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ABSTRACT

Monocular 4D face reconstruction is a challenging problem, espe-
cially in the case that the input video is captured under unconstrained
conditions, i.e. “in the wild”. The majority of the state-of-the-art
approaches build upon 3D Morphable Modelling (3DMM), which
has been proven to be more robust than model-free approaches such
as Shape from Shading (SfS) or Structure from Motion (SfM). While
offering visually plausible shape reconstruction results that resemble
real faces, 3DMMs adhere to the model space learned from exemplar
faces during the training phase, often yielding facial reconstructions
that are excessively smooth and look too similar even across captured
faces with completely different facial characteristics. This is due to
the fact that 3DMMs are typically used as hard constraints on the
reconstructed 3D shape. To overcome these limitations, in this paper
we propose to combine 3DMMs with Dense Nonrigid Structure from
Motion (DNSM), which is much less robust but has the potential of
reconstructing fine details and capturing the subject-specific facial
characteristics of every input. We effectively combine the best of
both worlds by introducing a novel dense variational framework,
which we solve efficiently by designing a convex optimisation strat-
egy. In contrast to previous methods, we incorporate 3DMM as a soft
constraint, penalizing both departure of reconstructed faces from
the 3DMM subspace and variation of the identity component of the
3DMM over different frames of the input video. As demonstrated
in qualitative and quantitative experiments, our method is robust,
accurately estimates the 3D facial shape over time and outperforms
other state-of-the-art methods of 4D face reconstruction.
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1 INTRODUCTION

Monocular 4D face reconstruction is the problem of recovering the
3D facial geometry in every frame of an input face video. It has
attracted increased attention by the scientific community, especially
during the last years, see e.g. [6, 20, 24, 29, 30, 40-43]. It has
a plethora of applications, ranging from marker-less performance
capture and augmented reality, to facial expression recognition for
human-computer interaction.

Solving this problem under unconstrained conditions (commonly
referred to as “in the wild”) is particularly challenging and can be
considered as an open problem of Computer Vision. This can be
attributed to the fact that estimating the varying 3D facial shape over
time is a highly ill-posed problem that is impossible to solve without
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incorporating priors. There are two broad categories of approaches
in using priors for monocular 4D face reconstruction:

Face-specific, model-based priors, as e.g. used in [6, 24, 42]. In
this case, 3DMMs are usually used to constrain the 3D facial shape
in a low-dimensional subspace. In this way, the facial shape is repre-
sented by a relatively small number of parameters. These priors are
very strong, making the reconstructions robust to challenging condi-
tions, such as occlusions, large pose variations and low-resolution
input. On the other hand, the reconstructions are typically overly
smooth and do not capture high-frequency details of the 3D shape,
due to the low dimensionality of the considered 3DMM subspaces.
In addition, the reconstructed faces often resemble a generic face
rather than the real input face, especially in cases of in-the-wild
videos. This is because this type of reconstruction methods have to
heavily rely on the 3DMM prior as the only way to compensate for
the challenges of the input.

Generic, model-free priors, as e.g. used in [15, 18, 31, 46]. In
this case, generic priors on the shape and dynamics of the captured
object are used. These are applicable on any object and not only on
faces. However, it is worth mentioning that most of the results that
are typically shown in the relevant papers are on face videos. These
methods do not use on a model of shape variation and do not require
any training data. The reconstructions in this case are data-driven
and solely rely on the observed input, using very generic constraints,
such as temporal consistency and piece-wise smoothness of the re-
covered shape. In this way, they can recover a dynamic 3D geometry
that is very characteristic to the specific input. On the other hand,
these methods require very specific acquisition conditions to yield
accurate reconstructions: Since these methods heavily rely on the
observed input, the videos should be captured under controlled con-
ditions, avoiding e.g. excessive occlusions or low resolution input. In
addition, it is required that there is substantial temporal variation on
the relative 3D pose between the camera and the captured object, so
that it is possible to resolve in a fully data-driven way the geometric
ambiguities that are related to the camera projection. When this kind
of acquisition conditions are not met, these methods fail, yielding
highly inaccurate reconstructions.

In this paper, we combine the best of both worlds (approaches
based on model-based and model-free priors) by introducing a novel
dense variational framework. Our framework combines model-free
multi-frame optical flow, dense non-rigid structure from motion and
3D Morphable Model fitting. In more detail, we extend the dense
variational formulation of [18] by adding face-specific priors. In con-
trast to previous 3DMM-based methods, the priors are incorporated
as soft constraints, allowing deviations from the 3DMM subspace, so
that the solution can capture facial shapes that cannot be represented



by the face model. With the proposed framework, we achieve dense
4D reconstructions that not only are robust to in-the-wild conditions
but also include fine details and facial shape and dynamics that are
specific to the captured face.

2 RELATED WORK

3D reconstruction of objects commonly found in images has played
a significant role in a wide range of computer vision applications,
such as object detection and recognition, scene interpretation and
understanding, human-machine interaction, etc. Human faces are
an archetype of those objects with ever-increasing interest for their
potential impact and crucial applications.

By nature, the task of reconstructing the 3D geometry of human
faces appearing in videos or images is rather problematic due to its
ill-posed characteristics, with several associated ambiguities. Re-
cently, many solutions have been presented for tackling this problem,
incorporating myriad of priors and imposing different constraints.

Shape from Shading techniques, such as [2, 28, 36-39, 45], rely
on simplified lighting and illumination models, with some other face-
specific priors, to aid the reconstruction process. Those methods are
prone to the in-the-wild conditions encountered in most real-world
videos, being attributed to the oversimplified assumptions about light
propagation models that fail to simulate real world scenarios.

After its first introduction by Blanz & Vetter [4], 3D Morphable
Models (3DMM) have been used extensively in the literature with
several additions [1, 6, 17, 24, 30, 33, 34, 34, 42, 44]. With the very
recent framework in [6], it is even feasible to fit the 3DMM to in-
the-wild images and videos, reconstructing both facial geometry and
texture.

Dense Structure from Motion techniques approach this problem
distinctly [18, 19]. Mainly, they incorporate geometric constraints
to perform the reconstruction task. However, they are commonly
criticised for the complicated and time-consuming frameworks they
propose, mostly due to the infamous high-dimensionality curse.
Additionally, the optical flow estimations required as an input usually
for such methods ought to be accurately tracked among frames for
producing satisfactory results.

Deep neural networks are another way of approaching this prob-
lem with ever-increasing interest for their promising results [9—
11, 16, 26, 27].

There have been also some attempts to combine more than one
of the aforementioned schemes [21, 22, 25], gaining the advantages
of each. As opposed to our framework, most of those techniques,
when combining 3DMM with other methods, impose 3DMM as a
hard constraint, limiting their capacity to capture fine-scale details.
Others only deal with rigid face deformations, unlike our method
which assumes non-rigid deformations in the input videos.

3 PROPOSED FRAMEWORK

The method we put forward in this paper (henceforth referred to
as DSfM-3DMM) benefits from two combined schemes, namely:
1) multi-frame subspace flow, where motion flow field is estimated
from the input frames starting from a reference image, and 2) a 3D
Morphable Model (3DMM) that plays a key role in the initialisation
and final energy formulation of the entire framework.

Fig.1 demonstrates the different stages adopted in our DSfM-
3DMM approach for doing the dense 3D reconstruction and tracking
task. After parsing the input video into a sequence of frames, two
steps are carried out concurrently: 1) following the paper of R. Garg
et al. [19], dense optical flow is computed from a reference frame,
not necessarily the first frame, to each of the other frames in the input
sequence (section 3.3 ), 2) a Large Scale Facial Model (LSFM) [5, 7],
the largest-scale 3D morphable model of facial identity learned from
around 10,000 scans of different individuals, is used to provide a
rigid estimation of the human face captured in the input video, with
the aid of 68 facial landmarks (section 3.1), as well as an estimation
of the camera pose parameters. Next, a correspondence is established
in our approach between the rigid estimation, represented in the
3DMM space, and the dense 2D tracks extracted with [19] (section
3.5). In the final step, we aim to minimise an energy function we
formulate in section 3.6, so that we can densely reconstruct in 3D
and track the subject’s face appearing in the input monocular video.

3.1 3D Morphable Models (3DMM)

3D Morphable Models (3DMM) were first introduced in the seminal
work of Blanz and Vetter [4] as a linear point distribution parametric
model for 3D representation of human faces accompanied by a
fitting framework to surfaces and 2D images. Under such a model,
an instance 3D face shape, say x € R3N, in the vectorized form
(X = [X1,Y1, 215 .--» XN» yN,zN]T) can be represented as:

x(p, @) = X + Uygp + Uexpq (H

where X € R3N is the mean shape vector for both identity and
expression, U;y € R3NP is the orthonormal basis with the np
most representative/significant principal components out of M — 1,
M being number of training faces used while building the identity
part of the 3DMM, Uy € R3NXn4 ig the orthonormal basis with
the nq most representative/significant principal components out of
T — 1, T being number of training faces used while building the
expression part of the 3DMM, and p € R"?, q € R"7 are the identity
and expression parameters. Therefore, a 3DMM (x) in this case is a
function of both identity and expression coefficients (x(p, q)). For the
identity part of the 3DMM, Large Scale Morphable Model (LSFM)
[5, 7], which was built from approximately 10,000 scans of different
people with varied demographic information, was adopted, while
the blendshapes model of Facewarehouse [12] was used for the
expression.

3.2 UV Mapping and Model Space Sub-Sampling

The objective (energy) functional formulated in this paper (as de-
tailed later in section 3.6) has a term Ey4 that works as an edge-
preserving spatial regularizer. Such a term is defined based on an
unwrapped version of the 3D shape Sy we need to estimated for
each frame. The aim of the unwrapping is, therefore, to establish
a one-to-one mapping f(v) : R®> — R? that maintains a 3D to 2D
correspondence between each 3D face vertex (v;) and a 2D point
on an image grid. Towards that goal and following [8], we choose
to perform an optimal cylindrical unwrapping of the 3DMM mean
face (%) in the UV space, a space in which the manifold of the
face is flattened into adjoining 2D atlas. This results in a 3-channel
image/UV-map (U) such that U (c;) = v;, where ¢; is a point on this



unevenly distributed map. After placing the center of mass of the
mean 3DMM face shape (%) at the origin, ¢; = [6;, z;]T = f(v;) is
computed as follows:

0; = arctan(%), zZi=y ?2)

where v; = [x,y,z]7 is the corresponding vertex on the 3DMM
mean face x.

A key advantage of defining this bijective mapping is that neigh-
bouring vertices on the mesh will be neighbours in UV space, result-
ing in a shared topology T, where T = [tlT, tZT, s t,Tn], t; = [tf, tzi, t;],
t} € {Z*lt} < N}, given that t; is the ith triangle index and T is pro-
vided with the utilised 3DMM.

For the sake of making this step non video-specific, we define
a fixed regular grid G overlaid on top of the UV map (U) com-
puted from % and find its corresponding 3D face shape, call it s,
by subsampling the 3DMM space. By adopting such an approach,
the dependency of the UV map is decoupled from the input video,
leading to a predetermined correspondence between G and any re-
constructed 3D face x; in the subsampled 3DMM.

With a step size: D = rDy, the 2D grid G is pre-computed, given
that r is the radius of the optimal unwrapping cylinder, computed as
in [8] based on annotations, and Dy is chosen in our paper so that 2D
grid points density is comparable to the original 3DMM resolution
N.

Since the computed UV map (/) shares the same topology as the
3DMM mean face (x), 3D vertices corresponding to the 2D grid (G)
points are computed as the barycentric coordinates of the triangles
defined in T and overlaid on top of grid in the UV space. This gives
rise to a sub-sampled 3DMM mean face shape (x5 € R3*€, O being
the sub-sampled face resolution) derived as follow:

%s = [v1,...,v0] = XB 3)

B = [By,....Bg] € RNXQ is the matrix storing the barycentric co-
ordinates B; € RN of a vertex v; that corresponds to 2D grid point
lying inside a triangle t; = [t{, t‘é, té] in G. B; is actually a sparse
vector (having at least N — 3 zeros) with Bi(t{),Bi(té),B,-(té) em-
bodying the barycentric coordinates of v;. To adjust the incorporated
3DMM model in section 3.1 accordingly, we sample U;4 and Uexp
in the same manner based on B, producing the following subsampled
3DMM:

Xs = Xs + Usidp + Usequ 4)
where X, U%;4 , U¢xp denote the sub-sampled mean face, identity
and expression bases, respectively. Henceforth, this sub-sampled
model will be used and referred to in this paper, even though we
omit the superscript s in equation 4 and consider Q ~ N. It is
worth noting that after subsampling both U;; and Uy, we need
to orthonormalise them again to be used in our Eg,,,, and E;; of
the energy functional we formulate in equation 11. We choose to
orthonormalise both bases as follows:

SVD(Us expUseyp) = U8 phexpUin, 5)
034 Aia U5y = SVD((I30x30 = Ul pUtk,p)U%0) ©)

noting that SVD(.) is the singular value decomposition operator,

U3, and fJSexp are the orthonormalised versions of the sub-sampled

identity and expression bases, respectively, and A;4, Aexp are their
corresponding eigenvalues .

3.3 Multi-Frame Subspace Flow

Starting from the observation that 2D trajectories of various points on
the same non-rigid surface exhibits high degree correlation over time,
R. Garg et al. put forward in [19] a procedure for the computation of
optical flow from a reference frame to all other frames in a sequence.
Their key remark is that the amount of correlation existing between
moving points (pixels) on a non-rigid surface over time can be
expressed in a compact form as a linear combination of a low-rank
motion basis. This results in a subspace constraint acting as a spatial
regularisation term, along with a brightness consistency term, in
their formulated energy functional. The final outcome is a reduction
in the notoriously high-dimensionality associated with this kind of
problems, and a temporally smooth estimations.

While generating the motion field estimation results in our frame-
work, we incorporate the gradient of pixel intensities, rather than
their absolute values, in the brightness consistency term suggested
in [19] for more robust performance, given our test videos are chal-
lenging (in-the-wild), of varying resolutions and affected by noise.

3.4 3D Rigid Initialisation Using 3DMM

In this paper, we opt for computing the rigid 3D face shape initiali-
sation of our framework using 3DMMs. This is mainly due to the
fact that relying on Rigid Structure from Motion (RSfM) techniques,
as it is done usually in similar frameworks, for the rigid initialisa-
tion computation has significant shortcomings in some challenging
scenarios: 1) human faces captured in the input video should exhibit
enough rotation for the SfM to work robustly, 2) No significant oc-
clusion can be present, 3) 2D facial features should be tracked quite
accurately among input frames sequence. All the aforementioned
issues can be encountered quite often in in-the-wild videos. Hence,
a powerful alternative approach is to use 3DMM fitting on sparse
facial landmarks, leading to plausible face reconstruction suitable as
an initialisation and overcoming the previously stated barriers.

A two-step procedure was followed to produce the rigid 3D shape
estimation. While in the first camera parameters are estimated, the
second step tackles the calculation of identity and expression pa-
rameters (p, q), assumed in our rigid case to be fixed over all input
frames sequence.

Camera Matrix Estimation For the sake of computations ease,
we postulate in our experiments an orthographic camera model of
the form:

0 =pllxo @)

v = [x,y,z] being an object-centered face vertex in the camera
coordinate system and p is the scaling factor that accounts for global
changes in depth d. Let L be 2n ¢ X L matrix storing the 2D landmarks
of all the frames, where each column has the (x, y) coordinates of

the same landmark in all the frames, IT = [H{...Hgf]T az2nfx3

matrix that stacks the scaled orthographic projection (P : R® — R?,
mapping 3D points to image pixels) matrices I1 € R?*3 from all the
frames f. The following least squares problem (LSM) was minimised
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Figure 1: Our proposed method marked by the different adopted stages

to find the scaled orthographic camera projection matrix:
minl {1Sig - £115- ®)

given that Sy;g is a 3 X L matrix with the sparse 3D landmarks on the
mean 3DMM shape (denoted as x in section 3.1 ), with landmarks
stored column-wise, and ¥ is the Frobenius norm.

Shape Parameters Estimation having obtained a per-frame esti-
mation of the projection (camera) matrix, the following LSM was put
together to compute the 3DMM parameters (identity and expression)
of the input face:

nf
rgi(?Zn(IL ® )% + Uigp + Uexpq) — I 1%,
f=1 ©)

subjectto —wjg <p < wjg and

— Wexp < q < Wexp

where ® denotes Kronecker product, such that the multiplication
with the 2L X 3L matrix I, ® Il¢ implements the application of the
camera projection II¢ on each one of the L landmarks, lf € R%L s
the 2D facial landmarks extracted from frame f, w;q and wexp are
the box constraints imposed on the identity and expression and have
the same size as p and q, respectively. The introduction of the box
constraints (w;q and wexp) in equation 9 is to compensate for the
inaccuracies associated with the input landmarks relied on for fitting
and the encountered occlusions. Note that the 3DMM parameters
(p and q) are constant over all the input frames f, complying with
our postulated assumption about the rigidity of estimated face at this
stage. The facial shape rigidity assumption throughout the whole
video is rather tight. However, as verified experimentally in [47],
once provided with a significant number of frames, it provides a very
robust initialisation of the camera parameters even in cases of large
facial deformation.

3.5 2D-3D Correspondence Establishment

Having obtained a sequence of 2D tracks (Wzp € R2nfXK g being
the number of dense 2D image points tracked between frames) lying
on the subject’s face (section 3.3) and a rigid initialisation (x =
X + Ujgp + Uexpq) of its 3D shape (section 3.4), a correspondence
between these 2D tracks and the rigid 3D shape vertices should be
constructed.

Using the estimated camera matrix of the reference frame, say
¢, the rigid shape x € R3N is projected first onto the reference
frame f*, after being rearranged as a matrix xJ’” € 3 X N with

(x,y, z) coordintes of each vertex placed in a column-wise order:
P(pr. X)) = Rer = Mpaxf, (10)

where P: RN — R¥N js a linear view transformation mapping
3D to 2D points, g« is a 2 X 3 camera matrix of the reference
frame f*, estimated in section 3.4, and Rpx € R?*N is the projected
vertices of the rigid 3D face on the reference frame f*. Let

1 K
N N 2K
f yl ey
f* f*

represent the traced face dense 2D points in the reference frame f*,
with Wpp = [WIT, ...,wZ 1T e R2fXK A correspondence between
wy and Xg« is created by choosing the nearest neighbour (column),
based on the euclidean distance, in Wik for each vertex (column)
in %7« . This results in a matrix, say w7, of size 2 X N, where N is
the resolution (number of vertices) of the utilised and sub-sampled
3DMM (see section 3.2). Since the dense point tracks are known
with respect to the reference frame, the matrix Wsp is updated by
adding the track of each point in W, resulting in a new matrix,
call it W), Following an iterati\ie approach, W1 is used again
for refining the rigid estimation (IT and x) obtained in section 3.4,
but this time using all dense 2D tracks N, which have been put
in correspondence with the rigid 3D estimation, rather than the 68



facial landmarks employed in the first iteration. Experimentally, we
found that 2-3 iterations is enough for most of the tested videos.

3.6 Energy Formulation

Let Iy, ...., Ir be the input video frame sequence to be densely re-
constructed in 3D and tracked, F the number of frames, I, the
reference frame, N the number of pixels tracked starting from the ref-
erence frame after establishing the correspondence with the utilised
sub-sampled 3DMM as described in section 3.5. With the aim of 3D
dense reconstruction and tracking from monocular videos in mind,
we compose an objective function of the form:

ER,S) = AEg4:4(R,S) + Ereg(S) +7E¢race(S)

+ CdmmEdmm(S) + cidEid(s)
Data term (E; ;) a geometric data term that aims at minimising
the reprojection of reconstructed shapes into input frames. This term

takes the following quadratic form, with ||.||# denoting Frobenius
norm:

QY

1
Edata = 5|IW = RSIIg- (12)

where W is the 2D tracks matrix of size 2F X N, storing N tracked
points on I throughout the input sequence (see W;p section 3.5),
R is 2F X 3F reprojection matrix with diagonal 2 X 3 elements im-
plementing the per-frame reprojection, S is 3F X N matrix stacking
vertically per-frame 3D shapes S¢

S¢ =

LS
Sk

with columns having the x, y, z coordinates of each 3D shape vertex.

Regularisation term (E;¢4) an edge-preserving spatial regular-
ization on the dense 3D trajectories that comprise the columns of
S. Consider S} as the ith (i = 1,2, 3) row of a frame f 3D shape Sf.

Eyeg is defined as a total variation term:

F 3 F 3 N
Ereg =y, >, TVISHI =" > VSl (13)
f=1i=1 f=1i=1p=1
with S representing a discrete 2D image of the same size as the

f .
2D grid (mask) G defined in section 3.2 and VS}(p) denoting the

gradient of S} at pixel p. Since each vertex in S} gives rise to a pixel
on If, reshaping S}, based on G, as a 2D discrete image holds valid
and allows the computation of the gradient as forward differences in
both horizontal and vertical directions (interested readers are referred
to [13] for more details).

Trace term (E;,4ce) as the name implies, this term favours a smaller
rank of the time-evolving shape matrix, minimising the number of
principal components needed to represent such a shape over time.

min(F,3N)

Etrace = IP®)la= Y. A (14)
j=1

given that ||.||« is the nuclear norm and P(S) is an F X 3N matrix,
with row-wise per-frame shapes.

Additionally, we propose to add two new terms (E;,,,, and E; ;)
that are face-specific and act as a soft constraint on: 1) departure of

Sy from our 3DMM space, and 2) deviation from the mean identity
in the input frame sequence, respectively.
Distance from 3DMM space (E,,,,,,) this term penalises the devi-
ation of reconstructed shapes from the 3D Morphable Model space.
It is formulated as a quadratic cost between the per-frame recon-
structed shapes and their projection onto the subspace spanned by
the 3SDMM.
1w .
Edmm = 5 ), camm|ll = 0087 = )11 (15)
f=1

given that x is the mean 3DMM shape of size 3N, Iis a 3N X 3N
identity matrix, U = [fJideexp] is a 3N X (np + nq) combined basis
comprised of the orthonormalised and subsampled version of Large
Scale Morphable Model (LSFEM) [5, 7] and Facewarehouse [12],
respectively, as explained in section 3.2. np + nq symbolises the
principal components kept for explaining the identity and expression
of reconstructed faces in the 3DMM subsapce.
Identity unification (E;;) with the objective of consolidating iden-
tity of reconstructed 3D shapes (S¢) throughout the input sequence,
this term focuses on keeping the projection of each obtained 3D
shape on the identity basis of our 3DMM subspace as close as pos-
sible to the mean projections onto the same basis over all frames.
Mathematically, this term is put together as below:

F
1 . _
Eig = S¢ia ZHUde(Sf—X)—dide (16)
=
_ 1 &
dig =5 ), UlySp =% (17)
=

3.6.1 Optimisation of the Formulated Energy. To minimise
the proposed energy functional in equation (11), we adopt a similar
minimisation procedure to the one suggested in [18]. We alternate
between the estimation of the motion matrix R and the shape matrix
S, maintaining the other unalterable.

Minimising equation (11) w.r.t R while fixing S is fairly straight-
forward, boiling down to minimising the only dependent term (E ;,;,)
using Levenberg-Marquardt. On the other hand, in a second step,
estimating S while keeping R constant is a non-trivial task. Basically,
the problem can be divided into two sub-problems, with the aim
of decoupling the nuclear norm and TV regularisation terms of the
energy, as demonstrated in equations (18) and (19).

1 a2 A 2 i
min o118 = SI[5-+IW = RS|I-+ > [IVS{()l+

fiip
c F
%ZH(I—UUT)(SJC—X)H% (18)
f=1
F
C’JZHUT(S - %) —d;qll?
2 id\Of id
f=1
o1 Q112 g
mslnﬁlls—sllfﬁllp(s)ﬂ* 19

where 6 has the role of a quadratic relaxation parameter that is rela-
tively small so that the optimal S and S are similar. Although equation
(18) is convex, it is non-differentiable due to the presence of the



edge-preserving spatial regularisation term (Eyg). Circumventing
such a problem can be achieved by dualising the regularization term
in (18) and rewriting the corresponding minimisation in its primal-
dual form. Algorithm 1 summarises the approach for minimising
(18).

Algorithmus 1 : Primal dual algorithm for Eq. (18)

Input : Measurement matrix W, current motion matrix
estimates R and low rank shapes S
Output : Spatial smooth shapes S
Parameters : A, 0, and step size o of dual update
Initialise : the dual variable g using the estimates from the
previous iteration of this algorithm (0 in the first)
while not converge do
Al HEVRHN)
Do T
VM) . VW)
for f =1to F do
Sranx1) = ARTR + FIsnxan + fidUidUde +
cammOUD) T ORTW font) + 5 + cammUUTR +

¢iaUiaU} % + ¢iqUigdia = D))

for f=1toF, i =1t03,p=1 toNdo
; B q}(p)+o'VS}(p) )
| qf(P) " max(L,[lq}(p)+ 0 VS;(P)I])*

In Algorithm (1), we chose to decouple overall 3D shapes esti-
mation into per-frame independent problem, so that it is feasible
to solve it in parallel using GPU (Graphics Processing Unit). Note
that, in Algorithm 1, R = (Rf(2x3) ® INxN) is @ 2N by 3N matrix
which implements the orthographic projection of S¢(3nx1) onto the
corresponding frame resulting in W g(;nx1). given that N is the res-
olution of the subsampled 3DMM, which is also equivalent to the
number of tracked points in each input frame after establishing the
correspondence as explained in section 3.5.

To minimise equation 19, we use the soft impute algorithm, see
[32] for more details.

4 EXPERIMENTAL RESULTS

In this section, we present the results obtained while conducting
both quantitative and qualitative experiments to evaluate our method

against other state-of-the-art methods, namely: 4Dface [23], 3DMMedges

[3], DV-NRSfM [18]. We use the code provided by the authors for
the methods we compare against without any modifications. As
stated before, our 3DMM model of choice is a combination of the
Large Scale Facial Model (LSFM), which is made up of 10,000
faces of both sexes and varying ages [5, 7] (for the identity part), and
Facewarehouse [12], which is composed of 150 individuals aged 7-
80 from various ethnic backgrounds, for the expression. The LSFM
and Facewarehouse models were registered using Nonrigid ICP [14]
algorithm. Motion field estimation was generated in our framework
using the code provided by the authors of [19], but with incorporat-
ing gradient information computed from input frames sequence in
addition to the direct intensity values.

4.1 Quantitative Results

To quantitatively evaluate our presented method, we generated two
synthetic videos each consisting of 440 frames and exhibiting various
natural expressions and head pose variations. Those two videos were
acquired from high-resolution face scans generated by a DI4ADTM
face scanner, with the (virtual) camera undergoing a periodic rotation.
Such videos facilitate the quantitative evaluation of the 4D face
reconstructions for every tested frame. Fig. 3 shows 3 selected frames
with different poses and expressions from each of the synthetic
videos we produce. The original size of each frame including the
black background is 512 X 512 pixels.

To evaluate our per-frame reconstructed 3D faces against the ones
produced by 4Dface [23], 3DMMedges [3], and DV-NRSfM [18],
we calculate a per-frame error representing the average per-vertex
discrepancy between the recovered mesh and the corresponding
ground truth. While generating the results, the same 68 facial land-
marks were made available as an input for all the tested methods,
including ours. In addition, all generated faces were aligned with the
ground truth meshes before calculating any quantitative comparative
measures. Fig. 4 demonstrates the cumulative error across all frames
with four different methods. Our method (termed as DSfM-3DMM)
outperforms the other three methods in both videos, followed by
3DMMedges, 4Dface, and DV-NSfM, respectively. The performance
of DV-NSM is the worst, since it struggles to reconstruct faces in
the lack of proper camera rotation around the synthesised faces in
the videos. On the other hand, our initialisation proves its robustness
in such a challenging scenario.

4.2 Effect of Edmm and Eid Terms

To appraise the decisive role of incorporating E;,,,,,, and E;; terms
in the final energy equation 11, we generated around 1000 synthetic
frames with 2 different subjects, a male and a female, exhibiting
various facial expressions while the synthetic camera is rotating
around them incrementally, left to right. We tested our method,
along with some variants of which, on those frames and computed
the per-vertex error for each reconstructed frame. The final result
is demonstrated in Fig.6 as a cumulative error across all frames
reconstructed using:

(1) DSFM — 3DMM: our proposed method in this paper, with all
the energy terms in equation 11.

(2) DSFM — E 3,1, our proposed method without the E; 4 term in
equation 11.

(3) DSFM: equation 11 without E;,,,,,, and E;.

(4) 3DMM: classical 3DMM fitting using sparse landmarks only,
see section 3.4

Analysing Fig. 6 reveals that, as argued earlier, using 3D Mor-
phable Models (3DMM) alone limits the reconstruction results in
terms of capturing the fine scale details, vindicated in the figure
with the smallest area under the corresponding curve. Using a dense
nonrigid structure from motion (DSFM) produces more accurate
reconstructions compared to using 3DMMs alone, as can be seen
in Fig. 6. Combining DSfM with 3DMM fitting approaches leads
to better reconstructions as we claim in this paper, which can be
justified in the results visualised in Fig. 6. The combination of E;,,, 1,
and E;; proves fruitful when compared against relying on only the
distance from the learned 3DMM manifold (E ;,,,,, term).
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Figure 2: Reconstruction results generated from our method, 3DMMedges [3], 4Dface [23], and DV-NRSfM [18] on a male and female
in-the-wild videos with 80 and 100 interocular resolution, respectively. Only 3 selected frames with their results are shown from each

video.

Figure 3: Three frames, showing dissimilar facial expressions,
from the two synthetic videos we generate in this paper. Top
row: video 1, bottom row: video 2. These are used for quantita-
tive evaluation.

4.3 Qualitative Results

For the qualitative evaluation, in-the-wild videos from the 300VW
[35] dataset were selected. The aforementioned dataset is charac-
terised by challenging videos accompanied with noise, occlusions,
and low resolution, rendering the process of reconstruction very de-
manding. Fig. 2 reveals a qualitative comparison between the recon-
structed faces from two test videos by our scheme (DSfM-3DMM),
3DMMedges [3], 4Dface [23], and DV-NRSfM [18]. Looking at
Fig. 2 in more details, some apparent trends can be noticed. First,
DV-NRSfM produces the worst results with several noticeable de-
formations, which can be attributed to the fact that both videos have
low-resolution and lack enough camera rotation for this method.
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Figure 4: Quantitative evaluation of the compared methods on
synthetic video 1 (top) and 2 (bottom).

Shapes obtained by our method look more similar to the actual sub-
jects and are marked by person-specific characteristics, e.g. the nose
shape and eye closure (middle and bottom frames) in the male video,
and the rise of the eyebrows in the female video (middle frame).
3DMMedges and 4Dface methods generate faces of less similarity
to the captured subjects compared to ours. 3DMMedges method fails



Figure 5: Reconstruction results produced by our method on four dissimilar videos concatenated column-wise along with the gener-
ated 3D faces. Each row depicts a frame from one video and to its right is the corresponding reconstructed 3D face
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Figure 6: Quantitative evaluation of our method against some
of its variants, produced by deleting some terms of Eq. 11, on
1000 synthetic frames.

sometimes completely in estimating the correct subject’s pose, e.g
bottom frame of the female-video. Fig. 5 presents the reconstruction
results obtained by our proposed method when applied on some
videos from in-the-wild 300VW [35] dataset.

S CONCLUSION

In this paper, we propose a solution for the problem of 4D face
reconstruction and tracking from monocular videos. Our suggested
framework capitalises on both Dense Nonrigid Structure from Mo-
tion (DNSfM) and 3D Morphable Models (3DMM). The result is a
more robust and accurate methodology when dealing with challeng-
ing (in-the-wild) videos that have low-resolution and lack proper
camera rotation around the subject’s face, which affects consider-
ably the DSfM when used alone. At the same time, this combination
produces 3D shapes that have somewhat the freedom to depart from
the 3DMM space and capture details that cannot be expressed by
the incorporated 3DMM. We have validated the potential of our pro-
posed approach both quantitatively, using a set of synthetic videos

we generated, and qualitatively, on the 300VW [35] dataset for in-
the-wild videos, and outperformed other state-of-the-art methods
tested on the same videos. The effect of adding the two energy terms
(Egmm and E; ;) acting as soft constraints on the 3DMM manifold
were evaluated separately on a synthetic set of videos and shown to
offer a rewarding combination.
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