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ABSTRACT

We introduce a novel functional for vector-valued images that gen-
eralizes several variational methods, such as the Total Variation and
Beltrami Functionals. This functional is based on the structure tensor
that describes the geometry of image structures within the neighbor-
hood of each point. We first generalize the Beltrami functional based
on the image patches and using embeddings in high dimensional
spaces. Proceeding to the most general form of the proposed func-
tional, we prove that its minimization leads to a nonlinear anisotropic
diffusion that is regularized, in the sense that its diffusion tensor con-
tains convolutions with a kernel. Using this result we propose two
novel diffusion methods, the Generalized Beltrami Flow and the Ten-
sor Total Variation. These methods combine the advantages of the
variational approaches with those of the tensor-based diffusion ap-
proaches.

1. INTRODUCTION

Multiscale image analysis has been proven very useful in many im-
age and vision applications. The first scale-spaces were linear and
generated using Gaussian convolutions, which can be modeled by
the linear diffusion [1]. Afterwards, various nonlinear modifications
of the heat diffusion have been introduced, so that the diffusion re-
spects the semantically important image features (see [2, 3] for de-
tailed reviews).

Perona and Malik [4] proposed to apply the following type of
nonlinear diffusion to the input image:

∂u/∂t = div g(|∇u|2)∇u (1)

where the diffusivity function g is decreasing. The motivation was
to favor intraregion over interregion smoothing. Two problems with
this model are the amplification of noise by the diffusion coefficient
and the sensitivity to initial conditions. In order to overcome them,
Catté et al. [5] regularized the model by replacing g(|∇u|2) with
g(|∇G ∗ u|2) where G is a 2D Gaussian kernel.

Various image diffusion methods can be also derived from a
variational framework, by minimizing a suitable functional of the
image [6, 7]. A well-studied functional is the Total Variation (TV):

E[u] =
Ω

|∇u| dx (2)

where Ω is the image domain. Minimizing this functional using the
Euler-Lagrange equations and the steepest descent method leads to
a Partial Differential Equation (PDE) that is a special case of (1),
with g(s2) = 1/s. The TV (2) does not penalize discontinuities, but
only strong oscillations, therefore the noise can be removed with-
out blurring the edges. On the other hand, this model oversmooths
homogenous regions and creates staircase artifacts.
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In some more recent approaches, the image diffusion is not only
nonlinear but also anisotropic, i.e. it is driven by an image dependent
anisotropic tensor [2, 8]. This offers improved enhancement proper-
ties, since the diffusion can be more flexibly controlled and oriented
according to the image structures.

Comparing the variational with the rest diffusion methods, it can
be noted that the existence of a link between a diffusion method and
a functional minimization offers several advantages. First, it offers
better interpretation and makes the method less heuristic. Also, it
facilitates the usage of the diffusion method in various image and vi-
sion problems, such as image restoration, inpainting, interpolation,
that can be formulated as functional minimizations with constraints
imposed by the problem. Further, it is easier to derive methods with
reduced parameters (e.g. the steepest descent of the TV (2) has no
parameters). Finally, the variational interpretation of a method can
offer efficient implementations based on optimization techniques.
Nevertheless, for several interesting types of diffusion methods, like
regularized nonlinear diffusion [5] or nonlinear anisotropic diffusion
[2], the corresponding PDEs have been directly designed, without
any known variational interpretation.

Having the above as motivation, we propose a novel functional
for vector-valued images that generalizes the Total Variation, the
Beltrami Functional and other variational methods. It is based on
the structure tensor that describes the geometry of image structures
within the neighborhood of each point. We begin with a generaliza-
tion of the Beltrami functional by representing an image with em-
beddings in high dimensional spaces that contain the image patches.
Afterwards, we provide the general form of the new functional and
prove that its minimization leads to a nonlinear anisotropic diffusion
whose tensor is formed by using convolutions with a kernel. Ap-
plying this theoretical result to special cases, we propose two novel
diffusion methods, the Generalized Beltrami Flow and the Tensor
Total Variation. In contrast to other variational methods, e.g. [6, 7],
the diffusion in the proposed methods is more efficiently controlled,
since the diffusion tensors incorporate information about the image
variation in the local neighborhood of each point. Also, as compared
to other tensor-based diffusion approaches [2, 8], these methods have
the advantage that come from a functional minimization. In parallel,
the conducted experiments demonstrate the potential of the proposed
diffusions as applied to the problem of image denoising.

2. PATCH-BASED GENERALIZATION OF THE
BELTRAMI FUNCTIONAL

Sochen et. al. [7] interpret a vector-valued image u with N channels
as the 2D surface (x, u) embedded in a N+2 dimensional space.
They propose to evolve the image according to the so-called Bel-
trami flow, which is an anisotropic diffusion flow towards the min-
imization of the area of this surface, using the induced metric. The
Beltrami functional of this area offers an efficient and elegant way
to couple the image channels and to extend in the vector-valued case



the properties of the Total Variation. The tensor field that controls
the Beltrami flow combines the information from all channels but on
each image point separately; it does not take into account the im-
age variation in the neighborhood of the point. This lack of spatial
extension has negative effects on the robustness to noise and on the
enhancement of the image edges.

In order to overcome these limitations, we generalize the Bel-
trami functional by using higher dimensional mappings of the form
(x,Pu(x)) where the vector Pu(x) is an image patch [9] that con-
tains weighted image values not only at point x but also at points in
a window around it. In this way, each point contributes to the area
of the embedded surface by considering the image variation in its
neighborhood. As it will be shown in Sec. 6.1, if we let the patches
to sample the image with a step that tends to zero, the area of the
embedded surface tends to the following functional:

A[u] =
Ω

(α2 + λ1) (α2 + λ2)dx (3)

where α is a constant, u(x) = [u1(x) · · ·uN (x)] : Ω → R
N is

the vector-valued image and λi = λi(JK(∇u))), λ1 ≥ λ2, are the
eigenvalues of the structure tensor:

JK(∇u) = K ∗
N

i=1

∇ui ⊗∇ui, (4)

where K is a convolution kernel (e.g. a 2D gaussian). This tensor
measures the geometry of image structures in the neighborhood of
each point [2]. Note that the classic Beltrami functional corresponds
to the case where the kernel K is the Dirac delta function δ(x). The
generalized Beltrami functional (3) is a special case of the more gen-
eral functional that will be introduced in the next section, where we
provide a result regarding the functional minimization. In Sec. 4.2,
we use this result to derive the Generalized Beltrami Flow method.

3. A GENERALIZED FUNCTIONAL BASED ON THE
STRUCTURE TENSOR

Bearing in mind the analysis of the previous sections, we propose
the following generalized functional:

E[u] =
Ω

ψ ( λ1(JK(∇u)), λ2(JK(∇u)) ) dx (5)

where ψ(λ1, λ2) : (R+)2 → R
+ is a cost function that is increasing

w.r.t. both its arguments. The eigenvalues λi that are used in (5)
measure the maximum and minimum vectorial variation of the image
over a specific direction in the neighborhood of each point.

The difficulty in the theoretical analysis of the functional (5) is
that, in contrast to most of the related variational methods (e.g. [6,
7, 8]), it integrates quantities that depend not directly on the im-
age derivatives but on their convolutions with a kernel. Thus, the
functional gradients that are needed for the minimization cannot be
derived using the Euler-Lagrange equations. Nevertheless, using the
definition of the functional gradient and some more elaborate calcu-
lus (see Sec. 6.2), we have proven the following theorem:

Theorem 1. The functional gradient of E[u] (5) w.r.t. each image
component ui(x) is:

δE[u]/δui = −div (DK∇ui) , i = 1, .., N , (6)

where: DK = K ∗ 2
∂ψ

∂λ1
θ1 ⊗ θ1 + 2

∂ψ

∂λ2
θ2 ⊗ θ2 (7)

and θ1,2(x) are the eigenvectors of JK(∇u).

Therefore, the gradient descent flow for the minimization of the
proposed functional (5), ∂ui/∂t = −δE[u]/δui, is a novel general
type of anisotropic diffusion of vector-valued images. The tensor
DK of this diffusion is formed using convolutions with the kernel K
in two phases: 1) in the formation of the structure tensor JK(∇u),
from where its eigenvalues λi and eigenvectors θi are computed and
2) in the convolution of Eq. (7) that finally yields the diffusion tensor.
The eigenvectors θ1(x) and θ2(x) correspond to the directions of
maximum and minimum vectorial image variation, as this variation
is viewed in a window around x. In the next section, the above
result is applied to some interesting special cases of the functional
(5), resulting to novel diffusion methods.

4. NOVEL METHODS DERIVED AS SPECIAL CASES OF
THE PROPOSED FUNCTIONAL

4.1. Tensor Total Variation

An effective choice for the cost function of the generic functional
(5) is ψ(λ1, λ2) =

√
λ1 +

√
λ2. Applying Theorem 1, we conclude

that the steepest descent for the minimization of this functional is
(for i = 1, .., N ):

∂ui

∂t
= div K ∗ 1√

λ1

θ1 ⊗ θ1 +
1√
λ2

θ2 ⊗ θ2 ∇ui (8)

We call the derived method Tensor Total Variation, since it gener-
alizes the TV and both the functional and the corresponding diffu-
sion are based on tensors. The classic TV corresponds to the special
case where N=1 (graylevel images) and K = δ(x). In this case,
λ1=|∇u|2 and λ2=0, therefore ψ(λ1, λ2) = |∇u|.

The PDE (8) adaptively smooths a vector-valued image in the
following way. The diffusion is strong and isotropic in the homo-
geneous image regions (small λ1, small λ2), but weaker and mainly
oriented by image structures in the vicinity of the edges (large λ1,
small λ2). Finally near image corners (large λ1, large λ2), the diffu-
sion is even weaker. The proposed Tensor TV combines the advan-
tages of the TV method and the tensor-based diffusion methods: The
diffusion comes from a variational formulation and is controlled by
a tensor that flexibly adapts to the image structures.

4.2. Generalized Beltrami Flow

The Generalized Beltrami Functional (3) is derived from the func-
tional (5) by setting ψ(λ1, λ2) = (α2 + λ1) (α2 + λ2). Theo-
rem 1 implies that the gradient descent flow towards the minimiza-
tion of this functional is given by (for i = 1, .., N ):

∂ui

∂t
= div K∗ α2 + λ2

α2 + λ1
θ1⊗θ1+

α2 + λ1

α2 + λ2
θ2⊗θ2 ∇ui

Note that the Beltrami Flow of [7] is derived if we set in the
above equation K = δ(x) but also add to its right-hand side (RHS)
the multiplying term 1/ψ(λ1, λ2). This extra weighting is due to
the fact that in [7] the gradient descent is applied in the space of
embeddings instead of the space of images. But due to this weight-
ing, the diffusion is too much reduced near image edges and cannot
effectively enhance them.

4.3. Other interesting cases and relations to previous works

If in the functional (5) we choose ψ(λ1, λ2) = φ(λ1 +λ2) for some
function φ, then the gradient descent is described by a diffusion that
is nonlinear but isotropic:



(a) Noisy Input (b) TV PDE (c) Tensor TV PDE

(PSNR=20 dB) (PSNR=26.5 dB, t=16.4) (PSNR=27.1 dB, t=9.6)

Fig. 1. graylevel image denoising using TV and Tensor TV methods.

∂ui/∂t = div 2 K ∗ ϕ′(K ∗ ‖∇u‖2) ∇ui (9)

where ‖∇u‖2 = N
i=1 |∇ui|2. This case offers the following

alternative to the regularization of the Perona-Malik model (1) by
Catté et al. [5]: The diffusion coefficient g(|∇u|2) is replaced by
K ∗ g(K ∗ |∇u|2) instead of g(|∇K ∗ u|2). The advantage of this
novel regularization is that it has a variational interpretation.

Note finally that a simpler form of the proposed functional that
does not contain any convolution with a kernel has been already stud-
ied in [8]. In this case, the corresponding diffusion is anisotropic
only if the number of image channels is N≥2. Also, its diffusion
tensor does not incorporate information about the image variation in
the vicinity of each image point.

5. EXPERIMENTAL RESULTS AND COMPARISONS

We conduct denoising experiments, adopting the following frame-
work: Each time we use a noise-free reference image and we corrupt
it with additive gaussian noise. The derived noisy image is used as
input to the diffusion methods that are compared. Since the ground
truth is available, we compute Peak Signal to Noise Ratios (PSNR)
during the evolutions of the corresponding PDEs and we consider
as output of each method the image from this flow that achieves the
maximum PSNR. Of course, in practice the diffusion stopping time
should be estimated, but the choice made here corresponds to the
best-case scenario for each method. In all experiments, the kernel K
that is used in the proposed methods was chosen to be a 2D gaussian
with fixed standard deviation ρ=0.5 pixels.

In Fig. 1, the proposed Tensor TV and the classic TV are com-
pared in a graylevel image experiment. We observe that the proposed
method enhances the edges more effectively and generally yields a
more plausible result. In addition, it achieves a higher maximum
PSNR measure during the PDE evolution. This maximum corre-
sponds to a smaller diffusion time t (less iterations), which reflects
the fact that the Tensor TV exploits the convolutions with the kernel
K in order to flexibly adapt to the image and to improve the robust-
ness against noise.

Figure 2 demonstrates the application of the classic and the pro-
posed generalized Beltrami Flows to a noisy color image. The pro-
posed generalization seems to smooth the various image regions in
a more balanced way and to remove the noise by introducing less
artifacts. In addition, it yields an improved PSNR performance.

Finally, we followed the aforementioned experimental frame-
work using 23 natural images1. We run two series of denoising
experiments, based on the graylevel and color versions of these im-
ages. Figure 3 demonstrates overall PSNR measures for each tested
method and noise level of the input images. We observe that the pro-
posed Tensor TV yields in all cases the best overall measures. The
second proposed method, Generalized Beltrami Flow, yields worse

1These images are from http://www.cipr.rpi.edu/resource/stills/kodak.html.

(a) Noisy Input (b) Beltrami Flow (c) Gener. Beltrami Flow

(PSNR=20 dB) (PSNR=23.4 dB) (PSNR=24.0 dB)

Fig. 2. Color image denoising example.
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Fig. 3. Performance measures of different diffusion methods.

measures than the TV PDE in the experiments with graylevel im-
ages. On the other hand, as compared to the Beltrami flow in the
case of color images, it demonstrates a significantly improved per-
formance when the noise levels are relatively high (low input PSNR).

6. THEORETICAL DETAILS

6.1. Derivation of the Generalized Beltrami Functional

Here, we more formally derive the Generalized Beltrami Functional
(3) as a limit of the area of the patch-based embeddings. For each
point x ∈ Ω, we define a sequence {Pu

n (x)}n=1,2,... of image
patches around x by 1) sampling all the image channels inside the
square Sx = [x−L, x+L]× [y−L, y+L], for some fixed L>0,
in the points of a regular grid with horizontal and vertical spacing
εn = L/n, 2) weighting the samples with a window function w(x)
and 3) forming a vector form these values. The function w(x) is
assumed to have a support that is a subset of the square [−L, L]2

and to satisfy the symmetry property w(x, y) = w(|x| , |y|). We
are interested in the limit case n→∞, where εn→0 and the patch
tends to contain weighted versions of the image values at all the
points of the square Sx . Based on the above sequence of image
patches, we define the following sequence of embedded surfaces
F n : Ω → R

Dn :

x → F n(x) = [αx, εnPu
n (x)] , (10)

where Dn = 2 + N(2n + 1)2 and α is a positive constant that in
practice is chosen to be small compared to the vectorial variations
of the image. The weighting of the patches Pu

n (x) with εn in (10)
serves as a compensation for the fact that their dimensionality grows
with n. For every F n, if we consider the Euclidean metric on the
embedding space R

Dn , the induced metric on Ω is given by:

Gn(x) =

Dn

j=1

∇F j
n ⊗∇F j

n = α2I2 + . . .

N

i=1

n

k=−n

n

�=−n

ε2nw2(kεn, �εn)∇ui ⊗∇ui(x+kεn, y+�εn)



where F i
n is the i-th component of F n(x), I2 is the 2 × 2 identity

matrix and “⊗” denotes tensor product. The double sum that cor-
responds to each image channel i at the above equation is a classic
2D Riemann sum. Given that specific conditions hold for u and w
(e.g. all their 1st derivatives are bounded and continuous almost ev-
erywhere), the sequence of these sums converges, as n → ∞, to the
convolution with the kernel K(x) � w2(x). Thus, for every x:

G(x) = lim
n→∞

Gn(x) = α2I2 + JK(∇u), (11)

where JK(∇u) is the image’s structure tensor (4). We can choose
the weight function w(x) so that a desirable kernel K is used in
JK(∇u) (e.g. K can be an isotropic 2D gaussian kernel that is trun-
cated in the square [−L, L]2). Using the metric Gn, we can express
the area of each embedded surface F n as An =

Ω
det(Gn) [7].

Therefore:

A[u] = lim
n→∞

An =
Ω

det(G)
(11)
=

Ω

(α2 + λ1)(α2 + λ2),

since as it can be shown, the above limit commutes with the integra-
tion.

6.2. Sketch of the Proof of Theorem 1

Let v(x) = [v1, .., vN ] be an arbitrary vector-valued test function
that vanishes on ∂Ω, V (x) = diag(v) and ε ∈ R

N . If we define
Φ(ε) = E[u+V ε], then the functional gradient of E[u] w.r.t. each
ui(x) must by definition satisfy:

∂Φ(ε)

∂εi ε=0

=
Ω

vi(x)
δE[u]

δui
dx (12)

for any test function v(x). On the other hand, this first variation of
E[u] can be written also as (using Eq. (5)):

∂Φ(ε)

∂εi ε=0

=
Ω

dx
2

j=1

∂ψ

∂λj

∂λj(JK(u + V ε))

∂εi ε=0

(13)

again for any test function v(x)). If ak�(u) are the elements
of the structure tensor JK(u) (4), its eigenvalues are given from
λj(JK(u)) = (a11 + a22 + Cj (a11 − a22)2 + 4a2

12)/2, j=1,2,
where C1 = 1 and C2 = −1 [2]. Using the definition (4), we can
show that (for k,�=1,2 and i=1, .., N ):

∂ak�(u + V ε)

∂εi ε=0

= K ∗ (
∂ui

∂xk

∂vi

∂x�
+

∂ui

∂x�

∂vi

∂xk
). (14)

We thus obtain the following (for j=1,2):

∂λj(JK(u+V ε))

∂εi ε=0

= (a11−a22)K∗〈M1∇ui,∇vi〉+

2a12K∗〈M2∇ui,∇vi〉 Cj

λ1−λ2
+ K∗〈∇ui,∇vi〉

(15)

where M1 =
1
0

0
−1 and M2 =

0
1

1
0 . Based on the last equation,

we observe that the RHS of Eq. (13) can be expressed as a sum of 6
integrals (3 for each j) that all have the form:

I =
Ω

f(x)K ∗ 〈M∇ui,∇vi〉dx, (16)

for some appropriate function f(x) and 2 × 2 matrix M . At this
point, we need a formal definition of the convolutions with K. Re-
ferring to the definition of the structure tensor (4), where these con-
volutions are initially used, we first extend the image u to R

2 by

reflection followed by periodization and afterwards use the classic
continuous 2D convolution. It can be shown that this process is
equivalent to an integral transform with integration domain just the
image domain Ω and using an integral kernel K̂(τ ; x) that is derived
from K(x − τ ), after appropriate warpings and replications. By as-
suming that the kernel K has the symmetric property K(x, y) =

K(|x| , |y|), it is not hard to show that K̂(τ ; x) = K̂(x; τ ). Hav-
ing these in mind and using integration by parts and the fact that vi

vanishes on ∂Ω, we can write the integral I as follows:

I =
Ω

f(x)
Ω

〈M∇ui(τ ),∇vi(τ )〉 K̂(τ ; x)dτ dx

= −
Ω

vi(x) div((K ∗ f)M∇ui) dx

Using Eqs. (12),(13),(15), the above result and the fundamental
lemma of calculus of variations, we conclude that (for i = 1, .., N ):

δE[u]/δui = −div (D∇ui) , where: (17)

D =
2

j=1

(K ∗ ∂ψ

∂λj

(a11 − a22)Cj

λ1 − λ2
)M1+

(K ∗ ∂ψ

∂λj

2a12Cj

λ1 − λ2
)M2 + (K ∗ ∂ψ

∂λj
)I2

= K ∗
2

j=1

∂ψ

∂λj
I2 +

a11 − a22

λ1 − λ2
CjM1 +

2a12

λ1 − λ2
CjM2

Bj

After some algebra, we obtain that the eigenvalues of the matrix Bj ,
j=1,2, are equal to 2 and 0 and the unit eigenvector that corresponds
to the nonzero eigenvalue is θj . Therefore Bj = 2θj ⊗ θj . This
completes the proof.

7. CONCLUSIONS

We introduced a generic functional for vector-valued images and
proved that its minimization yields a tensor-based diffusion process.
Using this result, we proposed two novel anisotropic diffusion meth-
ods. The presented experiments demonstrated the effectiveness of
these methods when applied to image denoising. Thanks to the
variational formulation of the adopted framework, such regularized
tensor-based diffusions can be readily applied to various other im-
age processing problems, such as image restoration, inpainting and
interpolation. This could be a direction for future research.
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[9] D. Tschumperlé and L. Brun, “Non-local image smoothing by applying
anisotropic diffusion pde’s in the space of patches,” in ICIP, 2009.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


