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ABSTRACT

Existing approaches to camera tracking and reconstruction from a
single handheld camera for Augmented Reality (AR) focus on the
reconstruction of static scenes. However, most real world scenarios
are dynamic and contain multiple independently moving rigid ob-
jects. This paper addresses the problem of simultaneous segmen-
tation, motion estimation and dense 3D reconstruction of dynamic
scenes. We propose a dense solution to all three elements of this
problem: depth estimation, motion label assignment and rigid trans-
formation estimation directly from the raw video by optimizing a
single cost function using a hill-climbing approach. We do not re-
quire prior knowledge of the number of objects present in the scene
– the number of independent motion models and their parameters
are automatically estimated. The resulting inference method com-
bines the best techniques in discrete and continuous optimization:
a state of the art variational approach is used to estimate the dense
depth maps while the motion segmentation is achieved using dis-
crete graph-cut based optimization. For the rigid motion estimation
of the independently moving objects we propose a novel tracking
approach designed to cope with the small fields of view they in-
duce and agile motion. Our experimental results on real sequences
show how accurate segmentations and dense depth maps can be ob-
tained in a completely automated way and used in marker-free AR
applications.

1 INTRODUCTION

Recent advances in marker-less vision-based tracking methods for
Augmented Reality (AR) have resulted in reliable, real-time sys-
tems [16, 23] that can provide impressive performance on mobile
platforms [37, 24, 22] or even provide live dense reconstructions
that allow scene augmentation with dense occlusion reasoning [20].
However, a common drawback of all these approaches is that they
require a static scene and treat moving objects as outliers. Attempts
to deal with multiple independently moving objects are few and
typically require prior knowledge of the number of objects present
in the scene and can only reconstruct sparse feature points [21, 18].
To the best of our knowledge, an automated system that can simul-
taneously provide dense segmentation, motion estimation and 3D
reconstruction of independently moving objects in a dynamic scene
is currently missing in the literature.

In computer vision, structure from motion (SfM) algorithms for
rigid scenes have made significant progress by providing com-
pletely dense detailed 3D models that estimate the 3D location of
every pixel in the image. Dense approaches to multi-view stereo
(MVS) [11, 29] aim at acquiring accurate models from a collection
of fully calibrated images (where both the camera motion and in-
ternal calibration are known in advance). Although computation-
ally expensive they have produced impressive results. More recent
solutions are capable of near real-time performance [40] – as the
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Figure 1: 3D reconstruction and Augmented Reality application on
two different input sequences.

parallel formulation of these algorithms allows the use of GPUs to
dramatically speed reconstruction.

In contrast to these MVS batch approaches that treat all the im-
ages at once after the acquisition, real-time camera tracking and
mapping systems, also referred to as monocular SLAM (Simultane-
ous Localization and Mapping) approaches, have also been devel-
oped and applied with great success to small AR workspace appli-
cations e.g. PTAM [16]. While PTAM can only reconstruct a sparse
cloud of points these real-time SfM systems have recently been ex-
tended to recover dense 3D structure and motion from live video
data coming from a hand-held camera [20, 33] or reconstruct urban
environments from camera rigs mounted on a car [25]. One of the
clear advantages of reconstructing dense surfaces for AR applica-
tions is that more accurate occlusion reasoning can be achieved.

The fundamental assumption underpinning all these algorithms
is that the scene is static and the objects making up the scene do not
move relative to one another. This is an overly strong assumption
– real world scenes are not completely static and generally contain
multiple moving objects. The area of multibody structure and mo-
tion from video is far less advanced than its rigid counterpart and,
with very few multi-camera based exceptions [42, 13], existing ap-
proaches act on a sparse set of features. Dynamic scenarios are
much more challenging, as they bring in the additional problem of
motion segmentation: each pixel in the image must be assigned to
an independently moving rigid body. An additional practical issue
arises when recovering the rigid motion of each of the independent
objects in the scene. Tracking small objects in the foreground is
more error prone than tracking the camera motion with respect to
a large background since: i) objects occupy only a small number
of image pixels that induce a small aperture angle; ii) regions can



Figure 2: Augmented reality application, using our system of Dense
Multibody Reconstruction, using a Handheld Camera.

move more freely, inducing faster, harder to track, motion. It is
clear that in such scenarios, a dense pixel-based tracking algorithm
will provide more reliable tracking than a feature-based one.

The majority of approaches to dynamic scene analysis work in
a three step fashion [6, 10, 28, 21] – first sparse image features
are tracked or optical flow maps are estimated; second motion seg-
mentation is performed to separate the tracks into different objects
using model selection or a RANSAC type approach; and finally SfM
is applied to each of the segments to perform 3D reconstruction and
motion estimation. However, these pipeline approaches are inher-
ently fragile, as a failure in any of the intermediate steps need not be
apparent until the final reconstruction fails, and cannot be recovered
from.

Clearly structure and motion estimation and scene segmentation
are two sides of the same problem and should be solved simultane-
ously. The novelty of our approach lies in posing the problems of
scene segmentation into multiple rigidly moving objects, the esti-
mation of their 3D shape and motion relative to the camera as the
optimization of a single unified cost function. Moreover, our ap-
proach is dense, it reconstructs each pixel in 3D, and assigns it a
label indicating which rigid body it belongs to. Our approach com-
bines the best techniques of discrete and continuous optimization –
a state of the art variational approach closely related to [20] is used
to estimate the dense depth maps while the motion segmentation is
achieved using discrete graph-cut based α-expansion with an MDL
prior [15, 19]. Additionally, we propose a novel algorithm to track
the rigid motion of the independent bodies that uses all the pixels
for dense image registration. As with the rigid live dense recon-
struction systems of [20, 33] we directly estimate the depth field by
minimizing a photometric error cost without the need to use either
sparse feature tracking or dense optical flow estimation. However,
unlike these real-time online systems ours is batch, allowing the use
of future data to resolve ambiguities in the current frame.

2 RELATED WORK

Early approaches to multibody segmentation and reconstruction
were traditionally pipeline methods in which a sparse set of in-
put feature trajectories were separated into independently moving
rigid bodies, and subsequently reconstructed in 3D using multi-
view SfM approaches. The first of such methods, developed by [6]
was based on rigid factorization [34] and applied to the simplified
scenario of affine viewing conditions. A wealth of motion segmen-
tation algorithms followed in the literature including the GPCA al-
gebraic framework [36] and more recent approaches that can deal
with noise in the measurements, outliers in the correspondences and
missing data [26]. Tron and Vidal [35] created a benchmark data

set to evaluate these sparse approaches on given sets of point tracks.
Ozden et al. [21] proposed an algorithm for simultaneous track-
ing, segmentation and reconstruction capable of tackling realistic
sequences and achieve 3D augmentation. However, their approach
was sparse.

Unlike these works, we provide a dense approach to joint seg-
mentation and 3D reconstruction in the multibody case. Perhaps
the work closest to ours is the recent solution to simultaneous dense
segmentation and reconstruction of dynamic scenes recently pro-
posed by Zhang et al. [42] who optimize an energy based on pho-
tometric and geometric error and layer constraints. The method
extended multi-view stereo to scenes containing multiple moving
objects. Their optimization couples depth and segmentation la-
bels which are fixed and predetermined at the point of the opti-
mization. Crucially, in contrast with our approach, the number of
different rigid bodies present in the scene and their motion param-
eters with respect to the camera must be pre-estimated in an ini-
tial step that relied upon sparse data. After this, their labels are
fixed and the motion parameters are never updated or re-estimated
within their dense energy optimization framework. Guillemaut and
Hilton [13] proposed a method for using multiple cameras to jointly
segment the image into background/foreground layers and to esti-
mate the depth of each pixel of the foreground in challenging out-
door sports scenes. This approach is intended for multiple synchro-
nized cameras with known relative orientation, and explicitly relies
upon multi-view consistency.

Our approach is also related to the work of Fayad et al. [9] who
proposed a unified solution to motion segmentation and 3D recon-
struction for articulated objects, i.e. objects that do not move inde-
pendently but share a common joint or axis of rotation. Although
their inference method is closer to ours than that of [42], their ap-
proach is sparse and takes fixed point correspondences as an input.
Instead, our approach optimizes a photometric cost based directly
on the image intensities implicitly incorporating the estimation of
correspondences into the overall system.

In 2-view stereo reconstruction, the work of [3] proposed an
algorithm to reconstruct a scene by decomposing it into a set of
b-splines. This approach shares some similarities with our work
in that it alternates between a continuous optimization of fitting
splines to points in their case, or assigning the depth to points in
our case, and a discrete graph-cut based step that assigns points
to b-splines or camera parameters. However, unlike our approach,
theirs can only be applied to two frames of a static scene, where the
camera motion is known in advance.

2.1 Contributions

The main contribution of this work is to provide the first algorithm
in the literature to estimate simultaneously all three elements in-
volved in the multibody structure and motion problem: depth map,
motion label assignment and rigid transformations for every object
in every frame, in a dense way i.e. for every pixel in the scene by
optimizing a single energy.

Additionally, we propose an inference strategy that combines
state of the art methods in continuous and discrete optimization
to optimize a single energy. Our optimization alternates between
a variational approach [20] to depth map estimation directly from
photometric information; a discrete energy based multiple model
fitting technique [15] to segment the scene into moving regions;
and a novel dense tracking algorithm.

At the core of our optimization method is the energy based mul-
tiple model fitting approach to segmentation PEARL [15] that re-
formulates it as a labeling problem where both the labels (model
parameters) and their assignment to data points are computed si-
multaneously using graph-cut based discrete optimization initial-
ized with an excess of models.

Our novel dense tracking method estimates a 6-DOF transforma-



tion for each independently moving object with respect to the cam-
era given a dense depth map. Our algorithm is most closely related
to the 6-DOF camera tracking thread of DTAM [20] and the RGB-
D visual odometry system proposed in [31]. However, it differs
from both of these methods in various aspects. First, we propose
to use a robust error function in the data term, instead of the more
fragile L2-norm favored by [20] and [31]. This strengthens our
depth-based warp estimation allowing us to cope with occlusions
and changes in illumination. Secondly, in order to be able to cope
with the large motions we expect from small agile objects moving
in the foreground, we do not make any assumption of small rota-
tions and we use accurate linearizations that are updated in every
iteration.

3 PROBLEM STATEMENT

Given a sequence of images of a dynamic scene containing an un-
known number of independently moving objects and given a choice
of reference frame, the aim of this work is to segment the scene
into the different rigid bodies, to obtain a depth estimate for each
pixel in the reference frame and to track the 3D motion of the ob-
jects with respect to the camera throughout the sequence. Once the
dense depth map and the motion of the segmented objects have been
estimated, we use them to augment the original video sequence to
provide an automatic marker-free AR approach for dynamic scenes,
Figures 1 and 2.

3.1 Notation and Preliminaries
The input to our algorithm is an F frame sequence of color images
I1(x), . . . , IF (x) where Ir(x) is chosen to be the reference frame.
We use Ω ⊂ R2 to refer to the continuous domain that contains all
valid coordinates within the reference frame. The 2D coordinates
of a point in the reference image are denoted as x = (x,y)T ∈ Ω

and its homogeneous coordinates as ẋ =
(
xT ,1

)T . The perspective
projection of a 3D point expressed in the canonical camera coor-
dinate frame V c = (x,y,z), is given by π(V c) where π : R3 → R2

π(V c) = (x/z,y/z)T . We now consider a calibrated camera, i.e. its
3×3 intrinsic calibration matrix K is known in advance.

We denote the inverse depth map to be the function d(x) : Ω→R
that assigns its inverse depth value d to each point x = (x,y)T ∈ Ω

in the reference frame. The back-projection of a point x in the ref-
erence frame given its inverse depth d can now be expressed as
π−1(x,d) =

( 1
d K−1ẋ

)
∈ R3. Finally, to describe the relative pose

of the camera at the time instant m with respect to the reference
time instant r we define a rigid transformation Tm(·) that encodes
its parameters. In other words, Tm(V ) is the 3D rigid transform
Tm(V ) = RV + t where R and t are the rotation matrix and trans-
lation vector that align the point V in the reference frame to its
position at time m.

As we are interested in dynamic scenes, the reference image is
considered to be composed of a set of N regions or segments, cor-
responding to the projection of the independently moving objects
onto the reference frame Ir. More precisely, for every region `, we
define the set of rigid transformations T` = {T`1, . . . ,T`F} that map
points on rigid body ` from its position at reference time r to every
time m ∈ {1, . . . ,F}.

We can now define the problem of dense multibody structure
and motion as the joint estimation of the following three sets of
variables:

• d(x): a dense inverse depth map that assigns an inverse depth
value d ∈ R to each pixel x in the reference frame.

• A segmentation of the reference image domain Ω into dis-
joint regions which correspond to the N independently mov-
ing rigid bodies. We represent this segmentation via the label-
ing function L(x) : Ω→ {1, . . . ,N} that assigns to each point

x a label ` ∈ {1, . . . ,N} indicating which object it belongs to.
Also, we denote by Ω` the segment that corresponds to a label
`: Ω` = {x ∈Ω : L(x) = `}.

• The set of rigid motion transformations for each indepen-
dently moving body T = {T1, . . . ,TN}. Each set T` encodes
the rigid transformations that align the pose of the region with
label ` from its position at reference time r to its position at
every time m ∈ {1, . . . ,F} in the sequence as defined above.

Our approach simultaneously solves for the above three sets of
variables. Note that the number of models N is initially set to a high
value (over-segmentation), but the number of active (non-empty)
models can be much smaller than N and is not fixed – it can decrease
from one iteration to the next.

4 ENERGY FORMULATION

The structure of our framework is simple. We design an appropriate
cost function in the form of an energy and we iteratively minimize
it by re-estimating each parameter set (depth map, rigid motion and
object labels) while keeping the other parameters fixed.

More precisely, we minimize the following energy with respect
to the set of parameters {d(x),L(x),T }:

E[d,L,T ] = λEdata +αEreg +βEpotts + γ MDL , (1)

where λ ,α,β ,γ are weighting parameters that control the balance
of the different terms of the energy. Our energy contains a data
term Edata that accounts for the sum of photometric errors over all
the frames, a spatial regularization term Ereg for the depth map,
discrete pairwise costs Epotts that encourage neighboring pixels to
share the same model (or equivalently camera/motion parameters)
and a Minimum Description Length prior MDL, that prefers com-
pact solutions containing a small number of active regions. We now
define each of the terms in detail.

4.1 Data Term Edata

Edata is the photo-consistency term:

Edata[d,L,T ] =
∫

Ω

C(x,d(x),TL(x))dx. (2)

The function C yields the average photometric error between every
pixel x in the reference frame and its position in every other frame
Im,m ∈ {1, . . . ,F}, in the sequence. The function that maps a pixel
x with depth d in the reference time r to its corresponding location
in a different time instant of the sequence can be expressed as:

P(x,d,T ) = π

(
K T

(
π
−1(x,d)

))
(3)

where K is the known calibration matrix and T is the rigid transfor-
mation that aligns the two frames. We now define the photometric
cost:

C(x,d,T`) =
F

∑
m=1

ρ

(
|Ir(x)− Im (P(x,d,T`m))|2

)
(4)

where ρ(e2) is a robust norm. Note that in the above cost, we have
used grayscale versions Ir, Im of the input images, but the method
can be easily extended to color. The robust norm ρ(e2) is a trun-
cated Huber norm [14]:

ρ(e2) =


e2/2σρ , if e≤ σρ

e−σρ/2, if σρ < e≤ θρ

θρ −σρ/2, if θρ < e
(5)



Figure 3: Four frames from each of the two-men and toy-cars input sequences.

where σρ is a relatively small scale parameter that makes the deriva-
tive ρ ′(s) bounded near 0 and helps in the numerical stability of
motion estimation. Also, θρ is a saturation parameter that accounts
for outliers in photometric matching (e.g. due to occlusions). Intu-
itively, the data term for each pixel accounts for the average pho-
tometric error of mapping that pixel to every other frame in the
sequence for a given depth value d, labeling L and set of rigid trans-
formations T . Note that we use a spatial discretization of the term
(2), in order to implement it and combine it with the purely discrete
terms of motion segmentation.

4.2 Inverse Depth Regularization Term Ereg

The second term of our energy (1) corresponds to the spatial regu-
larization of the inverse depth map d(x):

Ereg[d] =
∫

Ω

|∇d(x)|
ε

dx (6)

where ∇ denotes denotes the 2D gradient operator. Following [38,
20], we define the regularizer using the Huber norm | · |ε [14]:

|∇d|ε =

{
|∇d|2/2ε, if |∇d| ≤ ε

|∇d|− ε/2, otherwise
(7)

The Huber norm combines quadratic regularization for small mag-
nitudes of the gradient with the discontinuity preserving properties
of Total Variation for larger magnitudes of the gradient. Note that
we consider a spatial discretization of the Ereg too.

4.3 Discrete Pairwise Costs Epotts

Epotts is a Potts model energy, a regularizer over the segmentation
that encourages neighboring pixels to share the same label/model,
or equivalently to belong to the same rigid object:

Epotts[L] = ∑
x∈D(Ω)

∑
y∈Nx

wxy ∆(L(x) 6= L(y)) (8)

where D(Ω) is the discretization of the reference image domain on
the image grid, i.e. the set of image pixel coordinates. Nx is the set
of pixels that neighbor the pixel x, based on a specific pixel connec-
tivity (we have used 4-pixel connectivity). Also, L is the assignment
of rigid models to pixels and ∆(·) is the discrete Dirac delta func-
tion that takes value 1 if the containing statement is false, and value
0 otherwise. wxy is a positive weighting that takes into account the
similarity between the appearance of pixels in the reference image,
and more strongly encourages pixels of similar appearance to take
the same label:

wxy = exp(−||M(x)−M(y)||1/σw) (9)

where M is formed by applying a 7× 7 median filter across the
color reference image Ir, and σw is a scale parameter. This use
of the median filter substantially contributes to the effectiveness of
our approach, and gives the crisp object boundaries required for
convincing reconstruction.

It is worth mentioning that the continuous analogue of (8) is the
sum of weighted lengths of the segment boundaries, an extension of
the classical Mumford-Shah model that is widely used in variational
methods [7]. This could be solved alongside the MDL cost using
techniques such as [39].

4.4 Minimum Description Length Prior
The final term (MDL) is a sparsity inducing minimum description
length prior:

MDL[L] =
N

∑
`=1

∆(Ω` 6= /0) (10)

which measures the number of non-empty segments Ω`. This term
induces a fixed cost for each non-empty model to encourage com-
pact solutions.

5 OPTIMIZATION OF THE ENERGY

The optimization is a direct hill climbing approach, that iteratively
minimizes the energy (1) alternating the estimation of each parame-
ter set (depth map d, rigid motion parameters T and object labeling
L) assuming that the other sets remain fixed: see Algorithm 1.

Algorithm 1: Multi-rigid depth estimation

Initialize L;
Initialize T ;
for alternation = 1, ..,Nalt do

Fix L and T . Update d by minimizing (1) w.r.t. d;
Fix L and d. Update T by minimizing (1) w.r.t. T ;
Fix T and d. Update L by minimizing (1) w.r.t. L;

We will discuss the initialization in Section 6. Note that in the
above algorithm, Nalt denotes the number of alternations. In our
experiments, we have used Nalt = 2, since we observed that this
value was in all the cases sufficient to get an accurate result.

5.1 Step 1: Depth Map Estimation
The first step of the optimization of the energy (1) involves the es-
timation of the dense inverse depth map d given a segmentation of
the scene into regions L and the set of motion matrices relative to



Reference frames Initialization of depth maps Final regularized depth maps

Figure 4: Estimated dense inverse depth maps d(x)) for the two-men sequence (top row) and the toy-cars sequence (bottom row). The left
column shows the reference image. The middle column shows the initialization of d(x)), which is yielded via point-wise minimization of the
photometric cost Edata. The right column shows the final regularized result that minimizes λEdata +αEreg.

the camera T . Since only the data and regularization terms depend
on the depth map, in this step we seek to minimize:

λEdata +αEreg =
∫

Ω

{λC(x,d(x))+α |∇d(x)|
ε
} dx (11)

with respect to d(x). Note that for the sake of simplicity, we write
in this subsection C(x,d) instead of C(x,d,TL(x)), since the map-
ping TL(x) is fixed. This energy is almost equivalent to the one
optimized in the 3D reconstruction thread of the real-time dense
tracking and mapping system DTAM [20]. The only differences are
that we use the truncated Huber norm and not the L1-norm as the
robust function ρ(·) in the data term and we do not make use of
a space varying weighting for the regularizer. Furthermore, while
the optimization in DTAM is carried out online for a number of key
frames at a time, our approach is batch i.e. we treat all the images
in the sequence at once after the acquisition.

However, we can adopt the same variational approach to solve
for the inverse depth map. An auxiliary function d′(x) : Ω→ R is
used to form a quadratic relaxation of the cost (11):∫

Ω

{λC(x,d)+
1

2θn
(d−d′)2 +α

∣∣∇d′
∣∣
ε
} dx (12)

where θn > 0 is a varying inverse weight of the quadratic term,
which is used to bring the variables d and d′ close together. We fol-
low an iterative approach, where the relaxation tightens with each
iteration i.e. θn is a decreasing sequence that tends to zero, as in
[20] (up to a scaling): θn+1 = θn(1−Cnn), where Cn = 10−3, if
θn ≥ 0.005θ0 and Cn = 10−4, otherwise.

Duplication of the optimization variable via relaxation decou-
ples the linearized data and regularization terms, decomposing the
optimization problem into two, each of which can be solved effi-
ciently. We follow the paradigm of the large displacement opti-
cal flow method [32], which avoids the loss of detail inherent to
common coarse-to-fine approaches [41, 5]. We alternate between
solving for the auxiliary and original functions assuming the other
fixed. The optimization of the energy with respect to the auxiliary
function d′ involves the sum of the quadratic and the regulariza-
tion terms: 1

2θn
(d− d′)2 +α |∇d′|ε . This is a convex energy and

is optimized in a similar way to the ROF denoising model of [27]
using a primal-dual approach [5]. On the other hand, minimizing
the cost with respect to the original function d involves the sum of
the quadratic relaxation and data terms: λC(x,d)+ 1

2θn
(d− d′)2.

Although non-convex, this term is point-wise independent and is
easily solved via exhaustive search over a discretized set of values
for the inverse depth. Following [20] and in order to refine this
quantized result, we afterwards apply a Newton step using numer-
ical derivatives. This optimization can be parallelized with the use
of GPUs and solved very efficiently.

Note that when n = 0, i.e. the first internal iteration of Step
1, d(x) is initialized by minimizing the term C(x,d) (without the
quadratic relaxation term), via point-wise exhaustive search (see
Figure 4).

5.2 Step 2: Rigid Motion Estimation
Given a new estimate of the inverse depth map, the second step of
the iteration involves the estimation of the set of rigid motion trans-
formations {T`m} that align the pose of each region ` in each time
m with the camera coordinate frame. This energy can be decoupled
and optimized independently for each region and frame:

for every ` ∈ {1, . . . ,N} with Ω` 6= /0 (active region) do
for every m ∈ {1, . . . ,F} do

minimize w.r.t. T`m :

J =
∫

Ω`

ρ

(
|Ir(x)− Im (P(x,d,T`m))|2

)
dx (13)

Our optimization strategy in this stage is most closely related to
the 6-DOF camera tracking thread of DTAM [20] and the RGB-D vi-
sual odometry system of [31]. However, it differs from both of these
methods in various aspects. First, we use a robust error function in
the data term, instead of the non-robust L2-norm favored by [20]
and [31]. This improves the robustness of our depth-based warp
estimation allowing us to cope with occlusions and changes in illu-
mination; it also means that the motion estimation step minimizes
the same energy (1) as the rest steps, which is required to guaran-
tee convergence of our batch method. Further, we do not make any
assumption of small rotations, which increases our robustness to
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Figure 5: Segmentation Results: The left image shows the results after the initialization and the right column shows the final segmentation given
by our algorithm in both test sequences. Shadows are captured as belonging to the object as this results in a lower photometric error.

(a) Reference (b) Current frame (c) Photometric error before (d) Final photometric error

Figure 6: Depth-based image warping estimated during the rigid motion estimation step. The estimation for each segment is done separately.
(a) Reference frames. (b) Current frames. (c-d) Photometric error between the reference and the current image, (c) before the application of any
warping and (d) after the application of the depth-based image warping using the. The regions where the errors in (d) are high correspond to
occluded regions. Thanks to the robust photometric error, these regions are treated as outliers.

large camera motions and improves agile camera tracking. In this
way, we can directly optimize (13) even for large motions (given a
decent initialization), without needing to synthesize projections of
the scene in a virtual camera (as e.g. done in [20]) or to constrain
ourselves to pairs of frames that are close together (as e.g. done in
[31]). In addition, we get accurate results without the need for tem-
poral smoothness or any other prior. With this novel optimization
for motion estimation, it became possible to bind the estimations
of the different parameters (depth map, rigid motions and object
labels) into a global minimization framework.

More precisely, we parametrize the rigid transform T`m = T`m(p)
with the 6-dimensional vector p = [q, t], where q is the axis-angle
parametrization of the rotation matrix and t is the translation vec-
tor. We derive the rotation matrix R(q) from q using the Rodrigues
formula:

R(q) = I3 + sin(|q|)[n̂(q)]×+(1− cos(|q|))[n̂(q)]2× (14)

where I3 is the 3× 3 identity matrix, n̂(q) = q/|q| is the rotation
axis and [n̂]× is the operator of cross product with n̂ in the form of
a 3×3 matrix: n̂× v = [n̂]×v, for any v ∈ R3. Note that under this
parametrization, |q| is equal to the rotation angle. It is important to
mention that the above formula does not assume any linearization.

Given the depth map and the rigid motion parameters of each
object, each point x ∈ Ω` in the reference that belongs to it can
be mapped to its corresponding position in the current frame us-
ing the transform (3), which can be viewed as a warp function
W (x; p) = P(x,d,T`m(p)). The motion estimation can thus be
viewed as an image registration problem. We derive our minimiza-
tion algorithm by following the paradigm of Lucas-Kanade, as re-
visited by Baker and Matthews [2]. Since we want to cope with
large camera motions, we do not simplify the warp W (x; p) before-
hand. This means that, in our formulation, the composition of two
warps as well as the inverse warp have not any simple analytical



expression. Therefore, following the terminology of [2], we apply
a forwards additive optimization method with a robust function.

Our motion estimation algorithm is iterative and finds a local
minimum of the energy J(p) (13) as a function of the motion pa-
rameters p. It starts from some initial estimate of p, given from
the overall initialization or from the previous alternation of Al-
gorithm 1. Afterwards, in every iteration, the previous estimate
of p is updated to p + ∆p. The value ∆p is specified by mini-
mizing J(p+∆p). For this minimization, in every point x of the
current region, the composition Im(W (x; ·)) is linearized around
p and afterwards the robust function ρ(s) is linearized around
|Ir(x)− Im(W (x; p))|2. Note that these linearizations are not done
beforehand, but during each iteration. In addition they are done
around a different point in every iteration, which increases their ac-
curacy. These approximations result to an energy that is quadratic
w.r.t. ∆p and the optimum is computed by solving a linear system.
This requires to compute in every iteration the jacobian of the warp
∂W (x;p)

∂ p evaluated at the current estimate p. The corresponding ana-
lytic expressions can be derived by using the equations (3),(14) and
applying the chain rule.

5.3 Step 3: Multibody Segmentation
Given new estimates of the inverse depth map and rigid motions,
the final step of the optimization of the energy (1) is the labeling
step consisting on assigning each pixel in the reference image a
label indicating which region it belongs to.

In this case, the terms of the energy that depend on the labeling
are the data term, pairwise costs and the MDL prior. Therefore, we
minimize:

λEdata +βEpotts + γMDL = λ

∫
Ω

C(x,d(x),TL(x)) dx+

β ∑
x

∑
y∈Nx

wxy ∆(L(x) 6= L(y))+ γ

N

∑
`=1

∆(Ω` 6= /0)

with respect to L(x). After the necessary spatial discretization, this
cost can be efficiently solved using a variant on the graph-cut [17]
based algorithm α-expansion [4], that handles MDL costs [8, 19].

6 INITIALIZATION

To initialize our overall algorithm we require initial estimates
for the labeling L (i.e. the segmentation of the scene into re-
gions) and the rigid motion transformations for every region T =
{T1, ...,TN}.

6.1 Initialization for the Labeling L(x)
We initialize the segmentation of the scene into independently mov-
ing rigid objects by performing simultaneous motion segmentation
and reconstruction on dense optical flow data. First we extract
dense optical flow from video using a multi-frame optic flow al-
gorithm [12] specifically tailored for dynamic sequences (multi-
rigid or deformable). This algorithm returns the flow, or pixel-wise
deformation, of a reference frame to every other frame in the se-
quence.

Given these dense tracks we use the energy-based multiple
model fitting algorithm of [15] for motion segmentation. Much like
the multibody segmentation of section 5.3, this method assigns la-
bels representing a choice of model parameters to every pixel in the
image using graph-cuts. Parameters and the assignment of pixels
to a model are chosen to minimize the sum of algebraic errors that
correspond to the cost of assigning a 6-DOF orthographic model
to each pixel, and to respect soft spatial constraints which say that
neighboring points should normally belong to the same model. In
this step, the considered models are orthographic rigid motion mod-
els and the cost of assigning a point to a rigid body with motion pa-
rameters T` is its average image re-projection error throughout the

sequence. This simplifying assumption of an orthographic camera
model is used only for the initialization. The initial set of proposed
models is formed by fitting a rigid model to each point and its 8
nearest neighbors. Our initialization is almost identical to the whole
method of [9], however, we substitute the model overlap constraints
with pairwise costs that encourage neighboring pixels to share the
same label.

The result of our initialization on two example sequences can
be seen in the left column of Figure 5. Its intended behavior is to
provide an over-segmentation of the scene where the motion bound-
aries are respected.

6.2 Initialization of Rigid Transformations T

Given a segmentation of the scene into independently moving re-
gions {Ω`} we can estimate the set of rigid transformations {T`}
associated with each rigid body ` ∈ {1, . . . ,N} in every time m ∈
{1, . . . ,F}. For this purpose, given the segmentation and the dense
tracks computed from optical flow in the previous section, we use
an off the shelf rigid SfM algorithm (such as bundler [30] or ACTS
[43]) independently on each of the regions to initialize the motion
matrices.

7 TOWARDS ONLINE RECONSTRUCTION

While the method presented is batch, it can be modified to an on-
line (and on future hardware, real-time) algorithm. The principal
bottleneck in our current code, preventing real-time online recon-
struction is the re-estimation of camera parameters for past frames,
and the subsequent recalculation of the cost volumes used for depth
and object assignment. Fortunately, DTAM [20] has shown that such
re-estimation is unnecessary, and that a cost volume for depth esti-
mation can be maintained by assuming that the camera parameters
for previous frames were correct, and never revisiting them. We
will briefly outline two approaches based on this for extending our
work to an online setting:

Multi-volume based approach The most direct online imple-
mentation of our method would maintain online one copy of the
entire cost volume (i.e. the data term C(x, ·,T·) of eq. (2)) for all
choices of camera parameters T associated with any object la-
bel, and updating the decision to assign pixels to particular models
by performing efficient variants of dynamic α-expansion at key-
frames [1].

Two-volume based approach A computationally less inten-
sive approach would be to maintain only two sets of costs online.
The first cost volume being the cost of assigning a pixel a particular
depth under the assumption that previous camera parameters, and
the current assignment of points to objects are correct (i.e. the data
term C(x, ·,TL(x))), and this volume will be used to refine depth
estimates. The second set of costs C(x,d(x),T·) will be used to up-
date L(x), the assignment of pixels to camera parameters, under the
assumption that both camera parameters and pixel depths are accu-
rate. This is substantially more efficient than the previous approach
but carries the disadvantage that some costs will be estimated in-
correctly. However, both [16], and [20] show that maintaining two
threads in this way (corresponding to online estimation of camera
parameters, and depth) is possible, as would be the addition of a
third thread corresponding to segmentation. This second approach,
should be feasible on contemporary hardware and it is an active
area of research.

8 EXPERIMENTS

Our experiments have been carried out on real video footage of dy-
namic scenes acquired with a hand-held digital camera provided
by [42]. The size of the images is 960× 540 pixels. We show re-
sults on two sequences. The toy-cars sequence is 27 frames long
and shows three toy cars moving on the ground plane in different



directions while the camera moves. The 30 frames long two-men
sequence shows two people turning around rigidly while the cam-
era also moves. The sequence contains multiple texture-less re-
gions and displays significant occlusions. In Figure 3 we show four
frames from each of the sequences.

8.1 Parameter Choice
To make the choices of ideal parameters stable over multiple se-
quences and to allow a direct comparison between weights (i.e. a
weight of 1 for normalized versions of both α and β of eq. (1)
should indicate that they have similar importance), we make several
normalizations. First, the intensities of the input images Ik(x) are
normalized in the range [0,1]. The normalized parameters, denoted
via a hat above the corresponding symbol, are defined as follows:

λ = λ̂/(FP) (see eq. (1)) where P is the number of pixels in a
frame; Also, α = α̂/(P ∆d) where ∆d is an estimate of the range of
values of inverse depth computed in the initialization. Since only
the relative values of the weights in (1) affect the result, we always
set α̂ = 1. Similarly, β = β̂/(P Ncon), where Ncon = 4 is the number
of neighbors of each pixel. In eq. (7), we set ε = ε̂ ∆d and in eq.
(12), θn = θ̂n∆2

d . Note, the only free parameter for the sequence θ̂n

is the initial value θ̂0 that controls its scale. In the exhaustive search
of Step 1, we use Ns quantized levels of d(x), equally spaced within
its estimated range.

After normalization, for almost all the parameters, the same val-
ues work across multiple sequences. We observe that the results
vary smoothly with the choice of parameters and a wide range of
parameters give convincing results.

In the results we show of the two-men and toy-cars sequences,
we used the following parameters: λ̂ = 1.3, β̂ = 1.1, θ̂0 = 5.6,
ε̂ = 3 ·10−4, σρ = 6.4 ·10−3, θρ = 0.04, σw = 0.033 and Ns = 64.
The only parameter varied was γ , which we set to 1.6 ·10−3 in the
case of two-men sequence and 3.2 ·10−7 in the case of toy-cars.

8.2 Results
Figure 4 shows results from the estimation of the depth maps. The
images in the middle column show the intermediate results obtained
after running only the exhaustive search over the discretized values
of depth. The right column shows the final depth maps obtained for
both sequences after the regularization step. Note the sharp depth
boundaries and the accuracy of the result.

The left column in Figure 5 shows the segmentation results ob-
tained using our initialization approach described in Section 6 based
on the segmentation of dense optical flow. Our initialization results
in an over-segmentation of the reference frame. The final results
of our alternating approach are shown on the right column of Fig-
ure 5. Our iterative algorithm for multibody segmentation, tracking
and reconstruction improves this initial estimate substantially.

The performance of our novel dense tracking algorithm, that uses
all the pixels in the image to track each independently moving re-
gion, is assessed in Figure 6. The two left-most columns of Figure 6
show the reference frame and another input frame in the sequence.
The two right-most columns show the residual errors (color coded
using a heat-map) of warping all the pixels in the input frame back
to the reference frame. The images in Figure 6(c) show the resid-
ual errors before estimating the warp and the images in Figure 6(d)
show the errors after the estimation of the warp function. The errors
are seen to go down significantly which accounts for the correct es-
timation of the rigid transformation T that aligns the two frames.
The regions where the errors in Figure 6(d) are high correspond
to occluded regions. Thanks to the robust photometric error, these
regions are treated as outliers.

Figure 7 shows four frames of the dynamic 3D model of the
two-men sequence from two different view points. The 3D ren-
derings show how the rotating motion of the two men is recovered

accurately, as well as the detail of the 3D structure. The bottom
row shows closeups of the 3D models of the men where an accu-
rate reconstruction of the faces is achieved with the facial features
preserved. Note also the detailed structure on the men’s knitted
sweaters reconstructed with our algorithm. We show 3D models of
the reconstructed toy-cars sequence in Figure 8 from a novel view-
point. This sequence is particularly challenging due to the small
size of the tracked objects. This induces a small aperture angle in
each of the tracked regions, making them hard to track. The 3D re-
constructions of the moving objects show accurate 3D models. The
small imperfection on the cars are caused by the shadows having
been segmented as part of the cars.

Figures 2, 9 show frames of the video sequences after augmen-
tation. In Figure 2, we have augmented the faces of the men with a
mustache and the knitted sweaters with splashes. The augmentation
seems almost perfect. Figure 9 shows an AR application on the toy-
cars sequence that illustrates how the availability of a dense depth
map allows high quality occlusion reasoning. The teapot situated
on the pavement is plausibly occluded by one of the cars in some of
the frames.

For better inspection of the quality of our dense 3D models and
the AR sequences, we provide demo videos in the supplementary
material as well as on the following URL:
http://vision.eecs.qmul.ac.uk/humanis/dense_multibody .

8.3 Runtime Performance Analysis
As the runtime of our algorithm depends on the number of frames
used for depth estimation and the number of rigid segments pro-
posed at every iteration of Algorithm 1, we here report the runtime
per frame, per rigid region proposal.

Our current implementation is in unoptimized Matlab code on a
64 bit i5-2500K machine, with NVIDIA GTX590 GPU, and makes
use of the Matlab Parallel Computing Toolbox. We have a runtime
of 0.736 seconds per frame per region for two-men sequence and
0.682 seconds for toy-cars sequence. The total runtimes for these
two sequences were 265 and 221 seconds respectively, whereas the
runtimes per frame were 8.83 and 8.19 seconds per frame respec-
tively. Note that these runtimes do not include the steps of the over-
all initialization (Section 6).

9 CONCLUSIONS

In this paper we show a novel approach to joint dense multibody
segmentation, tracking and 3D reconstruction from sequences taken
with a single handheld camera. The strength of our approach comes
from showing how dense depth maps, the segmentation of the scene
into rigid bodies and the rigid transformations describing their mo-
tion can be simultaneously estimated by optimizing a single cost
function using a hill-climbing approach. We show detailed and ac-
curate 3D reconstructions and apply our approach to Augmented
Reality applications that allows dense occlusion reasoning.

Our method has several limitations. First, our current system is
batch and treats all the images at once after the acquisition. How-
ever, in Section 7 we have described two different approaches to
convert it into an online method which is currently an active area
of research. An additional limitation of our approach is that it can
only reconstruct the pixels visible in the reference frame, since it is
effectively 2.5D approach (the 3D reconstruction relies on a depth
map), and therefore holes may appear in the background for long
sequences. This limitation would be mitigated once the system be-
comes online and the depth maps estimated for different key-frames
are merged. Similarly to other motion segmentation algorithms,
our current system copes poorly with shadows and often pixels in
shadow are labeled as belonging to the moving object. Finally, for
3D reconstruction, the independent scale ambiguity between seg-
ments is currently fixed manually. However, this could be easily
solved with the strategies described in [21].



Figure 7: Rendering of the estimated dense 3D models from different viewpoints for two-men sequence.

Figure 8: Rendering of the estimated dense 3D models for toy-cars sequence.

Figure 9: Augmented reality application for toy-cars sequence.
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