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Abstract

Recently, deformable face alignment is synonymous to

the task of locating a set of 2D sparse landmarks in intensity

images. Currently, discriminatively trained Deep Convolu-

tional Neural Networks (DCNNs) are the state-of-the-art in

the task of face alignment. DCNNs exploit large amount

of high quality annotations that emerged the last few years.

Nevertheless, the provided 2D annotations rarely capture

the 3D structure of the face (this is especially evident in the

facial boundary). That is, the annotations neither provide

an estimate of the depth nor correspond to the 2D projec-

tions of the 3D facial structure. This paper summarises our

efforts to develop (a) a very large database suitable to be

used to train 3D face alignment algorithms in images cap-

tured “in-the-wild” and (b) to train and evaluate new meth-

ods for 3D face landmark tracking. Finally, we report the

results of the first challenge in 3D face tracking “in-the-

wild”.

1. Introduction

Face alignment and tracking on images/videos captured

under unconstrained recording conditions has recently re-

ceived considerable attention due to the numerous applica-

tions such as entertainment, security, human computer in-

teraction, graphics etc.

The current state-of-the-art in face alignment revolves

around Deep Convolutional Neural Networks (DCNN)

equipped with a multiscale structure, alleged Hourglass ar-

chitecture [15] 1 or structures that combine a convolutional

network for feature extractions and Recurrent Neural Net-

∗S. Zafeiriou, G. Chrysos and A. Roussos contributed equally and have

joint first authorship.
1Hourglass networks won the recent Menpo Challenge on multi-view

face alignment [22] and the recent 3D face alignment competition [3].

works (RNNs) for solving non-linear least square problems

[19]. The landscape is not different in deformable face

tracking, where DCNNs currently hold the state-of-the-art

[19, 12] 2.

Currently, it is feasible to robustly train DCNNs for face

alignment, since our group has provided large scale land-

mark annotations [17, 16, 18, 24]. In the first challenge, i.e.

300W [17], our group provided annotations for over 4,350

“in-the-wild” images (approximately 5,000 faces). In the

300VW [18] our group provided annotations for 114 videos,

aiming at evaluating efforts for deformable face tracking.

The 300W and 300VW benchmarks provided annotations

with regards to a frontal face shape of 68 landmarks. A

step forward was made in CVPR 2017 by our group in the

so-called Menpo Challenge [24]. In Menpo challenge we

provided annotations for over 12,000 faces including, for

the first time, annotations for over 4,000 profile faces (with

regards to to 39 landmarks). All the above benchmarks con-

stitute a very valuable asset for 2D deformable face align-

ment and tracking and have used to drive the research in the

field.

Even though all the above databases provide annotations

that correspond to semantically meaningful parts of the face

many of the landmarks hardly correspond to the 3D struc-

ture of the human face. That is, they do not accurately

correspond to the projections, in the image plane, of any

landmarks of the 3D facial structure. Furthermore, the 2D

annotations of the above benchmarks do not bare any infor-

mation regarding the depth of the 3D face. In this paper,

we call the 2D projections of the 3D landmarks in the im-

age plane as 3DA-2D landmarks to distinguish them from

the 3D coordinates of the facial landmarks in the 3D scene,

which we call 3D landmarks in this paper. An example of

2D landmark annotations provided by 300VW and the cor-

2For state-of-the-art techniques the readers may refer to the recent com-

prehensive survey [7].
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(a) 2D Landmarks

(b) 3DA-2D Landmarks

Figure 1. First row (a): The annotated 2D landmarks provided by the 300VW competition. Second row (b): The estimated 3DA-2D

landmarks provided by Menpo 3D challenge.

responding 3DA-2D landmarks, estimated by the proposed

procedure are shown in Fig. 1.

The major problem regarding extracting 3D and 3DA-

2D landmark annotations in images captured “in-the-wild”

is that: (a) the faithful reconstruction of the 3D facial sur-

face remains very challenging in unconstrained recording

conditions; (b) photo-realistic synthesis of face in arbitrary

poses and illumination conditions is not possible without

the facial albedo, which requires special setups in order to

be precisely captured (e.g., a light stage [11]). This is why

the first 3D landmark localisation challenge, which was or-

ganised in conjunction with ECCV 2016, used only data

captured in controlled conditions (i.e., Multi-PIE [13]) or

synthetically generated data using simple techniques (i.e.,

rendering a 3d face captured in controlled conditions using

arbitrary backgrounds [14]).

In this paper, we make a significant step further and pro-

vide large scale 3DA-2D facial landmarks, as well as 3D

facial landmarks in a normalised facial model space. These

annotations can be used for training algorithms for esti-

mating 3DA-2D, as well as 3D landmarks in “in-the-wild”

images. We use these landmarks to train a DCNN based

on the Hourglass architecture [12] for estimating 3DA-2D

landmarks. The trained DCNN was used to provide a first

estimate of the 3DA-2D locations of landmarks in facial

videos. Then, an elaborate procedure combining Structure

from Motion (SfM) and 3DMM fitting is used to convert

these estimates to ground annotations which can be used

for training and evaluating algorithms 3DA-2D and 3D fa-

cial landmark tracking algorithms. Finally, we used these

data to evaluate efforts in 3D face tracking and present the

results. All in all, our contributions in this paper are the

following:

• We provide a large scale database of facial images

with 3DA-2D and 3D facial landmarks by applying the

state-of-the-art 3DMM fitting algorithm of [1] driven

by the ground-truth 2D landmarks.

• We propose an elaborate procedure for estimating

3DA-2D and 3D landmarks in arbitrary “in-the-wild”

videos. The procedure is highly accurate and was used

to provide more than 280,000 annotated frames.

• We present the results of the first challenge on 3DA-2D

and 3D landmark tracking.

2. Creating a Large Scale Database with 3DA-

2D and 3D landmarks

Recently in [25] a facial 3DMM has been fitted on the

2D landmarks and used in order to train a DCNN for the es-

timation of the 3D facial surface. In order to produce a large

scale dataset of 3DA-2D and 3D landmarks we utilised the

recently introduced 3DMM fitting strategy which is appli-

cable to “in-the-wild” images. The difference between the

method used in [25] and the one used in this work is that our

3DMM fitting strategy not only uses the facial landmarks

but the facial texture as well. Furthermore, in order to im-

prove accuracy we annotated all the images with regards to

(a) gender, (b) ethnicity and (d) apparent age and used the
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bespoke 3DMMs from the LSFM model [2]. We provide

3DA-2D and 3D landmarks for all the databases that we

have annotated with 2D landmarks, i.e 300W, Menpo etc. It

is worth noting that the 3D landmarks are provided in the

normalised space of the model.

Fitting the 3DMM in hundreds of thousands of video

frames is computationally expensive, we opted to train a

DCNN, based on the hourglass architecture, that regresses

to 3DA-2D landmarks. In particular, after the coarse step of

the architecture of [12], it regresses to 3DA-2D landmarks

(using as auxiliary input the 2D landmark locations) 3.

3. Creation of Ground Truth 3D Facial Land-

marks on Videos

To extract accurate 3D landmarks from facial videos, a

semi-automated procedure is followed as described below

(the core steps are depicted in Figure 2). Initially, we em-

ploy the aforementioned DCNN network to estimate the

per frame 3DA-2D landmarks. The automatic personali-

sation method of [8] was utilised for refining certain facial

parts (i.e. the eyes). Sequentially, an energy minimisation

method was used to fit our combined identity and expres-

sion models on the landmarks of all frames of the video si-

multaneously. We apply this fitting twice, first by using the

global LSFM model for the identity variation and second by

using the corresponding bespoke LSFM model, based on

manual annotation of the demographics of the input face.

Finally, we sample the dense facial mesh that is generated

by the fitting result at every frame on the sparse landmark

locations. Via visual inspection of both the dense 3D and

the reprojected sparse 2D landmarks results in all frames,

we choose the best of the two results (global versus bespoke

identity models) and we retain it as ground truth only if the

result is plausible in all frames.

3.1. Dense 3D Face Shape Modelling

Let us denote the 3D mesh (shape) of a face with N ver-

texes as a 3N × 1 vector

s =
[
xT

1 , . . . ,x
T

N

]T
= [x1, y1, z1, . . . , xN , yN , zN ]

T
(1)

where xi = [xi, yi, zi]
T

are the object-centered Cartesian

coordinates of the i-th vertex.

In this work we unbundle the identity from the expres-

sion variation and then combine them to articulate the 3D

facial shape of any identity. An identity shape model is

considered first, i.e. a model of shape variation across dif-

ferent individuals, assuming that all shapes are under neu-

tral expression. For this, we adopt our LSFM models [2],

which consist the largest models of 3D Morphable Mod-

elling (3DMM) of facial identity built from approximately

3Simultaneously to this work we found that a similar method has been

proposed in [4] for transferring 2D to 3DA-2D landmarks.

10,000 scans of different individuals4. The dataset that

LSFM models are trained on includes rich demographic in-

formation about each subject, allowing the construction of

not only a global 3DMM model but also bespoke models

tailored for specific age, gender or ethnicity groups. In this

work, we utilise both the global and the bespoke LSFM

models.

Each LSFM model (global or bespoke) forms a shape

subspace that allows the expression of any new mesh. To

construct such an LSFM model initially a set of 3D training

meshes are brought into dense correspondence so that each

mesh is described with the same number of vertices and all

samples have a shared semantic ordering. The rigid trans-

formations are removed from these semantically similar

meshes, {si}, by applying Generalised Procrustes Analysis.

Sequentially, Principal Component Analysis (PCA) is per-

formed which results in {s̄id,Uid,Σid}, where s̄id ∈ R
3N

is the mean shape vector, Uid ∈ R
3N×np is the orthonor-

mal basis after keeping the first np principal components

and Σid ∈ R
np×np is a diagonal matrix with the stan-

dard deviations of the corresponding principal components.

Let Ũid = UidΣid be the identity basis with basis vec-

tors that have absorbed the standard deviation of the cor-

responding mode of variation so that the shape parameters

p =
[
p1, . . . , pnp

]T
are normalised to have unit variance.

Therefore, assuming normal prior distributions, we have

p ∼ N (0, Inp
), where In denotes the n×n identity matrix.

A 3D shape instance of a novel identity can be generated

using this PCA model as a function of the parameters p:

Sid(p) = s̄id + Ũidp (2)

Furthermore, we also consider a 3D shape model of ex-

pression variations, as offsets from a given identity shape

Sid. The blendshapes model of Facewarehouse [5] are

utilised for this module. We adopt Nonrigid ICP [6] to ac-

curately register this model with the LSFM identity model.

Then the expression model can be represented with the

triplet {s̄exp,Uexp,Σexp}, where s̄exp ∈ R
3N is the mean

expression offset, Uexp ∈ R
3N×nq is the orthonormal ex-

pression basis having nq principal components and Σexp ∈
R

nq×nq is the diagonal matrix with the corresponding stan-

dard deviations. Similarly with the identity model, we con-

sider the basis Ũexp = UexpΣexp and the associated nor-

malised parameters q ∼ N (0, Inq
).

Combining the two aforementioned models, we end up

with the following combined model that represents the 3D

facial shape of any identity under any expression:

S(p,q) = s̄+ Ũidp+ Ũexpq (3)

where s̄ = s̄id+s̄exp is the overall mean shape, p is the vec-

tor with the identity parameters and q is the vector with the

4The LSFM models have recently become available upon application:

http://www.ibug.doc.ic.ac.uk/resources/lsfm .
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(a) Input video (b) Landmark

localisation 
(c) Camera estimation 

(rigid SfM) 

(d) Dense 3D shape 

estimation

(e) Sampling of 3D shape on face 

landmarks

Figure 2. Main steps of the adopted pipeline to create ground truth 3D facial landmarks on videos. We are based on a state-of-the-art

landmarker and an energy minimisation approach to fitting powerful dense 3D face models on the sequence of landmarks.

expression parameters. We construct one combined identity

and expression model for each LSFM model (global or be-

spoke). For example, Figure 3 visualises the first few com-

ponents of identity and expression for the case of global

LSFM model.

3.2. Dense 3D Model Fitting

First of all, on every frame of the input video the 2D co-

ordinates of a sparse set of facial landmarks are estimated

by using the state-of-the-art facial landmarker of [3, 12],

which can work under unconstrained conditions; see Fig-

ure 2(b). Crucially, this method provides a reliable estima-

tion of the 2D projection of the real 3D positions of self-

occluded landmarks even in cases of head poses close to

profile views. Afterwards we fit our LSFM models on the

extracted 2D landmarks locations. The rich dynamic infor-

mation available in sequential frames enables us to provide

very precise estimations of the ground truth shape, see Fig-

ure 2(d). More precisely, thanks to our combined identity

and expression shape model, we can fix the identity param-

eters throughout the whole video. This is an important con-

straint that greatly helps our estimations. In addition, we

impose temporal smoothness on the expression parameters,

which improves the estimation of the 3D facial deforma-

tions of the individual observed in the input video.

3.2.1 Camera Model

The purpose of a camera model is to map (project) the

object-centered Cartesian coordinates of a 3D mesh in-

stance s into 2D Cartesian coordinates on an image plane.

The projection of a 3D point x = [x, y, z]
T

into its 2D

location in the image plane x′ = [x′, y′]
T

involves two

steps. First, the 3D point is rotated and translated using a

linear view transformation to bring it in the camera refer-

ence frame:

v = [vx, vy, vz]
T
= Rvx+ tv (4)

where Rv ∈ R
3×3 and tv = [tx, ty, tz]

T
are the camera’s

3D rotation and translation components, respectively. This

is based on the fact that, without loss of generality, we can

assume that the observed facial shape is still and that the

relative change in 3D pose between camera and object is

only due to camera motion.

Then, the camera projection is applied. For the sake of

computational efficiency and stability of the estimations, we

consider a scaled orthographic camera, which simplifies the

involved optimisation problems by making the camera pro-
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Figure 3. Principal components of identity (case of LSFM global

model), expression variation and their combination, using the first

3 principal components for identity and the first 2 components

for expression. Note that the first row corresponds to the identity

model only.

jection function to be linear. In more detail, the 2D location

of the 3D point x is given by:

x′ = σ [vx, vy]
T

(5)

where σ is the scale parameter of the camera. Note that

since in the scaled orthographic case the translation compo-

nent tz is ambiguous, we will consider it fixed and omit it

from the subsequent formulations.

In addition, we represent the 3D rotation Rv using the

three parameters of the axis-angle parametrisation q =

[q1, q2, q3]
T

.

Camera function. The projection operation performed

by the camera model of the 3DMM can be expressed with

the function P(s, c) : R
3N → R

2N , which applies the

transformations of Eqs. (4) and (5) on the points of provided

3D mesh s with

c = [σ, q1, q2, q3, tx, ty]
T ∈ R

6 (6)

being the vector of camera parameters with length nc = 6.

For abbreviation purposes, we represent the camera model

of the 3DMM with the function W : Rnp,nc → R
2N as

W(p,q, c) ≡ P (S(p,q), c) (7)

where S(p,q) is a 3D mesh instance using Eq. (2). Finally,

we denote by Wl(p,qf , cf ) : Rnp,nc → R
2L, where L is

the number of the considered sparse landmarks, the selec-

tion of the elements of W(p,q, c) that correspond to the x,

y and z coordinates of the 3D shape vertices associated with

the facial landmarks.

3.2.2 Energy Formulation

To achieve highly-accurate fitting results, even in especially

challenging cases, we design an energy minimisation strat-

egy that is tailored for video input and exploits the rich dy-

namic information usually contained in facial videos. Since

these estimations are intended for the creation of ground

truth and we are not constrained by the need of real-time

performance, we follow a batch approach, where we assume

that all frames of the video are available from the beginning.

Let ℓf = [x1f , y1f , . . . , xLf , yLf ]
T

be the 2D facial

landmarks for the f -th frame estimated by the method

of [3]. Even though we consider the identity parame-

ters p as fixed over the frames of the video, we expect

that every frame has its own expression, camera, and tex-

ture parameters vectors, which we denote by qf , cf and

λf respectively. We also denote by q̂, ĉ and λ̂ the con-

catenation of the corresponding parameter vectors over all

frames (with nf being the number of frames of the video):

q̂T =
[
qT

1 , . . . ,q
T

nf

]
, ĉT =

[
cT1 , . . . , c

T

nf

]
and λ̂

T

=
[
λ
T

1 , . . . ,λ
T

nf

]

To fit a 3D face model on the facial landmarks, we pro-

pose to minimise the following energy:

Ê(p, q̂, ĉ) = Êland(p, q̂, ĉ)

+ Êpriors(p, q̂) + csmÊsmooth(q̂)
(8)

where Êland, Êpriors and Êsmooth are a multi-frame 2D land-

marks term, a prior regularisation term and a temporal

smoothness term respectively. Also csm is a balancing

weights for the temporal smoothness term.

The multi-frame 2D landmarks term (Êland) is a sum-

mation of the reprojection error of the sparse 2D landmarks

for all frames:

Êland(p, q̂, ĉ) =

nf∑

f=1

‖Wl(p,qf , cf )− ℓf‖
2

(9)

The shape priors term (Êpriors) imposes priors on the re-

constructed 3D facial shape of every frame. Since the facial

shape at every frame is derived from the (zero-mean and

unit-variance) identity parameter vector p and the frame-

specific expression parameter vector qf (also zero-mean

and unit-variance), we define this term as:

Êpriors(p, q̂) = ĉid ‖p‖
2
+ cexp

nf∑

f=1

‖qf‖
2

= ĉid ‖p‖
2
+ cexp ‖q̂‖

2

(10)
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where ĉid and cexp are the balancing weights for the prior

terms of identity and expression respectively.

The temporal smoothness term (Êsmooth) enforces

smoothness on the expression parameters vector qf by pe-

nalising the squared norm of the discrimination of its 2nd

temporal derivative. This corresponds to the regularisation

imposed in smoothing splines and leads to naturally smooth

trajectories over time. More specifically, this term is defined

as:

Êsmooth(q̂) =

nf−1∑

f=2

‖qf−1 − 2qf + qf+1‖
2
=

∥∥D2q̂
∥∥2

(11)

where the summation is done over all frames for which the

discretised 2nd derivative can be expressed without having

to assume any form of padding outside the temporal win-

dow of the video. Also D2 : Rnqnf → R
nq(nf−2) is the

linear operator that instantiates the discretised 2nd deriva-

tive of the nq-dimensional vector qf . This means that D2q̂

is a vector that stacks the vectors (qf−1 − 2qf + qf+1),
for f=2, . . . , nf − 1. It is worth mentioning that we could

have imposed temporal smoothness on the parameters cf ,

λf too. However, we have empirically observed that the

temporal smoothness on qf , in conjunction with fixing the

identity parameters p over time, is adequate for accurate

and temporally smooth estimations. Following the Occam’s

razor principle, our design choice is to avoid expanding the

energy with additional unnecessary terms (it also keeps the

number of hyper-parameters as low as possible).

3.2.3 Optimisation of the Proposed Energy

As described next, we first estimate the camera parameters ĉ

(see Figure 2(c)) and afterwards the shape parameters (p, q̂)

(see Figure 2(d)).

Camera Parameters Estimation. In this initial step, we

solely consider the 2D landmarks term Êland, which is the

only term of the energy Ê(p, q̂, ĉ) that depends on ĉ. We

minimise Êland by assuming that the unknown facial shape

is fixed over all frames, but does not necessarily lie on the

subspace defined by the combined shape model of Eq. (2).

In other words, the facial shape S is considered to have 3N
free parameters, corresponding to the 3D coordinates of the

N vertices of the 3D shape. However, since in this step

the energy that is minimized involves only the sparse land-

marks, only the 3D coordinates of the vertices that corre-

spond to the sparse landmarks can actually be estimated.

(i.e., 3L parameters in total for the 3D shape).

Note that the estimation of the rigid shape is only done

to facilitate the camera parameters’ estimation, which is the

main goal of this step. The assumption of facial shape rigid-

ity during the whole video is over-simplistic. However, as

verified experimentally, it provides a very robust initialisa-

tion of the camera parameters even in cases of large facial

deformation, provided that it is fed with significant amount

of frames. This is due to the nature of physical deforma-

tions observed in human faces, which can be modelled as

relatively localised deviations from a rigid shape.

Under the aforementioned assumptions, the 2D land-

marks term can be written as:

Êland(Srig, Π̂) =
∥∥∥L̂− Π̂Srig

∥∥∥
2

F
(12)

where ‖·‖2F denotes the Frobenius norm and Srig is a 3× L

matrix with the unknown sparse rigid shape, where every

column of Srig contains the 3D coordinates of a specific

landmark point. Also, L̂ is a 2nf ×L matrix that stacks the

matrices L̃f (f=1, .., nf ), which are the re-arrangements of

the landmarks vectors ℓ̃f into 2× L matrices:

L̂ =




L̃1

...

L̃nf


 , L̃f =

[
x̃1f · · · x̃Lf

ỹ1f · · · ỹLf

]
(13)

Note that, without loss of generality, the landmarks L̃f are

considered to have their centroid at the origin (0, 0). This

means that the landmark coordinates (x̃if , ỹif ) are derived

from the original coordinates (xif , yif ) after subtracting

their per-frame centroid.

In addition, Π̂ =
[
ΠT

1 · · ·ΠT

nf

]T
is a 2nf × L ma-

trix that stacks the scaled orthographic projection matrices

Πf ∈ R
2×3 from all the frames f . The matrix Πf is de-

rived by the first two rows of the 3D rotation matrix Rv of

the camera (see Eq. (4)), after multiplying them with the

scale parameter σf of the camera for the frame f . There-

fore, an orthogonality constraint should be imposed on each

Πf :

ΠfΠ
T

f = σ2
fI2, for some σf > 0, f = 1, . . . , nf (14)

To summarise, our goal is to minimise Êland as described

in Eq. (12) with respect to Srig and Π̂, under the constraints

of Eq. (14). For this, we employ a simple yet effective rigid

Structure from Motion (SfM) approach [20]: We solve the

problem based on a rank-3 factorisation of the matrix L̂.

Regarding the translation part of the camera motion, its

x and y components at frame f are derived by the centroid

of the original landmarks ℓf that has been subtracted in the

computation of the landmarks L̃f in Eq. (13). This can be

easily verified that is the optimal choice . Regarding the z

component of the translation, this is inherently ambiguous

due to the orthographic projection, therefore we fix it to a

constant value over all frames.
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Finally, to yield the camera parameters that will be used

in conjunction with the shape model of Eq. (2), we per-

form a rigid registration between the model’s mean shape

s̄id (sampled at the vertices that correspond to the land-

marks) and the rigid shape Srig estimated by SfM. The

similarity transform that registers the two sparse shapes

is recovered using Procrustes Analysis and then combined

with each frame’s similarity transform that is estimated by

SfM. This yields a sequence of estimated camera param-

eters c1, . . . , cnf
. As the final processing for this initiali-

sation step, this sequence is temporally smoothed by using

cubic smoothing splines.

Shape Parameters Estimation. Using the estimation of

camera parameters ĉ, we minimise the energy Ê of Eq. (8)

with respect to the shape parameters p and q̂. This is a lin-

ear least squares problem that we can solve very efficiently.

In more detail, we can write Ê as follows:

Ê(p, q̂) =

cℓ

nf∑

f=1

∥∥∥(IL ⊗Πf )
(
s̄(ℓ) + Ũ

(ℓ)
id p+ Ũ(ℓ)

expqf

)
− ℓf

∥∥∥
2

+ ĉid ‖p‖
2
+ cexp ‖q̂‖

2
+ csm

∥∥D2q̂
∥∥2

(15)

where s̄(ℓ), Ũ
(ℓ)
id , Ũ

(ℓ)
exp are matrices with the rows of s̄, Ũid,

Ũexp respectively that correspond to the x, y and z coordi-

nates of 3D shape vertices associated with facial landmarks.

Also, “⊗” denotes Kronecker product, such that the multi-

plication with the 2L× 3L matrix IL ⊗Πf implements the

application of the camera projection Πf on each one of the

L landmarks.

Note that the sparse landmarks, in conjunction with the

adopted high-quality shape models, are able to yield sur-

prisingly plausible estimations of the dynamic facial shape,

in most of the cases. However, in some very challenging

case (e.g. frames with very strong occlusions or gross er-

rors in the landmarks), this sparse information might not be

adequate for satisfactory results. One way to compensate

for that would be to increase the regularisation weights ĉid
and cexp. Nevertheless, this would strongly affect also the

non-pathological cases, where the results are plausible ei-

ther way, leading to reconstructed shapes and expressions

that would be too similar with the mean shape s̄. To avoid

that, we follow a different approach by keeping the regu-

larisation weights as low as in the main optimisation and

imposing the following box constraints:

|(p)i| ≤ Mp , i = 1, . . . , np

|(qf )i| ≤ Mq , i = 1, . . . , nq and f = 1, . . . , nf

(16)

where (·)i denotes the selection of the i-th component from

a vector. Also, Mp and Mq are positive constants corre-

sponding to the maximum values allowed for the compo-

nents of identity and expression parameter vectors respec-

tively. These are set so that the corresponding components

does not attain a value higher than a certain number of stan-

dard deviations (e.g. 4). These constraints are activated only

in pathological cases and do not play any role in all the rest

cases, which actually are the vast majority. Note also that

they are only used in this initialisation step, since when the

dense texture information is used as input, they are not re-

quired.

To summarise, our goal here is to minimise the en-

ergy Ê of Eq. (15) with respect to the shape parameters p

and q̂ under the constraints of Eq. (16). This corresponds

to a large-scale linear least squares problem of the form

argmin
x
‖Ax− b‖2, under bound constraints on x, where

the matrix A is sparse. We solve this problem efficiently by

adopting the reflective Newton method of [9].

3.3. Sampling on Face Landmarks and Reprojec
tion

After having estimated the shape parameters (p,qf ) for

every frame of a video, the estimated dense facial mesh

in the model space can be synthesised by the model as

Sf (p,qf ) = s̄ + Ũidp + Ũexpqf . The ground truth 3D

landmarks Sℓ
f are then extracted by keeping the elements of

Sf that contain the x,y and z coordinates of vertices that cor-

respond to the facial landmarks. Note that for the extraction

of the 3D landmarks we do not apply the camera param-

eters, meaning that these landmarks lie on the normalised

model space. The reprojected ground truth 2D landmarks

(i.e., the 3DA-2D landmarks) are expressed in the image

space, therefore to extract them we utilise the estimated

camera parameters cf and apply the camera function P(·)
to Sℓ

f . This corresponds to the quantity Wl(p,qf , cf ), see

Sec. 3.2.1.

4. Experiments

During the challenge we provided approximately 14,000

static images with 3DA-2D and 3D landmarks, as well as

approximately 90 training videos annotated with the pro-

posed procedure. We believe that the followed procedure,

even though semi-automatic, is suitable for providing a

high quality ground-truth, since we have tested it in sim-

ulated videos and it provided extremely high accuracy (sub-

milimeter accuracy for some landmarks). Additionally, in

both the trainset and the testset, the parameter estimation

and fitting was performed in the whole video, however we

have exported the 3DA-2D and 3D only in the first couple

of thousand frames, hence there was information only avail-

able to us (latent for participants) to ensure the high quality

of our estimations.

The training data have been provided to over 25 groups

from all over the world. A tight schedule (a week) was pro-
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