Tensor-based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals

29 September 2010 International Conference on Image Processing 2010, Hong Kong

Anastasios Roussos and Petros Maragos

Computer Vision, Speech Communication and Signal Processing Group, School of Electrical & Computer Engineering, National Technical University of Athens, Greece

http://cvsp.cs.ntua.gr

Motivation (1/2)

- Nonlinear diffusion models for Computer Vision
 - Class A: Directly-designed PDEs
 - Perona-Malik method [ieeeT-PAMI'90]
 - CLMC regularized PDE [Catte et al, siamJNA'92]
 - Coherence-enhancing diffusion [Weickert, IJCV'99]
 - Method of [Tschumperlé & Deriche, ieeeT-PAMI'05]
 - Class B: Variational Methods
 - Total Variation [Rudin, Osher & Fatemi, PhysicaD'92]
 - Vectorial Total Variation [Sapiro, CVIU'97]
 - Color Total Variation [Blomgren & Chan, ieeeT-IP'98]
 - Beltrami Flow [Sochen, Kimmel & Maladi, ieeeT-IP'98]
- For some methods of Class A: known connection with Class B, e.g. :
- But, for several types of PDE-based diffusion methods no variational interpretation existed

Motivation (2/2)

- Advantages of variational interpretation of diffusion methods
 - conceptually clear formalism
 - helps with the reduction of model parameters
 - easier application to problems that can be formulated as constrained energy minimization, e.g.:
 - image restoration, inpainting, interpolation
 - can lead to efficient implementations based on optimization techniques
- Advantages of using tensors in image diffusion
 - Structure tensor

measure of the image variation & geometry in the neighborhood of each point

Diffusion tensor

flexible adaptation to the image structures

structure tensor

Contributions

- We propose a novel generic functional that:
 - is designed for vector-valued images
 - generalizes several existing variational methods
 - is based on the structure tensor
 - leads to tensor-based nonlinear diffusions that contain regularizing convolutions
- As special cases, we propose 2 novel diffusion methods:
 - Generalized Beltrami Flow
 - Tensor Total Variation

These methods:

- combine the advantages of variational and tensorbased diffusion approaches
- yielded promising performance measures in denoising experiments

Generalization of the Beltrami Functional (1/2)

Original Beltrami Flow

[Sochen, Kimmel & Maladi, IEEE T-IP 98]

 Interpretation of a vector-valued image *u* with *n* channels as a 2D surface embedded in Rⁿ⁺²:

$$(x, y) \longrightarrow (x, y, u_1(x, y), u_2(x, y), \dots u_n(x, y))$$

- □ Flow towards the minimization of the surface area: tensor-based diffusion
- It offers an elegant way to:
 - couple the image channels and
 - extend in the vector-valued case the properties of Total Variation
- But, the diffusion tensor is not regularized (no neighborhood info)
 - \rightarrow limitations on the robustness to noise & edge enhancement
- To overcome these limitations, we generalize the Beltrami Functional ...

Generalization of the Beltrami Functional (2/2)

- Proposed generalization of the Beltrami functional:
 - We use higher dimensional mappings of the form:

$$oldsymbol{x}
ightarrow (oldsymbol{x}, \mathcal{P}^{oldsymbol{u}}(oldsymbol{x}))$$

image patch [Tschumperle & Brun, ICIP'09],
that contains weighted image values
not only at point x
but also at points in a window around it

- In this way, each x contributes to the area of the embedded surface by considering the image variation in its neighborhood
- If the patch sampling step \rightarrow 0, the area of the embedded surface tends to:

$$A[\boldsymbol{u}] = \int_{\Omega} \sqrt{(\alpha^2 + \lambda_1) (\alpha^2 + \lambda_2)} \mathrm{d}\boldsymbol{x}$$

• $\lambda_i = \lambda_i (J_K(\nabla u))$: eigenvalues of the structure tensor $J_K(\nabla u) = K * \sum \nabla u_i \otimes \nabla u_i$

Generalized Functional based on the Structure Tensor $E[\boldsymbol{u}] = \int_{\Omega} \psi \left(\lambda_1(J_K(\nabla \boldsymbol{u})), \lambda_2(J_K(\nabla \boldsymbol{u})) \right) d\boldsymbol{x}$

• $\psi(\lambda_1, \lambda_2)$: cost function (increasing)

$$\Box \quad J_K(\nabla u) = K * \sum_{i=1}^N \nabla u_i \otimes \nabla u_i : 2x2 \text{ structure tensor with:}$$

- eigenvalues λ_1, λ_2 , eigenvectors θ_1, θ_2 (depend on K)
- Difficulty in the theoretical analysis: In contrast to most variational methods, Euler-Lagrange equations not applicable here
- Theorem: we have shown that the functional minimization leads to: $\partial u_i / \partial t = \operatorname{div} (D_K \nabla u_i), \ i = 1, ..., N,$ $D_K = K * \left(2 \frac{\partial \psi}{\partial \lambda_1} \theta_1 \otimes \theta_1 + 2 \frac{\partial \psi}{\partial \lambda_2} \theta_2 \otimes \theta_2 \right)$
 - novel general type of anisotropic diffusion

Tensor Total Variation

• 1st special case of the novel generic functional:

$$E[\boldsymbol{u}] = \int_{\Omega} \psi \left(\lambda_1 (J_K(\nabla \boldsymbol{u})), \lambda_2 (J_K(\nabla \boldsymbol{u})) \right) d\boldsymbol{x}$$

with $\psi(\lambda_1,\lambda_2) = \sqrt{\lambda_1} + \sqrt{\lambda_2}$

Steepest descent (applying the proved theorem):

$$\frac{\partial u_i}{\partial t} = \operatorname{div}\left(\left[K * \left(\frac{1}{\sqrt{\lambda_1}} \boldsymbol{\theta}_1 \otimes \boldsymbol{\theta}_1 + \frac{1}{\sqrt{\lambda_2}} \boldsymbol{\theta}_2 \otimes \boldsymbol{\theta}_2\right)\right] \nabla u_i\right), \ i = 1, .., N$$

Classic TV: special sub-case with: N=1(graylevel images) and $K = \delta(x)$

(a) Noisy Input (PSNR=20 dB) (b) TV PDE (PSNR=26.5 dB, t=16.4) (c) Tensor TV PDE (PSNR=27.1 dB, t=9.6)

Tensor Total Variation: Example

Output sequence

Application of Tensor Total Variation in a sequence of X-ray images

Generalized Beltrami Flow

• 2nd special case of the novel generic functional:

$$E[\boldsymbol{u}] = \int_{\Omega} \psi(\lambda_1(J_K(\nabla \boldsymbol{u})), \lambda_2(J_K(\nabla \boldsymbol{u}))) \, \mathrm{d}\boldsymbol{x}$$

with $\psi(\lambda_1, \lambda_2) = \sqrt{(\alpha^2 + \lambda_1)(\alpha^2 + \lambda_2)}$

• Steepest descent (applying the proved theorem):

$$\frac{\partial u_i}{\partial t} = \operatorname{div}\left(\left[K*\left(\sqrt{\frac{\alpha^2 + \lambda_2}{\alpha^2 + \lambda_1}}\boldsymbol{\theta}_1 \otimes \boldsymbol{\theta}_1 + \sqrt{\frac{\alpha^2 + \lambda_1}{\alpha^2 + \lambda_2}}\boldsymbol{\theta}_2 \otimes \boldsymbol{\theta}_2\right)\right] \nabla u_i\right)$$

Classic Beltrami flow [Sochen et. al, IEEE T-IP 98]: special sub-case with $K = \delta(x)$ and minimization in the space of embeddings

(a) Noisy Input (PSNR=20 dB)

(b) Beltrami Flow (PSNR=23.4 dB)

(c) Gener. Beltrami Flow (PSNR=24.0 dB)

Other Interesting Special Cases

- Other special cases of the novel generic functional: $E[\boldsymbol{u}] = \int_{\Omega} \psi \left(\lambda_1(J_K(\nabla \boldsymbol{u})), \lambda_2(J_K(\nabla \boldsymbol{u})) \right) d\boldsymbol{x} \text{ with:}$
 - $\psi(\lambda_1, \lambda_2) = \phi(\lambda_1 + \lambda_2)$: Steepest descent:

$$\partial u_i / \partial t = \operatorname{div} \left(2 \left[K * \varphi' (K * \| \nabla \boldsymbol{u} \|^2) \right] \nabla u_i \right)$$

→novel regularization of the Perona-Malik model →regularization of Sapiro's Vectorial TV: $\psi = \sqrt{\lambda_1 + \lambda_2}$

- $K = \delta(x)$ (no regularizing convolution):
 - Studied in [Blomgren & Chan T-IP'98, Tschumperlé & Deriche, T-PAMI'05]
 - The corresponding diffusion is anisotropic only if the image channels are $N \ge 2$
 - No incorporation of neighborhood info

Denoising Experiments: Framework

- Experimental Framework
 - □ take a noise-free reference image
 - add gaussian noise
 - input in the compared diffusion methods
 - compute PSNR during each PDE flow and output the image with the maximum PSNR

 This framework has been repeated for reference images from a dataset of *CIPR*: <u>www.cipr.rpi.edu/resource/stills/kodak.html</u> 23 natural images of size 768 x 512 pixels

Both graylevel & color versions of images have been used

Denoising Experiments: Performance Measures

Summary & Conclusions

- We introduced a generic functional that
 - is based on the image structure tensor
 - generalizes Total Variation & Beltrami Functionals
- We proved that its minimization leads to a novel general type of anisotropic diffusion
- We proposed two novel anisotropic diffusion methods
- Several denoising experiments showed the potential of the novel approach
- The proposed framework opens various new directions for future research
 - Many other special cases of the generic functional might be promising
 - Thanks to the variational interpretation, such regularized tensor-based diffusions can be applied to other problems, e.g.:
 - image restoration, inpainting and interpolation

Thank You for Your Attention!

Questions?

Computer Vision, Speech Communication and Signal Processing (CVSP) Group Web Site: http://cvsp.cs.ntua.gr