)
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3DMM Fitting “In-The-Wild” (ITW)

Fitting on single images, under unconstrained conditions

3D shape model of identity + expression

Texture models for in-the-wild images
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3DMM Fitting “In-The-Wild” (ITW)

Dense image features

Simplified fitting: no need to estimate lighting

Robust to illumination changes, occlusions, etc.
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3DMM Fitting “In-The-Wild” (ITW)

Robust PCA with missing values:
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3DMM Fitting “In-The-Wild” (ITW)

Fitting on images:

Fast algorithm, AAM-style

Source code will be available

34



3DMM Fitting “In-The-Wild” (ITW)

Results on 300W:
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3DMM Fitting “In-The-Wild” (ITW)

Results on 300W:
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3DMM Fitting “In-The-Wild” (ITW)

New benchmark:

Quantitative comparisons:
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3DMM Fitting on “In-The-Wild” Videos

Robust facial landmark tracking

Valuable for:

initialisation
constraints on the dense solution
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3DMM Fitting on “In-The-Wild” Videos

Initialisation via fitting on the sparse tracks:

formulate cost function that combines:

reprojection error

temporal smoothness over expression

quadratic priors on identity & expression coefficients

minimise wrt camera, identity and expression coefficients

simultaneous estimation over all frames

automatic fine-tuning of balancing weights of the cost function
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3DMM Fitting on “In-The-Wild” Videos

Initialisation via fitting on the sparse tracks:

estimation of camera parameters via rigid Structure from
Motion

large-scale quadratic optimisation for identity & expression
coefficients
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3DMM Fitting on “In-The-Wild” Videos

Results on 300VW database:
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3DMM Fitting on “In-The-Wild” Videos

Using LSFM-bespoke models:
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Craniofacial Applications

Synthetic faces generated by our LSM model

Useful for: craniofacial surgery planning and assessment

before surgery after surgery
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Comparing Facial Morphology Representations

Representations of facial morphology:

dense modelling sparse anthropometry

Ideally:

different shapes ⇒ different parameters
similar shapes ⇒ similar parameters
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Facial Manifold Visualisation

Including syndromic faces

46 scans of patients, including manually annotated landmarks
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Conclusions

Pioneering methodologies for dense 3D reconstruction from
non-rigid videos

Non-rigid videos contain extremely rich information

most existing methods exploit only part of it
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Conclusions

Pioneering methodologies for dense 3D reconstruction from
non-rigid videos

Non-rigid videos contain extremely rich information

most existing methods exploit only part of it

Using monocular input only, our methods yield
state-of-the-art results on estimating:

multiframe optical flow

dense dynamic 3D shape

joint dense multibody segmentation, tracking and 3D
reconstruction

47



Conclusions

Pioneering methodologies for dense 3D reconstruction from
non-rigid videos

Non-rigid videos contain extremely rich information

most existing methods exploit only part of it

Key components:

dense variational methods

robust penalisers and low-rank matrix priors

efficient optimisation approaches

highly-detailed and realistic shape priors
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Conclusions

Dense 3D face modelling with unprecedented quality

large-scale datasets are extremely valuable

fully-automated construction pipeline

far more diverse than existing models

48


