
SIAM J. IMAGING SCIENCES c© 2015 Society for Industrial and Applied Mathematics
Vol. 8, No. 2, pp. 1090–1122

Structure Tensor Total Variation∗

Stamatios Lefkimmiatis†, Anastasios Roussos‡, Petros Maragos§, and Michael Unser¶

Abstract. We introduce a novel generic energy functional that we employ to solve inverse imaging problems
within a variational framework. The proposed regularization family, termed as structure tensor
total variation (STV), penalizes the eigenvalues of the structure tensor and is suitable for both
grayscale and vector-valued images. It generalizes several existing variational penalties, including
the total variation seminorm and vectorial extensions of it. Meanwhile, thanks to the structure
tensor’s ability to capture first-order information around a local neighborhood, the STV functionals
can provide more robust measures of image variation. Further, we prove that the STV regularizers
are convex while they also satisfy several invariance properties w.r.t. image transformations. These
properties qualify them as ideal candidates for imaging applications. In addition, for the discrete
version of the STV functionals we derive an equivalent definition that is based on the patch-based
Jacobian operator, a novel linear operator which extends the Jacobian matrix. This alternative
definition allow us to derive a dual problem formulation. The duality of the problem paves the
way for employing robust tools from convex optimization and enables us to design an efficient
and parallelizable optimization algorithm. Finally, we present extensive experiments on various
inverse imaging problems, where we compare our regularizers with other competing regularization
approaches. Our results are shown to be systematically superior, both quantitatively and visually.
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1. Introduction. Inverse problems are ubiquitous in science and engineering and they
have been an important topic of interest for many years. Nowadays, with the advent of mod-
ern imaging techniques, inverse problems appear increasingly in a host of imaging applications
ranging from microscopy and medical imaging to remote sensing and astronomical imaging [6].
They also appear in a plethora of computer vision applications, including motion estimation,
image registration, stereo, and dense three-dimensional (3D) reconstruction [42]. These prob-
lems pertain to estimating unknown features of interest from partial or indirect measurements
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of image attributes. In practice, inverse imaging problems are typically ill-posed. This is to say
that the equations relating the object of interest to the measurements are not enough by them-
selves to uniquely characterize the solution; a model of known properties of the underlying im-
age is necessary for the recovered information to be physically and/or statistically meaningful.

A common strategy for dealing with ill-posed inverse problems is the variational approach.
The main element of this framework is the regularization functional, whose role is to favor so-
lutions that exhibit desirable properties. The proper selection of a regularizer is of paramount
importance since it significantly influences the reconstruction quality. During the past years,
this has triggered an increasing research interest on the design of regularizers able to encode
important properties of natural images.

One of the most popular regularizers for imaging applications is the total variation (TV)
seminorm [47]. TV is a convex functional which allows the use of powerful optimization
techniques. Usually it is intended for grayscale images but it has also been extended to apply
to vector-valued images; see, for instance, [7, 30, 48, 55, 58]. The main reason for its success
is its ability to reconstruct images with sharp, well-preserved edges. However, it has the
drawbacks of oversmoothing homogenous regions and creating staircase artifacts [16].

To overcome the limitations of TV, several regularization functionals have been proposed
in the literature. Among them there are extensions that adapt the penalization of image
variation, by locally varying the regularization weight [22, 29, 32] or by incorporating an
anisotropicity that is steered by the local structures of the image [5, 49, 53]. However, these
methods extract the local information either from the input image in a preprocessing step or
as an additional unknown function of the optimization problem, not directly depending on
the underlying image. On the contrary, the so-called anisotropic TV (ATV) [33, 38] adapts
the penalization of image variation by introducing a “diffusion” tensor that depends on the
structure tensor of the unknown image itself. Nevertheless, in this case the adaptivity on
image structures is heuristically designed, similarly to the design of the coherence-enhancing
diffusion [57]. Another related regularizer is the Beltrami functional [52] of vector-valued
images, which corresponds to the area of the generalized graph of the image embedded in a
high dimensional space, using the induced metric. This framework has been recently gener-
alized and unified with the Mumford–Shah functional [51], while in [46] an extension of the
Beltrami framework that uses image patches has been introduced. A different regulariza-
tion approach that also aims to eliminate the staircase effect of TV, involves functionals that
can encode higher-order information. These regularizers promote piecewise-linear instead of
piecewise-constant reconstructions and are either combined with TV as in [13, 41] or used
in a standalone fashion as the total generalized variation (TGV) [10, 50] and the Hessian
Schatten-norm regularizers [37]. Finally, there also exist nonlocal variational techniques that
exploit the nonlocal self-similarity property of natural images. This is made possible by em-
ploying functionals that allow nonlocal interactions between image points [24, 28]. Among
the most efficient regularizer of this category is the nonlocal TV functional (NLTV) [28].
Discrete-domain extensions of NLTV for vector-valued images are studied in [17, 18].

1.1. Contributions. In this work, we propose a family of convex regularizers that penalize
the image variation at every point of the domain by taking into account the information
in a local neighborhood. This is accomplished by adopting a penalty that depends on the
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eigenvalues of the structure tensor of the underlying image. In detail, our key contributions
are the following:

1. The introduction of a family of energy functionals that generalize TV and vectorial
extensions of it. Our regularizers preserve all the favorable properties of TV, such as
convexity and invariance w.r.t. image transformations. Moreover, they provide a more
robust and richer measure of image variation by exploiting additional information from
the neighborhood of every point. We use these functionals in a variational framework
to obtain regularized solutions of ill-posed inverse imaging problems.

2. The proof that our regularization criteria, which involve the eigenvalues of the nonlin-
ear structure tensor operator, are convex and invariant to image transformations.

3. The concept of the patch-based Jacobian as a novel neighborhood-aware extension
of the discrete Jacobian operator. We employ this operator to obtain an equivalent
definition for the discrete version of our proposed energy functionals. This further
allows us to derive a dual problem formulation.

4. The development of a practical first-order algorithm for evaluating the proximal map
of the introduced regularizers. Our optimization algorithm copes with the nonsmooth-
ness of the energy functionals and leads to efficient numerical solutions.

5. An extensive quantitative experimental evaluation of our method on several inverse
problems for different degradation conditions. The comparisons are performed on
a large dataset of both graylevel and color images, where we compare the proposed
method with TV and vectorial extensions of it, as well as with the state-of-the-art TGV
[10]. The results show that in all the studied problems, our method systematically
outperforms all other evaluated techniques.

We note that in the conference papers [36, 46], which contain preliminary parts of this
work, we established a connection between the minimization of a class of structure tensor-
based regularizers, which also includes a relaxation of the proposed family of regularizers,
and a novel generic type of nonlinear anisotropic diffusion. This type of diffusion is driven
by a diffusion tensor that depends on the solution itself and is spatially regularized (in the
sense that it involves convolutions with a kernel, as, e.g., in [55, 57]). This connection, in
conjunction with the efficient optimization strategy that we present here, implies that we can
employ powerful convex optimization techniques for implementing this type of anisotropic
diffusion schemes. We intend to present in depth the relations of the proposed regularizers
and anisotropic diffusion in a separate article.

An important extension of the present work with respect to the conference paper in [36] is
that we introduce a continuous-domain formulation of the problem, which is guided by funda-
mental invariance properties (translation and rotation invariance, 1-homogeneity), and further
provide a proof of convexity. These new results are presented in Theorem 2.1. Additionally,
we establish a bound for the Lipschitz constant of the dual objective function that arises in the
evaluation of the proximal operator of our functionals (Proposition 4.2). This allows us to use
a fixed step-size in our gradient-based optimization algorithm. Further, we provide extended
comparisons on several inverse imaging problems, including two new applications, namely,
image reconstruction from sparse Fourier measurements and image magnification. Finally, for
the deblurring problem that we study, we consider an improved forward model than the one
we used in [36]. This formulation avoids the need of making any specific assumption about
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the image boundaries and holds the regularizer responsible for reconstructing the image in a
way that best explains the observation.

This paper is organized as follows: in section 2, we introduce the proposed family of reg-
ularizers and motivate their use. In section 3, we focus on the discrete domain and introduce
the patch-based Jacobian operator. In section 4, we design our optimization algorithm, while
in section 5 we assess the reconstruction performance of our approach with extensive experi-
ments on several linear inverse imaging problems. Conclusions are drawn in section 6, while
all the mathematical proofs are provided in Appendix A.

2. Regularization for inverse problems.

2.1. Problem formulation and variational recovery. The relationship between the image
of interest and the measurements is given by the physical forward model that provides the basis
of the acquisition process. For many imaging applications, the acquisition is well-described
by a linear process, which can be mathematically formulated as

v (x) ∼ N (Au (x)) .(2.1)

In this case, u (x) = [u1 (x) . . . uM (x)] : R2 �→ R
M represents the generic vector-valued image

with M channels that we wish to reconstruct and A is a linear operator that provides a
mapping from the space of underlying images to the space of measurements. The symbol N
represents the measurement noise which accounts for all possible types of errors during the
acquisition, including stochastic noise.

The recovery of u from the measurements v in (2.1) belongs to the category of linear
inverse problems. For most cases of practical interest, the operator A is either ill-conditioned
or singular. This kind of ill-posedness [56] is dealt with within a variational framework, where
the reconstruction of u is cast as a minimization problem of an objective function of the form

E (u) = ϕ (Au) + τψ (u) .(2.2)

Such a cost function consists of (a) the data fidelity term ϕ (Au), which measures how well a
candidate solution explains the observed data, and (b) the regularizer ψ (u) which encodes any
available prior information about the underlying image. The exact form of the data fidelity
term depends on the assumed noise model perturbing the measurements. From a Bayesian
point of view, the overall reconstruction approach corresponds to either a penalized maximum
likelihood or a maximum a posteriori estimation problem [26].

2.2. TV regularization. As stated earlier, TV [47] applies to grayscale images u(M = 1)
and for smooth images is defined as

TV(u) =

∫
R2

‖∇u‖2 dx.(2.3)

Apart from the summation over the domain, another key ingredient of TV is the gradient
magnitude ‖∇u‖2 of the underlying image. Their combination leads to an L1 weighting
that does not overpenalize high variations of u. Therefore, the reconstructed images feature
sharp edges, which are visually appealing. Due to this favorable property, TV has been
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extended to vector-valued images u. A popular extension that retains TV’s properties and
at the same time introduces a coupling between the different channels of u is the vectorial
TV (VTV) [7, 48]. VTV has a definition similar to (2.3), where the gradient magnitude is

replaced by its straight-forward vectorial extension ‖∇u‖2 = {∑M
i=1 ‖∇ui‖22}

1
2 .

A known drawback of TV is that it favors piecewise-constant solutions and, thus, it can
create strong staircase artifacts in smooth regions of the image. Furthermore, a basic short-
coming of both TV and VTV is that the gradient magnitude, employed to penalize the image
variation at every point x, is too simple as an image descriptor; it relies only on x without
taking into account the available information from its neighborhood. In fact, most of the
existing extensions of TV [30, 33, 55, 58] as well as related regularizers [52] share the same
drawback: they integrate a penalty of image variation that is completely localized.

To overcome these limitations, we next adopt more sophisticated descriptors of image
variations that take into account information from the neighborhood of every point. Conse-
quently, the resulting regularizers are able to provide a richer and more robust measure of
image regularity.

2.3. Directional derivatives and the structure tensor. Our goal is to develop neighbor-
hood-aware measures of vectorial image variations that will be incorporated in a novel vari-
ational framework. To do so, we first revisit the theory1 behind the structure tensor [35,
57]. Hereafter, we assume that the vector-valued image u belongs to the Sobolev space
W 1,2(R2,RM ). Let n be an arbitrary two-dimensional (2D) direction (‖n‖2 = 1). The vecto-
rial directional derivative of the vector-valued image u in the direction n and at any specific
image point x is given by [21]

∂u

∂n
(x) = (Ju(x))n ,(2.4)

where Ju is the Jacobian matrix of u defined as

Ju(x) =
[∇u1(x) . . . ∇uM (x)

]T
.(2.5)

The magnitude of the directional derivative ‖∂u/∂n‖2 yields a measure of the amount of
change of the image u at the direction n for any point x. This measure is computed by
concentrating completely at the point x. In order to be more robust and also capture the
behavior of the image u in the neighborhood of x, we consider instead the weighted root mean
square (RMS) of ‖∂u/∂n‖2, which we call (local) directional variation:

RMSK {‖∂u/∂n‖2} =

√
K ∗ ‖∂u/∂n‖22 =

√
nT (Sku)n.(2.6)

In the above equation ∗ denotes the convolution operation, K(x) is a nonnegative, rotationally
symmetric convolution kernel, K(x) = K(|x|), that performs the weighted averaging (e.g., a
2D Gaussian) and SKu is the so-called structure tensor [27] of the image u at point x defined
as

SKu (x) = K ∗ [
JuTJu

]
(x) .(2.7)

1Instead of the usual focus on the eigenvalues of the structure tensor [35, 57], our study focuses on their
square roots.
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Figure 1. Structure tensor of an image at sample points x1,x2,x3. The structure tensor is visualized as an

ellipse and its unit eigenvectors θ+,θ− and rooted eigevalues
√
λ+ ,

√
λ+ are also depicted. For any arbitrary

direction n, which is characterized by its angle ω with the eigenvector θ+, there is a corresponding point P (ω)
on the ellipse. The distance of this point from the ellipse center yields the directional variation V (ω).

Note that in the above definition, similarly to [55], we do not consider any presmoothing of
the image before computing its Jacobian. The reason is that the single convolution with K
seems sufficient for the needs of image regularization while it also avoids the introduction of
additional complexity in the computations.

Let λ+ = λ+(SKu(x)), λ
− = λ−(SKu(x)) be the eigenvalues of SKu(x), ordered so that

λ+ ≥ λ−, and θ+,θ− are the corresponding unit eigenvectors. Also, let ω ∈ (−π, π] denote the
angle between the direction vector n and the eigenvector θ+. Using the eigendecomposition
of SK(u), the directional variation (2.6) can be expressed as a function of the angle ω:

V (ω) � RMSK {‖∂u/∂n‖2} =
√
λ+ cos2 ω + λ− sin2 ω .(2.8)

Now, let us consider the ellipse given by the parametric equation

P (ω) = cosω
√
λ+θ+ + sinω

√
λ−θ− , ω ∈ [0, 2π).(2.9)

The major and minor radius of this ellipse are
√
λ+ and

√
λ−, respectively, whereas the di-

rection of the major and minor axis are given by θ+ and θ−, respectively. Therefore, this
type of ellipse offers a way to visualize the structure tensor SKu as shown in Figure 1. More
importantly, we observe that V (ω) = ‖P (ω)‖2. This implies that the directional variation
V (ω) can be interpreted as the distance of any point P (ω) from the center of the ellipse.

From (2.8), we observe that the maximum of the directional variation V (ω) is
√
λ+ and

is achieved for ω = 0, π, whereas the minimum of V (ω) is
√
λ− and is achieved for ω =

π±π/2. In conclusion, the structure tensor measures the geometry of image structures in the
neighborhood of each point: its eigenvectors θ+ and θ− describe the orientation of maximum
and minimum vectorial variation of u and the square roots of its eigenvalues,

√
λ+ and

√
λ−,

describe measures of these variations.
The eigenvalues of the structure tensor offer a rich and discriminative description of the

local geometry of the image. When both λ+ and λ− are relatively small (e.g., point x1 in
Figure 1) there are small vectorial variations around the current point, indicating that the
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region is homogeneous. When λ+ is large and λ− is small (e.g., point x2 in Figure 1) there are
strong variations, but only in a dominant direction. Therefore, the current point is located
close to an image edge. When both λ+ and λ− are large (e.g., point x3 in Figure 1) there
are high variations in all directions, which implies that the current point is close to an image
corner.

2.4. The structure tensor TV functional. To design regularizers that integrate a scalar
penalty of the local image variation at every image point, we need to consider measures that
provide a synopsis of the function V (ω). Such measures, which are also computed from the
eigenvalues of the structure tensor, are the following:

Case 1. RMS value of V (ω): ((2π)−1
∫ 2π
0 V 2(ω)dω)1/2 =

√
λ+ + λ−/

√
2, as it can be

easily verified using equation (2.8).
Case 2. Maximum value of V (ω): the maximum of V (ω) w.r.t. ω is

√
λ+.

Case 3. Midrange of V (ω): this is defined as the average of minimum and maximum
values of V (ω), therefore, it is given by (

√
λ+ +

√
λ−)/2.

If for every image point x we define the 2D vector

√
λ =

√
λ(SKu(x)) =

(√
λ+(SKu(x)),

√
λ−(SKu(x))

)
,

we observe that the above measures of image variation correspond (up to appropriate scale
factors) to the following norms of

√
λ:

∥∥√λ
∥∥
2
(Case 1),

∥∥√λ
∥∥
∞ (Case 2),

∥∥√λ
∥∥
1
(Case 3).

This connection further motivates us to consider the more general case of the 	p norm∥∥√λ
∥∥
p
(p ≥ 1) as a measure of image variation. These norms measure the image variation more

coherently and robustly than the gradient magnitude used in TV, as they take into account
the variations in its neighborhood. At the same time, they incorporate richer information,
since they depend both on the maximum and minimum of the directional variation. In this
way, their response is in general better adapted to the image geometry.

The fact that the 	p norms of
√
λ are able to measure the local image variation suggests

generalizing the TV (2.3) via replacing ‖∇u‖2 by
∥∥√λ

∥∥
p
. This leads us to define the following

novel class of regularizers, with u ∈W 1,2(R2,RM ) and p ≥ 1:

STVp(u) =

∫
R2

∥∥∥(√λ+,√λ−)∥∥∥
p
dx.(2.10)

We call the resulting family of regularizers structure tensor TV (STV), due to its dependence
on the structure tensor of the image and to the fact that it generalizes TV.

Next, we provide a result about the properties that the proposed family of regularizers
satisfies. Specifically, the following theorem, whose proof is given in Appendix A.2, verifies
that all the favorable properties of TV are indeed preserved by STV.

Theorem 2.1. The STV functional, STVp (u), is translation and rotation invariant, 1-
homogeneous, and convex.

Connections to TV-based functionals. Several existing variational methods emerge as special
cases of the proposed regularizers whenK(x) is chosen to be the Dirac delta δ(x) (degenerated
case where no convolution takes place at the computation of the structure tensor). Specifically,
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if we consider grayscale images (M = 1) and K(x) = δ(x), then all the regularizers of the
type (2.10) are equivalent to TV. The reason is that in this case, λ+ = ‖∇u‖22 and λ− is
always 0, therefore

∥∥√λ
∥∥
p
= ‖∇u‖2 for any p ≥ 1. Furthermore, if we consider vector-valued

images (M > 1) and K(x) = δ(x), then the choice of p = 2 corresponds to the VTV, while
the choice of p = ∞ corresponds to the regularizer of [30], which the authors call natural
vectorial TV (TVJ). Finally, by choosing K(x) = δ(x) and p = 1 we obtain a novel vectorial
extension of TV that we initially introduced in [36]. This regularizer penalizes the nuclear
norm of the Jacobian. We denote this regularizer as STV1(loc), since it corresponds to a
completely localized version of STV1, where the corresponding structure tensor is formed
by only combining the information from the different image channels without any spatial
smoothing.

3. Discrete STV. In practice, for all inverse problems of interest we need to deal with
discrete data. Therefore, from now on we solely focus on the discrete problem formulation
of (2.1) and its manipulation. In this case, A will denote the system matrix that models the
spatial response of the imaging device, while v and u will denote the vectorized versions of
the observed image and the image to be estimated, respectively.

3.1. Notation and definitions. Hereafter, lower-case bold-faced letters are used for vec-
tors while upper-case bold-faced letters are reserved for matrices and multidimensional arrays.
The set of unitary matrices is denoted as U

N =
{
X ∈ C

N×N : X−1 = XH
}
, where C is the

set of complex numbers and (·)H is the Hermitian transpose. Further, the set of positive
semidefinite diagonal matrices is denoted as DN1×N2 = {X ∈ R

N1×N2
+ : X (i, j) = 0 ∀ i = j}.

We assume that the discretized vector-valued image u = (u1, . . . ,uM ) is defined on a
rectangular grid with unary steps and contains N pixels. Each channel m of u(m = 1, . . . ,M)
is rasterized in the vector um ∈ R

N and by combining all the image channels, we have
that u ∈ R

NM . We use the index n = 1, . . . , N to refer to a specific pixel of the grid and
we denote by xn its coordinates. Further, the convolution kernel K is also discretized and
truncated in order to have compact support P = {−LK , . . . ,LK}2, where LK is a nonnegative
integer much smaller than the dimensions of the discrete image. We denote by [SKu]n the
discrete structure tensor of u evaluated at pixel n, which is defined by adopting a discrete
gradient in (2.5) and discrete convolution in (2.7). To properly handle values outside the image
boundaries in the definition of this convolution, we assume a type of image extension beyond
the boundaries such as mirroring, periodic extension, or zero padding. In our implementation
we have used the mirroring boundary extension but the framework that we describe next can
easily accommodate all the boundary extensions. Now, we can formally define the discrete
STV as follows:

STVp (u) =

N∑
n=1

∥∥∥(√λ+n ,
√
λ−n

)∥∥∥
p
,(3.1)

where p ≥ 1 and λ+n , λ
−
n denote the two nonnegative eigenvalues of the discrete structure

tensor [SKu]n at pixel n.
Finally, the following definition will be of help in what follows.
Definition 3.1 (Schatten norms). Let X ∈ C

N1×N2 be a matrix with the singular-value de-
composition (SVD) X = UΣV H , where U ∈ U

N1 and V ∈ U
N2 consist of the singular vectors
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of X, and Σ ∈ D
N1×N2 consists of the singular values of X. The Schatten norm of order p

(Sp norm) of X, is defined as

‖X‖Sp
=

⎛
⎝min(N1,N2)∑

n=1

σpn

⎞
⎠

1
p

,(3.2)

where p ≥ 1, and σn is the nth singular value of X, which corresponds to the (n, n) entry of
Σ.

In words, the Schatten matrix norm of order p corresponds to the 	p norm of the vector
that contains the singular values of the matrix. Three of the most popular matrix norms of
this family are the S1 (nuclear), S2 (Frobenius), and S∞ (spectral) norms, corresponding to
the 	1, 	2, and 	∞ norms of the matrix singular values, respectively.

3.2. Patch-based Jacobian operator. As described earlier, the proposed regularizers de-
pend on the eigenvalues of the structure tensor. Their current form is challenging to work
with, mainly because of the nonlinearity of the operator and the presence of the convolution
kernel K. These two features pose significant difficulties in the efficient minimization of our
functionals.

To overcome these difficulties, in this section we introduce an alternative formulation of
the proposed regularizers. This equivalent formulation depends on a novel generalization of
the Jacobian of an image based on local weighted patches. This new operator, which we call
patch-based Jacobian, contains weighted shifted versions of the Jacobian of u, whose weights
are determined by the smoothing kernel K. As we will show next, the alternative definition of
STV provides more intuition and paves the way for employing tools from convex optimization,
which in their turn facilitate the development of an efficient optimization strategy.

We define the patch-based Jacobian of an image u as the linear mapping JK : RNM �→ X ,
where X � R

N×(LM)×2 and L = (2LK + 1)2. This definition implies that if we apply the
patch-based Jacobian on the nth pixel of u, then the result is a matrix of size (LM × 2), which
we denote by [JKu]n. This matrix is constructed by (1) evaluating the discrete versions of
the M × 2 Jacobian matrices of u for all the pixels {xn−s : s ∈ P} in the P-neighborhood of
the pixel xn, (2) weighting these matrices with the window function ω [s] =

√
K [s], and (3)

stacking all of them vertically to form the final matrix. Formally, the patch-based Jacobian
can be defined as

[JKu]n =
(
[∇̃u1]n, . . . , [∇̃uM ]n

)T
,(3.3)

where

[∇̃um]n =
(
[Ts1,ω ◦ ∇um]n , . . . , [TsL,ω ◦ ∇um]n

)
,(3.4)

∇ is the discrete gradient, (·)T is the transpose operator, ◦ denotes the composition of op-
erators, the shift vectors sl (l = 1, . . . , L) are the elements of the lattice P, and Tsl,ω is a
weighted translation operator. The latter takes into account the mirror boundary conditions
and is defined as

[Tsl,ω ◦ ∇um]n = ω [sl]∇um [xn − sl] .(3.5)
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Next, we equip the space X , which is the target space of JK , with the inner product 〈· , ·〉X
and norm ‖·‖X . To define them, let X,Y ∈ X , with Xn,Yn ∈ R

(LM)×2 ∀n = 1, 2, . . . , N .
Then, we have

〈X , Y 〉X =

N∑
n=1

trace
(
Y T
n Xn

)
(3.6)

and

‖X‖X =
√

〈X , X〉X =

(
N∑
n=1

‖Xn‖2F
)1

2

,(3.7)

where trace (·) is the trace operator of a matrix and ‖·‖F is the Frobenius (S2) norm. For the
Euclidean space R

NM we use the standard inner product 〈· , ·〉2 and norm ‖·‖2.
Since the patch-based Jacobian is a bounded linear operator, we can further define its

adjoint, which performs a reverse mapping from the space X to R
NM . Indeed, the adjoint of

the patch-based Jacobian is the discrete linear operator J∗
K : X �→ R

NM such that

〈Y , JKu〉X = 〈J∗
KY , u〉2(3.8)

should hold for every Y ∈ X . The following proposition expresses J∗
K in a more suitable form

that facilitates its numerical computation. The proof is provided in Appendix A.3.
Proposition 3.2. The adjoint operator J∗

K of the patch-based Jacobian is given by

[J∗
KY ]k =

L∑
l=1

[
−div

(
T ∗
sl,ω

◦ Y ((m−1)L+l,:)
)]

n
,(3.9)

where k = (m− 1)N + n with 1 ≤ n ≤ N and 1 ≤ m ≤ M , div is the discrete divergence,2

T ∗
sl,ω

is the adjoint of the weighted translation operator, and Y
(i,:)
n is a two-element vector

extracted from the ith row of the nth matrix component, Yn ∈ R
(LM)×2, of Y .

3.3. Equivalent formulation of the discrete STV. Having introduced the discrete patch-
based Jacobian, we can now employ it to express the discrete structure tensor in a novel way.
This is done in the next proposition.

Proposition 3.3. The discrete structure tensor of u evaluated at the pixel location n can be
written in terms of the patch-based Jacobian as

[SKu]n = [JKu]
T
n [JKu]n .(3.10)

The proof of Proposition 3.3 can be derived by a direct computation of the right-hand side
(r.h.s.) of (3.10) and, thus, is omitted. However, it is worth mentioning that by exploiting

2The exact formula for the discrete divergence depends on the discretization scheme one uses for the gradient.
In our implementation we consider the discretization that uses forward differences, as in [12]. In this case, the
adjoint operator is the discrete divergence that is defined using backward differences (see [12] for details).
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the special structure of the patch-based Jacobian we manage to reproduce the convolution
operation that takes place in the formulation of the structure tensor.

Now, from (3.10) we have that the 2× 2 matrix [SKu]n can be decomposed with the help

of the LM × 2 matrix [JKu]n. Therefore, the singular values of [JKu]n are equal to
√
λ+n

and
√
λ−n . This connection highlights that by using the Sp matrix norms given in (3.2), we

can equivalently write the discrete version of the proposed regularizers (3.1) as

STVp (u) =
N∑
n=1

‖[JKu]n‖Sp
(3.11)

with p ≥ 1. This equivalent formulation of STVp (u) in (3.11) provides more intuition about
the fact that the proposed regularizers are effective generalizations of TV. In particular, [JKu]n
encodes the vectorial variation of the image u in the vicinity of the pixel n. Therefore, the
Schatten norms of this matrix provide different measures of the local variation of u, by taking
into account its neighborhood in a weighted manner. In addition, a significant advantage that
we gain from the above result, is that the expression (3.1), which involves the eigenvalues of
the nonlinear structure tensor, has been transformed into the expression (3.11). The latter
expression is much easier to handle in an optimization setting while it also allows us to derive
the following result.

Proposition 3.4. The discrete STVp (u) regularizer defined in (3.1) is convex w.r.t. u ∀p ≥
1.

The validity of the above proposition stems from the fact that the discrete STV can be
formed as the composition of a mixed vector/matrix norm (	1-Sp) and the linear operator
JK . Therefore, our discrete regularizers retain the important property of convexity that we
established with Theorem 2.1 for their continuous counterparts.

4. Discrete STV minimization.

4.1. Proximal map of STVp . Having introduced the discrete version of the STV func-
tionals, the next step is to develop a scheme for their efficient minimization. In this section,
we focus on the evaluation of the proximal map associated with them. The proximal map
or the Moreau proximity operator of a function ψ is denoted as proxψ (·) : RN �→ R

N and is
formally defined as [19]

proxψ (z) = argmin
u

1

2
‖u− z‖22 + ψ (u) .(4.1)

If ψ is a proper, closed, convex function, then a minimizer of (4.1) exists and the solution is
unique. For certain choices of the function ψ the solution of (4.1) can be expressed in closed
form. However, in several other cases the solution cannot be obtained explicitly, but instead
an iterative approach must be followed. This is also the case for our proposed regularizers.

In our case, ψ (u) = τSTVp (u)+ιC and the evaluation of the proximal map associated with
the STV regularizers corresponds to finding a numerical solution to the following problem, for
any p ≥ 1:

argmin
u

1

2
‖u− z‖22 + τSTVp (u) + ιC (u) .(4.2)
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In the above formulation, C is a convex set that represents additional constraints on the solu-
tion, such as nonnegativity or box constraints, and ιC is its indicator function: ιC (u) takes the
value 0 for u ∈ C and ∞ otherwise. The unconstrained minimization case simply corresponds
to choosing C = R

N . Note that from a signal processing standpoint the solution of (4.2)
can also be interpreted as a denoising problem under independently and identially distributed
(i.i.d.) Gaussian noise, where the STV functionals are used to regularize the solution.

The reason for focusing on the solution of (4.2) is that the proximal map of the STV
penalties can serve as the building block for several optimization algorithms, including the
fast iterative shrinkage-thresholding algorithm (FISTA) [4], the alternating direction method
of multipliers [1, 8, 25], the split-Bregman algorithm [31], and the primal-dual algorithms
introduced in [14, 43]. In their turn, these methods are commonly employed to solve a variety
of inverse problems in imaging with different data fidelity terms. Therefore, by being able
to accurately and efficiently obtain the solution of (4.2), one can also deal with more general
inverse problems than merely Gaussian denoising.

Next, we propose a first-order method for solving the problem under study. To proceed,
we write our regularizers in the compact form STVp (u) = ‖JKu‖1,p. Here, ‖·‖1,p corresponds
to the mixed 	1-Sp norm which, for an argument X =

[
XT

1 , . . . ,X
T
N

]T ∈ X , is defined as

‖X‖1,p =
N∑
n=1

‖Xn‖Sp
.(4.3)

At this point special attention must be paid to the nonsmoothness of the regularizers. The
fact that the proposed STV functionals are not differentiable everywhere implies that the
minimizer of (4.2) cannot be obtained simply by employing a gradient-based scheme. To
circumvent this difficulty, we follow an alternative strategy which involves the derivation of a
dual formulation for our problem. To do so, we make use of Lemma 4.1 that follows.

Lemma 4.1 (see [37]). Let p ≥ 1, and let q be the conjugate exponent of p, i.e., 1
p +

1
q = 1.

Then, the mixed vector-matrix norm ‖·‖∞,q is dual to the mixed vector-matrix norm ‖·‖1,p.
Using Lemma 4.1 and the fact that the dual of the dual norm is the original norm [45],

we equivalently write (4.3) as

‖X‖1,p = max
Ω∈B∞,q

〈Ω , X〉X ,(4.4)

where B∞,q denotes the 	∞-Sq unit-norm ball, defined as

B∞,q =
{
Ω ∈ X : ‖Ωn‖Sq

≤ 1,∀n = 1, . . . , N
}
.(4.5)

From the definition of the convex set B∞,q, it turns out that the orthogonal projection of Ω
can be performed by projecting separately each submatrix Ωn on a Sq unit-norm ball (BSq ).
This property will be used later for designing our first-order minimization method.

Now, combining (3.8) and (4.4) we rewrite (4.2) as

û = argmin
u∈C

1

2
‖u− z‖22 + τ max

Ω∈B∞,q

〈J∗
KΩ , u〉2 .(4.6)
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This formulation naturally leads us to the minimax problem

min
u∈C

max
Ω∈B∞,q

L (u,Ω) ,(4.7)

where L (u,Ω) = 1
2 ‖u− z‖22 + τ〈J∗

KΩ , u〉2.
Since L is strictly convex w.r.t. u and concave w.r.t. Ω, we have the guarantee that a

saddle value of L is attained [45] and, thus, the order of the minimum and the maximum in
(4.7) does not affect the solution. This means that there exists a common saddle point (û, Ω̂)
when the minimum and the maximum are interchanged, i.e.,

min
u∈C

max
Ω∈B∞,q

L (u,Ω) = L
(
û, Ω̂

)
= max

Ω∈B∞,q

min
u∈C

L (u,Ω) .(4.8)

According to the above, it is now possible to define two optimization problems, the primal
and the dual one. This can be accomplished by identifying the primal and dual objective
functions, respectively. In particular, the left-hand side (l.h.s.) of (4.8) corresponds to the
minimization of the primal objective function

p (u) = max
Ω∈B∞,q

L (u,Ω) =
1

2
‖u− z‖22 + τ ‖JKu‖1,p ,(4.9)

which matches the problem of interest in (4.2), and the r.h.s. corresponds to the maximization
of the dual objective function

d (Ω) = min
u∈C

L (u,Ω) =
1

2
‖w −ΠC (w)‖22 +

1

2

(
‖z‖22 − ‖w‖22

)
,(4.10)

where w = z− τJ∗
KΩ and ΠC is the orthogonal projection operator on the convex set C. In

addition, if we consider the r.h.s. of (4.8), then we can find the minimizer û of the primal
objective from the maximizer Ω̂ of the dual objective, through the following closed-form
relation

û = ΠC

(
z− τJ∗

KΩ̂
)
.(4.11)

The advantage of this last formulation is that the solution to our problem boils down to
computing the maximizer of d (Ω). As opposed to p (u), this objective function is smooth
and has a well-defined gradient. Thus, we can exploit gradient information to derive the
solution. This would not have been an option if we had considered the original formulation
of the problem in (4.2). Next, we provide the details of our approach.

4.2. Solving the dual problem. From the r.h.s. of (4.8) and from (4.10) it follows that Ω̂
can be derived as the solution of the constrained optimization problem

Ω̂ =argmax
Ω∈B∞,q

1

2
‖w −ΠC (w)‖22 +

1

2

(
‖z‖22 − ‖w‖22

)
.(4.12)

Since (4.12) does not admit a closed-form solution (JK does not have an inverse operator) we
have to resort to a numerical iterative scheme. In this work, we choose to pursue a first-order
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projected gradient approach. To this end, the essential tools that we need are the computation
of the gradient and the orthogonal projection on the convex set B∞,q, defined in (4.5).

First, we proceed by deriving the gradient. To do so, we use that the gradient of a function
h (u) = ‖u−ΠC (u)‖22 is well-defined and is equal to∇h (u) = 2 (u−ΠC (u)) [3, Lemma 4.1].
Based on this, we obtain

∇d (Ω) = τJKΠC (z− τJ∗
KΩ) .(4.13)

Having the gradient of the dual objective at hand, we also need an efficient way to perform
the projection. We accomplish this by projecting independently each of the N components
Ωn of Ω on the set BSq = {X ∈ R

LM×2 : ‖X‖Sq
≤ 1}.

Now, let X ∈ R
N1×N2 with an SVD X = UΣV T and Σ = diag (σ1, . . . , σN ) with N =

min (N1,N2). According to [37, Proposition 1], the projection of X onto the unit-norm Sq
ball is computed as

ΠSq (X) = UΣqV
T ,(4.14)

where Σq = diag(σq) and the σq are the projected singular values of Σ onto the 	q unit-norm
ball Bq = {σ ∈ R

N
+ : ‖σ‖q ≤ 1}. We note that the projection in (4.14) requires knowledge of

the singular vectors and singular values of X. In our case N2 = 2 < N1, and we compute the
projection in an efficient way as described next. First, we observe that the matrix XTX is
N2 × N2 symmetric with an eigenvalue decomposition VΣ2V T . Therefore, for N2 = 2 both
V and Σ can be computed in closed form. Moreover, if Σ+ is the pseudoinverse matrix of
Σ, defined as Σ+ = diag

(
σ−1
1 , . . . , σ−1

k , 0, . . . , 0
)
, with σk the smallest nonzero singular value,

then U = XV Σ+. Using this result we write (4.14) as

ΠSq (X) = XV Σ+ΣqV
T ,(4.15)

which actually avoids the computation of U .
Thanks to (4.15) the projection of X reduces to the projection of the singular values.

In our case, where N2 = 2, for q = 1, 2,∞ these projections can be computed analytically.
Indeed, for q = 1 the projection corresponds to the soft-thresholding operation Sγ (σ) =
max (σ − γ, 0) [23], where the max operator is applied componentwise and γ is given by

γ =

⎧⎪⎪⎨
⎪⎪⎩
0 if σ1 ≤ 1− σ2 ,

σ1+σ2−1
2 if 1− σ2 < σ1 ≤ 1 + σ2 ,

σ1 − 1 if σ1 > 1 + σ2

(4.16)

with the singular values sorted in decreasing order, i.e., σ1 ≥ σ2. For q = 2 the projection of
X is computed at a reduced computational cost since it does not require the knowledge of the
singular values and vectors. In particular, we have ΠS2 (X) = X/max(1, ‖X‖F ). Finally, for
q = ∞ the projection is performed by setting to one the singular values that exceed this value
and leaving the rest untouched. For other values of q, we can employ the 	q norm projection
algorithm described in [54], but at an increased computational cost. This projection method
is based on an iterative proximity algorithm for 	q norms [39].
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4.3. Numerical algorithm. With all the necessary tools at our disposal, we can now invoke
a gradient-based scheme for deriving the solution of the dual problem. In this work, we employ
Nesterov’s iterative method [40] for smooth functions. This scheme exhibits convergence rates
of one order higher than the standard gradient-ascent method. To ensure convergence of the
algorithm, we further need to choose an appropriate step size. Since our dual objective is
smooth with Lipschitz continuous gradient, we use a constant step size equal to the inverse of
the Lipschitz constant of ∇d (Ω). We derive an upper bound of this quantity in the following
proposition. The proof can be found in Appendix A.4.

Proposition 4.2. Let L (d) denote the Lipschitz constant of the dual objective function d
defined in (4.10). Then,

L (d) ≤ 8
√
2 τ2 .(4.17)

To conclude, in Algorithm 1 we provide a detailed description of all the steps involved in
the proposed algorithm for computing the proximal associated with the STV functionals.

4.4. Solution of general inverse problems. So far, we have focussed on computing the
proximal map of the STV functionals that solves a simple denoising problem.This basic tool,
however, can also be deployed for solving more general inverse problems as we discuss next
for the case of a quadratic data term. In this case, the solution is derived as

û = argmin
u∈C

1

2
‖v −Au‖22 + τSTVp (u) ∀p ≥ 1.(4.18)

We note that it is possible, by using appropriate optimization tools, for one to also deal with
nonquadratic data terms. The description of such techniques, however, exceeds the scope of
this paper.

An efficient way to cope with the presence of the operator A in (4.18) is to employ the
monotone FISTA (MFISTA) [3] algorithm, which exhibits state-of-the-art convergence rates.
The basic idea behind MFISTA is to obtain the minimizer in (4.18) via the successive mini-
mization of a sequence of surrogate functions that upper bound the initial objective function
and are easier to minimize. In this context, the solution of (4.18) boils down to iteratively
computing the proximal of STV (4.2) for different inputs, which are formed as a combination
of solutions from the past iterations of the algorithm. Our main reason for preferring MFISTA
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Figure 2. Thumbnails of the color versions of the 30 images used in the experiments. These images are of
size of 481× 321 pixels and are a subset of the Berkeley BSDS500 image dataset.

over other alternative approaches is that it converges quickly to the solution while it does not
require any parameter tuning.

5. Applications and experiments.

5.1. Experimental setting. To validate the effectiveness of the proposed STV regulariz-
ers we compare them with other related methods on several inverse imaging problems. In
particular, we consider the problems of image restoration (denoising and deblurring), image
magnification, and image reconstruction from a limited number of Fourier measurements. For
the first three problems we present results on both grayscale and color versions of the im-
ages shown in Figure 2. For the last problem, our experiments are conducted on the brain
phantom images shown in Figure 9. In all cases, the image intensities are normalized so that
they lie in the range [0, 1]. Based on this prior information, the image reconstruction ob-
tained by any of the penalty functions under comparison is constrained to lie in the convex
set C =

{
u ∈ R

N : 0 ≤ un ≤ 1, ∀n = 1 . . . , N
}
.

For all the problems under study, we compare our grayscale results against the ones
obtained by using TV and the TGV [10]. In our comparisons we consider the second-order
extension of TGV, TGV2, which is the most commonly used in practice and is defined as

TGV2
α (u) = min

v∈RN×2
‖∇u− v‖2 + α ‖Ev‖F .(5.1)

Here, the operator E denotes the symmetrized gradient, Ev = 0.5(∇v+∇vT ). For the weight
α of TGV2 that balances the first- and second-order terms, we use the value α = 2. According
to the authors of TGV, this value is suitable for most applications and does not need to be
tuned. For the color image reconstruction problems, we compare our results against two
vectorial extensions of TV, namely VTV [7, 11, 48] and TVJ [30], and the vectorial extension
of TGV2 [9].

As far as the proposed family of STV regularizers is concerned, we report the results we
obtained by employing the STV of p = 1, 2, respectively. For the convolution kernel K, used
in the definition of the structure tensor, we choose it to be a Gaussian with standard deviation
σ = 0.5 pixels, truncated in a 3× 3 pixel window. From our experience this choice provides a
good balance between reconstruction quality and computational complexity and it is suitable
for a wide range of applications. Furthermore, especially for the case of applying STV1 on
color images, we also consider the kernel K to be a discrete Dirac delta. This results in the
localized version of STV1 denoted as STV1(loc).
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Figure 3. Image denoising comparisons among different regularizers for four noise levels. The performance
is measured in terms of the average SNR improvement (in dB) w.r.t. the noisy input, over all 30 images of
Figure 2.

For the objective function minimization we employ the MFISTA framework [3] for all
methods but TGV. For TGV, we have experimentally observed that this approach does not
work well. Therefore, we employ instead the method proposed by its authors in [9]. Finally,
for the sake of consistency among comparisons, all the reported results for each regularizer
and each degradation condition are derived using the regularization parameter τ that leads
to the best reconstruction performance in terms of peak signal to noise ratio (PSNR).

5.2. Image restoration. For the image denoising problem we consider additive i.i.d.
Gaussian noise and four different noise levels that correspond to a standard deviation of
σw = {0.1, 0.15, 0.2, 0.25}, respectively. Regarding the stopping criterion for the optimization
algorithm of all methods but TGV, this is set to either reaching a relative normed difference
of 10−5 between two successive estimates, or a maximum of 100 iterations for solving the dual
problem, as described in Algorithm 1. For TGV2 where we employ the algorithm of [9] we
use a maximum of 200 iterations.

In Figure 3 we report the average performance over all tested images of all the methods
under comparison. The performance of the regularizers is measured in terms of the average
PSNR improvement (ISNR) w.r.t. the noisy input. From these results we observe that, in
the grayscale experiments, TV is the worst performing method for all the noise levels. TGV
yields an improvement over TV, which reflects the fact that it favors piecewise linear rather
than piecewise constant solutions and, thus, it avoids the staircasing artifacts of TV. Both
versions of our regularizers, STV2 and STV1, systematically outperform TV and TGV2. This
can be attributed to the increased robustness that the neighborhood information offers. Our
best performing method is STV1 which involves the nuclear norm of the patch-based Jaco-
bian. In the color denoising results of Figure 3, we see that TVJ results in the worst overall
performance. This can be explained by the fact that this method penalizes only the maximum
singular value of the Jacobian, and thus, it completely ignores the information provided by the
minimum singular value. VTV yields better measures than TVJ , since it explores additional
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(a) Input (PSNR=16.77) (b) TV (τ=1.24·10-1, PSNR=27.34) (c) TGV2 (τ=1.24·10-1, PSNR=27.55) (d) STV2 (τ=1.04·10-1, PSNR=27.59) (e) STV1 (τ=8.21·10-2, PSNR=27.80)

(f) Input (PSNR=14.63) (g) TVJ (τ=2.88·10-1, PSNR=27.99) (h) VTV (τ=2.53·10-1, PSNR=28.36) (i) TGV2 (τ=2.49·10-1, PSNR=28.34) (j) STV1 (τ=1.77·10-1, PSNR=28.53)

Figure 4. Image denoising examples: close-ups of inputs and optimum results. Top row: grayscale denoising
of an input with noise level σw = 0.15. The ground truth corresponds to the grayscale version of the image in
row 1, column 4 of Figure 2. Bottom row: color denoising of an input with noise level σw = 0.2. The ground
truth corresponds to the image in row 3, column 7 of Figure 2. For each result, the individualized regularization
parameter τ and corresponding optimum PSNR are reported.

information about the image variations by imposing an 	2 penalty on the singular values of
the Jacobian. Therefore, VTV transfers the characteristics of TV to the vectorial case more
effectively than TVJ . Similarly to the improvement of TGV2 over TV in the grayscale case,
TGV2 yields an improvement over VTV in the color experiments. Again, both of the tested
versions of the proposed regularizers, STV1 and STV1(loc), result in the best error measures
for all noise levels. In this case, the completely localized version STV1(loc) performs better
than STV1, especially in the case of relatively low noise levels. A possible explanation for
this outcome is that, in the case of denoising, the coupling of the information from the dif-
ferent channels is more important than the additional spatial information obtained from the
neighborhood of each pixel.

For a visual assessment of the reconstruction performance, in Figure 4 we provide repre-
sentative examples of grayscale and color denoising. In the grayscale example, we observe that
the TV’s result suffers from strong block artifacts. TGV2 manages to reduce these artifacts
but cannot completely avoid them while it also excessively blurs some edges. STV2 and STV1

succeed in removing the noise and at the same time reconstructing the image in a visually
more appealing way than TV and TGV2. Comparing all methods we see that STV1 yields
the most effective reconstruction of image structures; compare, e.g., the reconstructions of the
numbers in the athlete’s budge, the edges and interior of the athlete’s left hand. In the color
example, we observe that TVJ creates spurious one-dimensional (1D) segments perpendicu-
lar to the dominant edges of the image. Staircaising artifacts are also present in the VTV
reconstruction. TGV2 yields a smoother result, but some of the reconstructed structures are
blurred; see, e.g., the edges of the bench back. Finally, STV1 leads to the best result by
avoiding most of the artifacts of the other methods. It sufficiently removes the noise and, in
parallel, preserves the sharpness and shape of image edges in the most effective way.

For the image deblurring problem the performance of the methods under comparison is
assessed for various blurring kernels and different noise levels. In particular, in our set-up we
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employ three point spread functions (PSFs) to generate blurred versions of the test images.
We use a Gaussian PSF of standard deviation σb = 4 and support of 13 × 13 pixels, a 9 × 9
uniform (moving-average) PSF, and a real motion blurring kernel3 which has a support of
19 × 19 pixels. Additional distortion on the measurements is introduced by adding i.i.d.
Gaussian noise of four different noise levels, corresponding to a standard deviation of σw =
{0.025, 0.05, 0.075, 0.1}. Further, to test the deblurring performance of all the studied methods
under more realistic conditions, we do not assume the common circulant convolution model,
but instead we adopt the approach followed in [44]. Specifically, in the forward model in (2.1)
the degradation operator is expressed as A = MH, where H is a circulant convolution
operator and M is a mask that keeps only the valid part of the convolution and truncates the
circular wraparound at the boundaries of the measurements. The motivation here is that this
observation model allows us to avoid making any assumptions about the image boundaries.
Instead, we hold the deblurring algorithm responsible for reconstructing the image in a way
that bests explains the data. As far as the details of the optimization task are concerned, the
stopping criterion is set to the same relative normed difference as previously or a maximum
of 100 MFISTA iterations with 10 internal iterations for the proximal evaluation. For TGV2,
since the algorithm of [9] exhibits a slower convergence than MFISTA, we use a maximum of
2000 iterations.

Similarly to the image denoising case, in Figure 5 we report the average performance of
all the tested methods. Once more we verify that for grayscale image deblurring the STV
regularizers lead to the best results for all considered degradation conditions. When we
consider color images, this is still valid with the STV1 regularizer achieving systematically
the best ISNR scores. It also worths mentioning that in this case, unlikely to color image
denoising, STV1(loc) does not perform better than its patch-based counterpart. This can be
attributed to the fact that image deblurring is a more ill-conditioned problem and, thus, the
use of a smoothing kernel plays a more important role in the reconstruction. Beyond the
ISNR comparisons, the effectiveness of the proposed methods can also be visually appreciated
by inspecting the representative deblurring examples provided in Figure 6.

5.3. Image magnification. Image magnification is an inverse problem that is closely re-
lated to image deblurring. In particular, the system matrix is expressed as A = SG, where S
is a masking operator performing the subsampling, while G is an antialiasing smoothing oper-
ator applied to the underlying image, prior to subsampling. In our experiments, we consider
square subsamplings of the type d × d, where d is the zoom factor and we use two different
values for the zoom factor, d = 3 and d = 5 pixels. Also, we consider the antialiasing operator
to be a Gaussian kernel with a standard deviation 0.35d, defined relatively to the zoom factor.
Further, we introduce Gaussian noise in the measurements of a standard deviation σw = 0.01.
In Figure 7 we provide measurements of the overall performance of all the methods, both for
grayscale and color images, while in Figure 8 we present two magnification examples where
we juxtapose the results obtained by using different regularization approaches. Similarly to
the other two inverse problems we considered so far, once more we verify that STV1 not only
improves the SNR but also leads to reconstructions of enhanced visual quality.

3The blurring kernel was obtained from http://www.wisdom.weizmann.ac.il/∼levina/papers/
LevinEtalCVPR09Data.rar.

http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.rar
http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.rar
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Figure 5. Image deblurring comparisons among different regularizers for three PSFs and four noise levels.
The performance is measured in terms of the average PSNR improvement (in dB) w.r.t. the degraded input,
over all 30 images of Figure 2. The bars on the top row refer to grayscale results while on the bottom row to
color results.

(a) Input (PSNR=22.53) (b) TV (τ=4.32·10-3, PSNR=27.85) (c) TGV2 (τ=4.59·10-3, PSNR=27.53) (d) STV2 (τ=3.62·10-3, PSNR=28.19) (e) STV1 (τ=2.80·10-3, PSNR=28.52)

(f) Input (PSNR=24.77) (g) TVJ (τ=4.29·10-3, PSNR=28.94) (h) VTV (τ=3.37·10-3, PSNR=29.25) (i) TGV2 (τ=3.00·10-3, PSNR=28.92) (j) STV1 (τ=2.07·10-3, PSNR=29.44)

Figure 6. Image deblurring examples: close-ups of inputs and optimum results. Top row: grayscale
deblurring of an input with motion blurring and noise level σw = 0.025. The ground truth corresponds to the
grayscale version of the image in row 3, column 4 of Figure 2. Bottom row: color deblurring of an input with
uniform blurring and noise level σw = 0.025. The ground truth corresponds to the image in row 3, column 6 of
Figure 2. For each result, the individualized regularization parameter τ and corresponding optimum PSNR are
reported.
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Figure 7. Image magnification comparisons among different regularizers for two zoom factors. The per-
formance is measured in terms of the average SNR improvement (in dB) w.r.t. the input, over all 30 images
of Figure 2.

(a) Input (PSNR=26.25) (b) TV (τ=4.42·10-4, PSNR=28.17) (c) TGV2 (τ=1.35·10-3, PSNR=28.17) (d) STV2 (τ=4.99·10-4, PSNR=28.41) (e) STV1 (τ=4.21·10-4, PSNR=28.44)

(f) Input (PSNR=23.97) (g) TVJ (τ=8.20·10-4, PSNR=26.09) (h) VTV (τ=8.20·10-4, PSNR=26.13) (i) TGV2 (τ=1.94·10-3, PSNR=25.86) (j) STV1 (τ=6.07·10-4, PSNR=26.30)

Figure 8. Image magnification examples: close-ups of inputs and optimum results. Inputs are enlarged by
simple zero order hold. Top row: grayscale magnification of an input with a zoom factor d = 5. The ground
truth corresponds to the grayscale version of the image in row 1, column 1 of Figure 2. Bottom row: color
magnification of an input with a zoom factor d = 5. The ground truth corresponds to the image in row 1, column
3 of Figure 2. For each result, the individualized regularization parameter τ and corresponding optimum PSNR
are reported.

5.4. Reconstruction from sparse Fourier measurements. In this section we consider the
problem of image reconstruction from a limited number of Fourier measurements. In this
setting, the forward operator of (2.1) corresponds to A = MF , where F denotes the Fourier
transform and M is a masking operator that retains only a subset of the available Fourier
coefficients. The adopted forward model is closely related to the one of magnetic resonance
imaging acquisition, where the k-space of the image is undersampled.

The reported experiments are conducted on the images shown in Figure 9. These are
extracted slices from a 3D brain phantom that was obtained from the BrainWeb database
(http://www.bic.mni.mcgill.ca/brainweb/). To create the measured data we use two different
Fourier sampling patterns, namely, a radial mask with 32, 48, and 64 radial lines and a

http://www.bic.mni.mcgill.ca/brainweb/
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(a) (b) (c) (d) (e)

Figure 9. Sparse Fourier image reconstruction setup. (a)–(c) Slices of a 3D brain phantom, (d) Poisson
disk with 20% sampling density (white pixel values indicate sample locations), (e) radial sampling mask with 32
lines.

Table 1
ISNR Comparisons on sparse Fourier image reconstruction for several sampling patterns and noise condi-

tions.

Poisson disk that retains 20%, 30%, and 40% of the Fourier coefficients. As an additional
degradation factor we consider the presence of complex Gaussian noise in the Fourier domain
of four different levels. These correspond to a signal-to-noise-ratio (SNR) of {10, 20, 30,∞} dB,
respectively. Note that the last SNR value indicates the absence of noise in the measurements.
In this case, for all regularizers under comparison, we do not fine tune the regularization
parameter but instead we set it to τ = 10−6. The value of τ is chosen to be small so as to
ensure that the reconstructed image in the sampled locations will retain the same frequency
content as that of the measurements. Since the very small value of τ can affect the convergence
speed of the minimization process, we adopt a simple “continuation” strategy that significantly
speeds up the convergence. The idea is that we start with a large value for τ and then during
the iterations of the minimization algorithm we gradually decrease it until we reach the target
value. We note that for this problem instead of 100 we run 200 MFISTA iterations. The rest
of the optimization set-up remains the same.

In Table 1 we report the reconstruction results we obtained using TV, TGV2, and our
proposed STV1 regularizer. The quality of the reconstructions is measured in terms of increase
in SNR w.r.t. the reconstructed image obtained by projecting the Fourier measurements back
to the image domain. From these results we clearly observe that our proposed regularizer
consistently outperforms TV and TGV2 for all sampling strategies and noise levels. Further,
we note that in the cases where the noise level is relatively low and the Fourier measurements
are not very sparse, then the difference in SNR improvement is substantial. Indeed, on several
occasions the SNR difference between STV1 and the other two competing regularizers reaches
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(a) (b) (c) (d)

Figure 10. Reconstruction of the brain image (Figure 9(b)) from Fourier data sampled with 32 radial lines
and 10-dB SNR. (a) Back-projected image (PSNR = 23.30), (b) TV reconstruction (τ = 3.84 · 10−2, PSNR =
25.88), (c) TGV 2 reconstruction (τ = 4.01 · 10−2, PSNR = 26.36), and (d) STV1 reconstruction (τ = 2.62 ·
10−2, PSNR = 26.90).

more than 3 dB. In Figure 10 we show a representative reconstruction example for a radial
sampling with 32 lines and a SNR of 10 dB. From this example, we can verify the superiority
of our reconstruction over the ones of TV and TGV2 both quantitatively and visually. Our
STV1 regularizer manages to better preserve the image edges than TV and at the same time
avoid intensity smearing artifacts such as those appearing in the case of TGV2 regularization.

5.5. Implementation details and computational runtimes. All methods were imple-
mented in unoptimized MATLAB code that only makes use of the CPU.4 Using the average
runtime of TV as baseline, the relative average runtimes of the rest of the tested methods in
the conducted grayscale experiments were as follows: 0.96 for TGV2, 3.42 for STV2, and 3.54
for STV1. Regarding the color experiments and using the average runtime of VTV as base-
line, the relative average runtimes of the tested methods were 1.11 for TVJ , 1.14 for TGV2,
1.09 for STV1(loc), and 4.66 for STV1. Note that all runtimes were computed on a computer
equipped with Intel Xeon Processor E5-1620 (Quad Core, 3.60-GHz Turbo, 10 MB).

We observe that TV, VTV, TGV2, TVJ , and the proposed STV1(loc) regularizers demon-
strate a similar runtime performance. The proposed STV2 and STV1 functionals are around
3.5–4 times slower in the current implementation, which is due to the presence of a convolu-
tion kernel. We believe that this additional computational effort is definitely worth spending
in several applications, given the significant improvement in the reconstructions that we ob-
served in the reported experiments. Furthermore, it is worth mentioning that the runtimes of
the proposed algorithm could be significantly improved by exploiting the fact that it is highly
parallelizable and admits fast GPU implementations.

6. Conclusions. In this work we have introduced a novel family of convex energy func-
tionals that extend and generalize the total variation seminorm and vectorial extensions of it.
The key feature of our functionals is that they incorporate information from the vicinity of
every point in the image domain by penalizing the eigenvalues of the structure tensor at this
point. Therefore, they provide a richer and more robust measure of image variation which
translates to improved reconstruction performance. This consistent behavior has been verified

4The source code for STV regularization is publicly available from the authors’ websites.
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by extensive comparisons we performed against competing methods on several inverse imaging
problems.

Since our regularizers can be used instead of TV or its vectorial extensions in any energy
functional, we believe that there is a broad spectrum of imaging applications where they can
be proven very useful. Another interesting research direction is related to the open theoretical
issue regarding the continuous version of the STV regularizers. In this article, we have defined
STV by assuming that the underlying image lies in the Sobolev space W 1,2

(
R
2,RM

)
. Since

TV, which can be viewed as a special case of STV, is defined for images that belong to the
bounded variation (BV) space [15], an open theoretical question is whether STV can also be
defined for functions of a BV space or a space containing BV.

Appendix A. Mathematical Proofs.

A.1. Compact Operators. In this section we review basic definitions and results from
the theory of compact operators. The concept of a compact operator will be essential for the
proof of Theorem 2.1.

Definition A.1 (compact operators). An operator A : H1 → H2, where H1 and H2 are two
separable Hilbert spaces is compact if and only if it can be specified as

f �→ Af =

∞∑
n=1

σn un〈ũn, f〉H1(A.1)

for any f ∈ H1. In (A.1) ũ1, ũ2, . . . and u1, u2, . . . are orthonormal elements (functions)
of H1 and H2, respectively, and σ1, σ2, . . . is a sequence of positive numbers with limit zero,
called the singular values of the operator. The same property applies to the adjoint operator
A∗ : H2 → H1 with the role of un and ũn being interchanged.

While all finite-dimensional linear operators (i.e., matrices) are compact, the property is
more restrictive in infinite dimensions. However, the property is robust in the sense that it
is conserved through subsequent linear transformation; i.e., if A : H1 → H2 is compact, then
BA is compact as well for any bounded operator B : H2 → H1 (not necessarily compact).

In order to stay closer to the standard (finite-dimensional) matrix-vector notation, we shall
not distinguish between the operator A and its kernel, which is an element of the Hilbert space
H2 ⊗H1, and simply write

A =

∞∑
n=1

σn(A)un ⊗ ũn(A.2)

with the understanding that un ∈ H2 is in the “column” space of the operator, while ũn is in
the “row” space H1 and is acting as a linear functional (inner product) on the input.

Proposition A.2 (Hölder’s inequality for the trace of operators). Let A,B : H1 → H2 be two
compact operators. Then, for any 1 ≤ p, q ≤ +∞ with 1

p +
1
q = 1,

|trace(AB∗)| ≤ ‖σ(A)‖�p ‖σ(B)‖�q ,(A.3)

where σ(A) and σ(B) are the vectors formed from the singular values of A and B.
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Proof. By direct calculation, we can express the trace(AB∗) in terms of the singular values
of A and B as

trace(AB∗) =
∞∑
m=1

∞∑
n=1

σn(A)σm(B) 〈un, vm〉H2〈ũn, ṽm〉H1 ,(A.4)

where un, vn ∈ H2 (resp., ũn ṽn ∈ H1) are the left-sided (resp., right-sided) eigenfunctions
associated with the singular decomposition of A and B, respectively.

Using the Cauchy–Schwarz inequality, we first show that

∞∑
n=1

|〈un, vm〉H2 〈ũn, ṽm〉H1 | ≤
( ∞∑
n=1

|〈un, vm〉H2 |2
)1/2 ( ∞∑

n=1

|〈ũn, ṽm〉H1 |2
)1/2

≤ ‖vm‖H2 ‖ṽm‖H1 = 1,(A.5)

where the latter norm estimate follows from Bessel’s inequality based on the property that
{un} and {ũn} are orthonormal sets of H2 and H1, respectively. There is also the dual
counterpart of (A.5) where the summation is performed over m rather than n. Next, starting
from the explicit trace formula (A.4), we apply the weighted Hölder inequality [20] for double
sums, which gives

|trace(AB∗)|

≤
∞∑
m=1

∞∑
n=1

σn(A)σm(B) |〈un, vm〉H2 〈ũn, ṽm〉H1 |

≤
( ∞∑
n=1

∞∑
m=1

σpn(A) |〈un, vm〉H2 〈ũn, ṽm〉H1 |
)1/p( ∞∑

n=1

∞∑
m=1

σqm(B) |〈un, vm〉H2 〈ũn, ṽm〉H1 |
)1/q

=

( ∞∑
n=1

σpn(A)

∞∑
m=1

|〈un, vm〉H2 〈ũn, ṽm〉H1 |
)1/p( ∞∑

m=1

σqm(B)

∞∑
n=1

|〈un, vm〉H2 〈ũn, ṽm〉H1 |
)1/q

≤
( ∞∑
n=1

σpn(A) ‖un‖H2‖ũn‖H1

)1/p( ∞∑
m=1

σqm(B) ‖vm‖H2‖ṽm‖H1

)1/q

,

where the availability of (A.5) is essential for reducing the double sum to a single one.

A.2. Proof of Theorem 2.1. While in (2.10) we define the STV functional for a 2D image;
next we provide a proof of Theorem 2.1 for the more general case where u is defined on R

d.
To show the translation and rotation invariance property of the STV functional, we consider
the transformation of the image coordinates T (x) = Rx + α, where R is a rotation matrix
and α represents a translation. Applying the chain rule to the Jacobian matrix, we get

J{u ◦ T} (x) = Ju (T (x))R,(A.6)
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where ◦ indicates the composition operation. Now, if we denote S = SK {u ◦ T} (x) we have

S = RT

(∫
Rd

K (y)JuT (T (x− y))Ju (T (x− y)) dy

)
R

= RT

(∫
Rd

K (y)JuT (T (x)−Ry) Ju (T (x)−Ry) dy

)
R

y′=Ry
= RT

(∫
Rd

K
(
R−1y′) JuT (

T (x)− y′) Ju (
T (x)− y′)dy′

)
R

= RT

(∫
Rd

K
(
y′) JuT (

T (x)− y′) Ju (
T (x)− y′) dy′

)
R

= RTSK {u} (T (x))R.(A.7)

We note that in order to derive the above result we have considered the convolution kernel K
to be isotropic, i.e., K (x) = K (|x|). From (A.7) and since the eigenvalues of the structure
tensor in the r.h.s. are not affected by the presence of the rotation matrix R and its inverse
RT , we have that λ±(x) = λ±(T (x)). Using this result and having in mind that in order to
evaluate the STVp functional in (2.10) we need to integrate over the whole image domain, it
is now clear that the energy will be preserved despite the transformation of the coordinate
system. In other words, it holds that STVp (u ◦ T ) = STVp (u).

Next, in order to prove the convexity and 1-homogeneity properties, let us first introduce
the d× d matrix GK (u) defined as

GK (u) =

∫
Rd

K (y)JuT (y) Ju (y) dy,(A.8)

which corresponds to evaluating the structure tensor (2.7) at the origin of u. This matrix
is well-defined over the functions that belong to the Sobolev space W 1,2(Rd,RM ). Next, we
show the following result.

Theorem A.3. Let λn denote the nth eigenvalue of the matrix GK(u). Then ρ(u) =

(
∑d

n=1 λ
p
2
n )1/p is a 1-homogenous and convex function of u in the sense that

ρ(au) = |a| ρ(u),(A.9)

ρ(tu1 + (1− t)u2) ≤ tρ(u1) + (1− t)ρ(u2)(A.10)

∀a ∈ R, t ∈ [0, 1], and u,u1,u2 ∈W 1,2
(
R
d,RM

)
.

Proof. To prove convexity of ρ (u), let us first introduce the (∞× d)-dimensional matrix
defined as A = A (u,y) = [f1 (y) . . . fd (y)] for arbitrary y ∈ R

d , where

fn (y) =

⎛
⎜⎝k (y)u1xn (y)︸ ︷︷ ︸

fn,1(y)

, . . . , k (y) uMxn (y)︸ ︷︷ ︸
fn,M (y)

⎞
⎟⎠ , 1 ≤ n ≤ d,

is a vector function fn ∈ H = L2(R
d,RM ), umxn ∀ 1 ≤ m ≤ M denotes the derivative of the

mth component of u w.r.t. the nth dimension, and k (y) =
√
K (y). Note that the last
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assignment is valid since the convolution kernel K is assumed to be nonnegative valued. Since
the functions fn = fn(y) belong to the Hilbert space H, the matrix A defines a linear map:
R
d → H. The Hilbert space H is associated with the inner product

〈fn , gn〉H =
M∑
m=1

∫
Rd

fn,m(y)gn,m(y)dy.

The adjoint of A is the unique operator A∗ : H → R
d that satisfies

〈f , Av〉H = 〈A∗f , v〉(A.11)

for every v ∈ R
d and every f ∈ H. Having introduced the adjoint operator of A, we are in

the position of specifying the Gram matrix of size d× d:

A∗A =

⎛
⎜⎜⎝

〈f1 , f1〉H . . . 〈f1 , fd〉H
...

. . .
...

〈fd , f1〉H . . . 〈fd , fd〉H

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

M∑
m=1

∫
Rd k

2 (y)
(
umx1 (y)

)2
dy . . .

M∑
m=1

∫
Rd k

2 (y) umx1 (y)u
m
xd

(y) dy

...
. . .

...
M∑
m=1

∫
Rd k

2 (y) umxd (y)u
m
x1 (y) dy . . .

M∑
m=1

∫
Rd k

2 (y)
(
umxd (y)

)2
dy

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
Rd K (y)

M∑
m=1

(
umx1 (y)

)2
dy . . .

∫
Rd K (y)

M∑
m=1

umx1 (y) u
m
xd

(y) dy

...
. . .

...∫
Rd K (y)

M∑
m=1

umxd (y)u
m
x1 (y) dy . . .

∫
Rd K (y)

M∑
m=1

(
umxd (y)

)2
dy

⎞
⎟⎟⎟⎟⎟⎟⎠

= GK (u) .(A.12)

From (A.12) it turns out that the d × d Gram matrix, which provides a means to compute
the spectrum of A, is equal to the GK (u) matrix defined in (A.8). This relation further
implies that the vector consisting of the singular values of the infinite-dimensional but finite
rank matrix (or compact operator) A, which we will denote as σ (A), is directly related to
the eigenvalues of GK (u). Indeed, we have

σ (A) =
√

λ (A∗A) =
√

λ (GK (u)),(A.13)

where λ (A∗A) is the vector with the eigenvalues of the matrix A∗A. Thus, we conclude that
the nth singular value of A can be derived as σn =

√
λn with 1 ≤ n ≤ d. This means that we

can equivalently write the function ρ (u) as

ρ (u) =

(
d∑

n=1

σpn

)1/p

= ‖σ (A)‖�p .(A.14)
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Next, we shall show that for two compact operators A,B : H1 �→ H2 and for any 1 ≤
p, q ≤ +∞ with 1

p +
1
q = 1, it holds

‖σ (A)‖�p = sup
‖σ(B)‖�q=1

trace (AB∗) .(A.15)

We start by invoking Hölder’s inequality for the trace of operators, whose proof is provided
in Proposition A.2. According to this inequality we have that

|trace(AB∗)| ≤ ‖σ(A)‖�p ‖σ(B)‖�q .(A.16)

This, in turn, implies that

sup
‖σ(B)‖�q=1

trace (AB∗) ≤ ‖σ (A)‖�p .(A.17)

Now, the critical point is to show that for every operator A we can always select another
operator B with ‖σ (B)‖�q = 1 such that trace (AB∗) = ‖σ (A)‖�p . To show this, we choose

B =

∞∑
n=1

σn(B)un ⊗ ũn(A.18)

with

σn(B) =
σp−1
n (A)

‖σ(A)‖p−1
�p

.(A.19)

Indeed, since B has the same eigenvectors as A, we have that

trace(AB∗) =

∞∑
n=1

σpn(A)

‖σ(A)‖p−1
�p

= ‖σ(A)‖�p .(A.20)

Moreover, by noting that p = q(p− 1), we easily verify that

‖σ (B)‖q�q =

∞∑
n=1

σqn (B) =

∞∑
n=1

σ
q(p−1)
n (A)

‖σ(A)‖q(p−1)
�p

= 1.(A.21)

This shows that the supremum in (A.17) achieves the equality, which proves (A.15).
Thanks to the dual definition in (A.15), we can now show that

‖σ (tA1 + (1− t)A2)‖�p = sup
‖σ(B)‖�q=1

trace ((tA1 + (1− t)A2)B
∗)

≤ sup
‖σ(B1)‖�q=1

trace (tA1B
∗
1) + sup

‖σ(B2)‖�q=1
trace ((1− t)A2B

∗
2)

≤ t sup
‖σ(B1)‖�q=1

trace (A1B
∗
1) + (1− t) sup

‖σ(B2)‖�q=1
trace (A2B

∗
2)

= t ‖σ (A1)‖�p + (1− t) ‖σ (A2)‖�p .(A.22)
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Next, we recall that the kernel of A is linear in u, since it only involves derivatives which
are linear operations and a multiplication with a constant kernel. This together with (A.22)
proves that the function ρ (u) is a convex function of u.

Finally, the 1-homogeneity of ρ (u) is easily verified by using the definition of ρ, given in
(A.14).

Using the results of the above theorem, the convexity and 1-homogeneity properties of the
STVp functional can now be easily verified by first noting that we can write it as

STVp (u) =

∫
Rd

ρ (u ◦ Px) dx,(A.23)

where Px (y) = x− y and ρ (u) is defined in Theorem A.3. If we apply the chain rule to the
Jacobian matrix we get

J{u ◦ Px} (y) = −Ju (Px (y)) .(A.24)

Now, for the matrix GK (u ◦ Px), which is the main component of the function ρ (u ◦ Px), we
have

GK (u ◦ Px) =

∫
Rd

K (y)∇uT (Px (y))∇u (Px (y)) dy

y′=Px(y)
=

∫
Rd

K
(
x− y′)∇uT

(
y′)∇u

(
y′) dy′

=

∫
Rd

Kx (y)∇uT (y)∇u (y) dy = GKx (u) ,(A.25)

where Kx (y) = K (x− y) = K (y − x). The above result implies that ρ (u ◦ Px) = ρx (u),
where ρx (u) is defined similarly to ρ (u), with the only difference being that its input eigen-
values correspond to those of the matrix GKx (u) instead of GK (u). Therefore, it holds
that

STVp (u) =

∫
Rd

ρx (u) dx.(A.26)

Since the kernel Kx, which is used in ρx (u), is just a shifted version of the initial convolution
kernel K and does not depend on u, the convexity and homogeneity results of ρ (u) are also
inherited by ρx (u) ∀x ∈ R

d. Therefore, since the STVp functional corresponds to the integral
of convex and 1-homogeneous functionals of u, it is also a convex and 1-homogeneous function
of u.

A.3. Proof of Proposition 3.2. To find the adjoint of the discrete patch-based Jacobian,
we exploit the relation of the inner products of the spaces R

NM and X in (3.8). Using the
definition of the inner product in X (3.6), we can equivalently write (3.8) as

N∑
n=1

trace
(
[JKu]Tn Yn

)
=

N∑
n=1

M∑
m=1

[um]n [J
∗
KY ]k ,(A.27)
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where k = (N − 1)m+ n. Then, we expand the l.h.s. of (A.27), to obtain∑
n,m,l

[Tsl,ω ◦Dhum]n Y
(r,1)
n + [Tsl,ω ◦Dvum]n Y

(r,2)
n

=
∑
n,m,l

[um]n

([
D∗
h ◦ T ∗

sl,ω
◦ Y (r,1)

]
n
+

[
D∗
v ◦ T ∗

sl,ω
◦ Y (r,2)

]
n

)

=
∑
n,m

[um]n

(
L∑
l=1

[
−div

(
T ∗
sl,ω

◦ Y ((m−1)L+l,:)
)]

n

)
,(A.28)

where r = (m− 1)L+l and Dh, Dv are the horizontal and vertical components of the discrete

gradient, respectively. Also note that Y
(i,j)
n with 1 ≤ n ≤ N , 1 ≤ i ≤ LM , and 1 ≤ j ≤ 2,

corresponds to a single element of Y ∈ X , while Y
(i,:)
n is a vector extracted from the ith row

of the nth matrix component, Yn ∈ R
(LM)×2, of Y . Now, by comparing the r.h.s. of (A.27)

to the r.h.s. expansion of (A.28), we can verify that the adjoint of the patch-based Jacobian
is indeed computed by the formula provided in Proposition 3.2.

A.4. Proof of Proposition 4.2. For any pair of variables Ω,Ψ ∈ X and

d (Ω) =
1

2
‖w −ΠC (w)‖22 +

1

2

(
‖z‖22 − ‖w‖22

)
,

we can show that

‖∇d (Ω)−∇d (Ψ)‖X = ‖τJK (h (Ω)− h (Ψ))‖X
≤ τ ‖JK‖ ‖h (Ω)− h (Ψ)‖2 ≤ τ ‖JK‖ ‖τJ∗

K (Ω−Ψ)‖2
≤ τ2 ‖JK‖2 ‖Ω−Ψ‖X ,(A.29)

where h (Ω) = ΠC (z − τJ∗
KΩ). This result follows from the relation between the norms

defined in the spaces X and R
NM and the induced operator norm, i.e., ‖JKu‖X ≤ ‖JK‖ ‖u‖2,

and the fact that the projection operator onto a convex set C ⊆ R
N is firmly nonexpansive [2,

Proposition 4.8]. The latter translates to ‖ΠC (u)−ΠC (v)‖2 ≤ ‖u− v‖2 ∀u,v ∈ R
N .

Now, in order to find an upper bound of the operator norm of the patch-based Jacobian
we use that ‖JK‖2 = ‖J∗

KJK‖ [34] (general property of bounded linear operators) and denote
D = −div ◦∑

l(T
∗
sl,ω

◦ Tsl,ω) ◦ ∇. Then, we get

‖J∗
KJKu‖2 = ‖Du‖2 ≤ ‖∇‖2 ‖T‖2 ‖u‖2 ,(A.30)

where T �
∑L

l=1(T
∗
sl,ω

◦ Tsl,ω). From [3] we have that ‖∇‖2 ≤ 8 and we can further show

that ‖T‖2 ≤ √
2, if we assume a unit-normalized kernel K and a shift operation with reflexive

boundaries. These immediately imply that an upper bound of the Lipschitz constant of∇d (Ω)
will be L (d) ≤ τ2 ‖JK‖2 ≤ 8

√
2 τ2.
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