
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Effpi:
Verified Message-Passing Programs in Dotty
Alceste Scalas

Imperial College London
and Aston University, Birmingham

UK
a.scalas@aston.ac.uk

Nobuko Yoshida
Imperial College London

UK
n.yoshida@imperial.ac.uk

Elias Benussi
Imperial College London
and Faculty Science Ltd.

UK
elias@faculty.ai

Abstract
We present Effpi: an experimental toolkit for strongly-typed
concurrent and distributed programming in Dotty, with veri-
fication capabilities based on type-level model checking.
Effpi addresses one of the main challenges in developing

and maintaining concurrent programs: many concurrency
errors (like protocol violations, deadlocks, livelocks) are of-
ten spotted late, at run-time, when applications are tested or
(worse) deployed in production. Effpi aims at finding such
problems early, when programs are written and compiled.
Effpi provides: (1) a set of Dotty classes for describing

communication protocols as types; (2) an embedded DSL for
concurrent programming, with process-based and actor–
based abstractions; (3) a Dotty compiler plugin to verify
whether protocols and programs enjoy desirable properties,
such as deadlock-freedom; and (4) an efficient run-time sys-
tem for executing Effpi’s DSL-based programs. The com-
bination of (1) and (2) allows the Dotty compiler to check
whether an Effpi program implements a desired protocol/-
type; and this, together with (3), means that many typical
concurrent programming errors are found and ruled out at
compile-time. Further, (4) allows to run highly concurrent
Effpi programs with millions of interacting processes/act-
ors, by scheduling them on a limited number of CPU cores.

In this paper, we provide an overview of Effpi; then, we
illustrate its design and main features, and discuss its future
developments.

Keywords behavioural types, dependent types, processes,
actors, Dotty, Scala, temporal logic, model checking

1 Introduction
Concurrent and distributed programming is hard. Modern
programming languages and toolkits provide high-level con-
currency abstractions (such as processes and actors) to sim-
plify reasoning, and make software developers’ life easier:
see, e.g., Erlang [9], Go [11], Orleans [23], and Akka [20]. Re-
cent developments foster the use of types to rule out (some)
concurrency errors early, at compile-time. E.g., the Akka
Typed toolkit [21] replaces the traditional, untyped Akka

PL’18, January 01–03, 2019, New York, NY, USA
2019.

actors with typed mailboxes and actor references (reminis-
cent of [13]): an actor reference r of type ActorRef[Int]
points to an actor that handles messages of type Int, and
the Scala compiler raises an error if a program tries to use r
to send, e.g., a String. Typed actor references can be used
to approximate protocols [17], i.e., predetermined sequences
of message exchanges; this idea prompted experiments on
checking sessions at compile-time [15], with informal inspir-
ation from the theory of session types [1, 14].

Effpi is our contribution to this line of work: an experi-
mental, formally-grounded toolkit allowing to define proto-
cols as types, with verification capabilities based on a combin-
ation of type checking, and type-level model checking. The
theoretical underpinning of Effpi is illustrated in [32]. The
(temporary, soon on GitHub) home page of the toolkit is:

https://www.doc.ic.ac.uk/~ascalas/tmp/pldi19
It includes the source code, some instructions, and a ready-
to-use virtual machine. In this paper, we provide an example-
driven overview of the toolkit, and discuss future research
directions.

2 Fundamentals
Unlike other toolkits cited in §1, Effpi is designed on a
formal foundation: a functional, concurrent message-passing
calculus (called λπ⩽) with a blend of behavioural types (from π -
calculus literature) [1, 26] and dependent function types (from
Dotty) [4]. This theory, its related work, and some details
about its implementation (as an embedded DSL in Dotty) are
presented in [32]; here we give an informal summary.

Behavioural Types In π -calculus literature, the term be-
havioural type covers various kinds of types describing the
communication behaviour of a program — i.e., its protocol.
E.g., a type like “?int; !string” means “receive an integer; then,
send a string.” Behavioural type systems ensure that, if a
program P type-checks vs. a type/protocolT , then running P
will yield the interactions specified byT ; if P has interactions
disallowed byT , type-checking fails. To model programs that
interact with others via multiple communication channels,
one can use more accurate behavioural types, e.g.:

c1?int; c2!string (1)
which means “receive an integer from channel c1; then, send
a string over channel c2.” Many works try to bridge the gap

1

https://www.doc.ic.ac.uk/~ascalas/tmp/pldi19

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2019, New York, NY, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

from π -calculus theory to practice, by creating new program-
ming languages, or seeking ways to represent types like (1)
in general-purpose languages. This is non-trivial, as some
properties (e.g., static linearity checks) are tricky, and often
lost in the translation to existing languages. For a survey,
see [10]; some works targeting Scala are [27–30].

Behavioural Types in Dotty Effpi provides types for de-
scribing the desired behaviour of concurrent programs:
• Chan[A] is the type of a channel that can be used to
send/receive values of type A;

• Out[A, B] is the type of a program that uses a channel of
type A to send a value of type B;

• In[A, B, C] is the type of a program that uses a channel
of type A to receive a value of type B, and pass it to a
continuation of type C (which is a function type taking B);

• A >>: B is the type of a program that performs the com-
munications of A, followed by those of B;

• Par[A, B] is the type of a program that executes two sub-
programs of type A and B in parallel, letting them interact;

• Rec[X, A] is the type of a program that executes a sub-
program of type A, possibly looping;

• Loop[X] is the type of a program that loops;1
• Proc is the abstract supertype of all types above (except
Chan): it represents a program that may interact (or not).
The types above become quite powerful when combined

with one of Dotty’s distinguishing features: dependent func-
tion types [4]. In fact, Effpi builds upon a fundamental in-
sight: dependent function types can be used in a novel way
to track channel usage in programs. E.g., the type of a function
that takes two channels c1 and c2, and uses them according
to the behavioural type (1) above, is rendered as:

type T = (c1: Chan[Int], c2: Chan[String]) =>
In[c1.type, Int, (x: Int) => Out[c2.type, String]]

To produce programswith the types above, Effpi provides
a DSL, that looks like the following code snippet (for now,
ignore the optional type annotation “ ...: T” on line 1):

1 val f: T = (c1: Chan[Int], c2: Chan[String]) => {
2 receive(c1) { x => // Use c1 to receive x
3 println(s"Received: ${x}")
4 if (x > 42) send(c2, "OK") // Send "OK" via c2
5 else send(c2, "KO") // Send "KO" via c2
6 } }

The key intuition is that Effpi’s DSL provides methods
(such as receive() / send() above) to construct objects that
describe a program performing structured sequences of input-
s/outputs. E.g., receive() takes two arguments: a channel
used to receive a value x, and a function that takes x and
performs the continuation of the input; the object returned

1This requires X to be “bound” by Rec[X, A], and Loop[X] to occur inside
A. It is a workaround to represent typed recursive programs; it could be
avoided by using recursive type aliases, but they are not supported by Dotty.

by receive() has type In above. Similarly, send() returns
an object of type Out. Such objects are interpreted and ex-
ecuted by Effpi’s runtime system (discussed in §4), which
performs the actual input/output operations.
The Effpi DSL allows to write programs performing ar-

bitrary communications; to restrict them, a programmer can
add type annotations, to statically enforce desired protocols.
E.g., the type annotation “f: T” (line 1 above) restricts the
possible implementations of f, ensuring that f realises the
protocol described by T: hence, f uses a channel of type
“c1.type” (that is only inhabited by f’s argument c1) to re-
ceive an Integer, and then uses a channel of type “c2.type”
(only inhabited by f’s argument c2) to send a String. Con-
sequently, any violation of the type/protocol T is found at
compile-time: if, e.g., the “else” branch on line 5 is forgotten,
or f uses channels c1 and c2 in other ways, or in a differ-
ent order, or tries to interact via some channel c3 defined
elsewhere, the Dotty compiler raises a type mismatch error.
Notably, several Dotty features play a crucial role in the

design of Effpi. E.g., the union type “|” [6] allows to model
choices in a protocol: Out[C1, Int] | Out[C2, String]
is the type of a process that can either send an Integer on
channel C1, or a String on C2. In the next sections, we show
how Effpi takes advantage of other characteristics of Dotty.

3 A Whirlwind Tour of Effpi
We now give an overview of Effpi’s main features, proceed-
ing by examples. First, we focus on its core (channel-based)
communication model, by showing how to implement (§3.1)
and verify (§3.2) a well-known concurrency problem. Then,
we illustrate Effpi’s higher-level, actor-like API (§3.3).

3.1 Defining, Composing & Implementing Protocols
Effpi allows to define protocols, and compose them, by
leveraging Dotty’s type aliases and parameters. E.g., consider
the well-known Dijkstra’s dining philosopher problem: two
processes (the philosophers) share two resources (the forks),
and want to acquire both (so they can eat), and then release
them. A philosopher can only eat after acquiring both forks,
and will not drop the first fork before picking the second.
The goal is to let both philosophers eat, without deadlocks.

A type describing the intended behaviour of a fork is:

type Fork[Acq <: Chan[Unit], Rel <: Chan[Unit]] =
Rec[RecX, Out[Acq, Unit] >>:

In[Rel, Unit, (_x: Unit) => Loop[RecX]]]

i.e.: given two channel types Acq and Rel, use a channel of
type Acq to send a message of type Unit (signalling that the
fork is available for Acquisition), and then (>>:) use a channel
of type Rel to receive a message (signalling that the fork is
Released); repeat infinitely (Rec[RecX, ...Loop[RecX]]).

Here is an implementation of the Fork protocol:
2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Effpi: Verified Message-Passing Programs in Dotty PL’18, January 01–03, 2019, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

def fork(id: Int,
acq: Chan[Unit],
rel: Chan[Unit]): Fork[acq.type, rel.type] = {

rec(RecX) {
println(s"Fork ${id}: available")
send(acquire, ()) >> {
println(s"Fork ${id}: picked")
receive(release) { _ =>
loop(RecX)

} } } }

The type annotation fork(. . .): Fork[acq.type, rel.type]

ensures that the channels used by fork() are exactly its
arguments acq and rel; and if the fork’s code tries, e.g.,
to use acq / rel in the wrong order, then it will not compile.
With the same approach, we can write the desired be-

haviour of a philosopher as a type, whose parameters are
channel types to signal when forks are Picked and Dropped:

type Philo[Pick1 <: Chan[Unit], Drop1 <: Chan[Unit],
Pick2 <: Chan[Unit], Drop2 <: Chan[Unit]] =

Rec[RecX,
In[Pick1, Unit, (_f1: Unit) =>
In[Pick2, Unit, (_f2: Unit) =>
(Out[Drop1, Unit] >>: Out[Drop2, Unit]) >>: Loop[RecX]

]]]

Then, we can write a philosopher implementation, and
type-annotate it, to ensure it picks/drops the forks as desired:

def philo(name: String,
pick1: Chan[Unit],
drop1: Chan[Unit],
pick2: Chan[Unit],
drop2: Chan[Unit]): Philo[pick1.type, drop1.type,

pick2.type, drop2.type] = {
rec(RecX) {
println(s"${name}: picking first fork...")
receive(pick1) { _ =>
println(s"${name}: picking second fork...")
receive(pick2) { _ =>
println(s"${name}: eating, then dropping forks...")
send(drop1, ()) >> send(drop2, ()) >> {
println(s"${name}: Thinking...")
loop(RecX)

} } } } }

We can also write a type describing a desired composition
of philosophers and forks, and implement it:

type Dining[C1pick <: Chan[Unit], C1drop <: Chan[Unit],
C2pick <: Chan[Unit], C2drop <: Chan[Unit]] =

Par4[Philo[C3pick, C3drop, C1pick, C1drop], Fork[C1pick, C1drop],
Philo[C1pick, C1drop, C2pick, C2drop], Fork[C2pick, C2drop]]

def dining(p1: Chan[Unit], d1: Chan[Unit],
p2: Chan[Unit], d2: Chan[Unit]): Dining[p1.type, d1.type,

p2.type, d2.type] = {
par(philo("Socrates", p2, d2, p1, d1), fork(1, p1, d1),

philo("Aristotle", p1, d1, p2, d2), fork(2, p2, d2))
}

Notice that the type annotation enforces the desired inter-
connection of channels among philosophers and forks.

3.2 Verifying Protocols, and Their Implementations
The dining() program above type-checks and compiles.
But if we run it, we may get the execution below: the applica-
tion deadlocks. This is a typical
case of a concurrency error spot-
ted late, at run-time, during test-
ing (or in production). Can we
find the error at compile-time?
The problem here is that the
Dining type itself is “wrong,” as

Fork 1: available
Fork 2: available
Socrates: picking first fork...
Fork 1: picked
Aristotle: picking first fork...
Fork 2: picked
Socrates: picking second fork...
Aristotle: picking second fork...

it does not guarantee a desired property: deadlock freedom.
In general, when types/protocols are composed, and their
components interact, they may exhibit unwanted behaviours.
To avoid this issue, Effpi provides a compiler plugin to
verify whether one or more desired run-time properties hold.
E.g., if we add the following annotation to dining() above. . .

@verify(property = "deadlock_free()") // The compile-time check fails
def dining(p1:..., d1:..., p2:..., d2:...): Dining[p1.type, d1.type,

p2.type, d2.type] = ...

. . . then, Effpi’s compiler plugin verifies deadlock freedom,
via type-level model checking: it takes the type of the annot-
ated function definition, translates it to a format supported
by the mCRL2 model checker [3, 8, 12], and analyses its
potential behaviours, checking whether the property selec-
ted in the @verify(...) annotation holds. If the verification
succeeds, then the implementation enjoys the property.

In the example above, the verification fails: deadlock free-
dom does not hold for dining()’s type, hence dining()
itself might deadlock (and indeed, it does: see the execution
above). We can fix Dining by letting one philosopher pick
the forks in the opposite order w.r.t. the other(s). It suffices
to swap the arguments of the first Philo type, i.e.:

type Dining2[C1pick <: Chan[Unit], C1drop <: Chan[Unit],
C2pick <: Chan[Unit], C2drop <: Chan[Unit]] =

Par4[Philo[C1pick, C1drop, C3pick, C3drop], Fork[C1pick, C1drop],
Philo[C1pick, C1drop, C2pick, C2drop], Fork[C2pick, C2drop]]

And to verify whether the solution is correct, we can try:
@verify(property = "deadlock_free()") // The verification succeeds
def dining2(p1:..., d1:..., p2:..., d2:...): Dining2[p1.type, d1.type,

p2.type, d2.type] = ???

Since the verification succeeds, we know that if we re-
place “???” with any implementation that type-checks, then
dining2()will never deadlock. One such implementations is
obtained from dining() above, by swapping the arguments
of the first philo(): their correct order is enforced by the
type annotation dining2(...): Dining2[...]. Moreover, the
verification result means that we can implement and deploy
the program components (forks and philosophers) separately,
and they will not deadlock — provided that they have types
Fork / Philo, and are interconnected as per Dining2.

Effpi allows to verifymore properties: some are discussed
in §3.3 below; for an (incomplete) list, see [32, Fig. 7]; for an
evaluation of the verification performance, see [32, Fig. 9].

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PL’18, January 01–03, 2019, New York, NY, USA Alceste Scalas, Nobuko Yoshida, and Elias Benussi

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

3.3 Actor-Like DSL
The overview above covers the “low-level,” channel-based
API of Effpi, that follows its theoretical foundations (i.e., λπ⩽
[32]). On top of it, Effpi includes higher-level abstractions
and extensions, aiming at a more developer-friendly API.
One such extensions leverages Dotty’s implicit function

types [7, 25] to hide a “default” input channel, yielding an
actor-like DSL reminiscent of Akka Typed [21]. E.g., from [32,
§1], this is an Effpi actor that receives payments requests,
and can either accept or reject them — but must report ac-
cepted payments to an auditor (the scenario is distilled from
a use case for the Akka Typed toolkit [16, 21]):

1 @verify(property = "reactive(mb_)(aud) &&
2 responsive(mb_)(aud) &&
3 output_ev_followed(aud)(Accepted)(mb_)")
4 def payment(aud: ActorRef[Audit[_]]): Actor[Pay, ...] =
5 forever {
6 read { pay: Pay =>
7 if (pay.amount > 42000) {
8 send(pay.replyTo, Rejected("Too high!"))
9 } else {
10 send(aud, Audit(pay)) >>
11 send(pay.replyTo, Accepted)
12 } } }

On line 4, the type annotation Actor[Pay, ...] says that
payment() returns an actor accepting messages of type Pay,
and behaving according to the (omitted) protocol specifica-
tion “...” (see [32, §1] for its details). On line 6, read is just a
disguised receive() (cf. §2) that awaits inputs from an im-
plicit channel of type Chan[Pay]. In this case, each received
message pay has a replyTo field: it is an actor reference
allowing to send a response (lines 8, 11). As in Akka Typed,
actor references are type-constrained: e.g., in line 1, the type
of aud ensures that aud can only be used to send messages
of type Audit. Under the hood, aud is just a channel of
type Chan[Audit[_]]. This actor-like DSL is a thin layer
on top of the DSL illustrated in the previous sections, and is
executed by the same interpreter and runtime system.

The Effpi compiler plugin can verify such actor-like pro-
grams. The annotation on lines 1–3 verifies that payment()
is always eventually ready to receive messages from its mail-
box (mb_), will always send back a response, and will send
Accepted whenever it outputs something on aud.

4 Design and Implementation
Core DSL As mentioned in §2, the process/channel-based
API of Effpi is an internal embedding of the λπ⩽ calculus [32]
in Dotty, with minimal adaptations: this allows to lever-
age Dotty’s type system features (dependent function types,
union types, . . .), and allows for easy interoperability with
other libraries and toolkits running on the Java Virtual Ma-
chine. E.g., Effpi processes (and actors) can easily interop-
erate with Akka Typed, via “bridges” that forward messages
between Effpi channels and Akka ActorRefs; this trick can

also be used to let Effpi processes/actors interact across a
network, via Akka Remoting [19].

Actor-Like DSL The actor-like DSL discussed in §3.3 is
inspired by Akka Typed [21]; in particular, we used the “pay-
ment with audit” use case [16, 21] as a reference for DSL
design, trying to make the use case implementation simple
and developer-friendly. Its full implementation in Effpi is
provided as an example with Effpi’s source code, and uses
various features and extensions not shown here (e.g., an “ask
pattern” [22], or sub-actors yielding values to their creator).
Such features are covered by the compile-time check of pro-
gram/protocol conformance (§2, §3.1, §3.3), but are not yet
supported by the verification plugin (§3.2).

Runtime System The language embedding naturally yields
a DSL where the continuations of input/output actions are
functions (closures). We took advantage of this fact, to imple-
ment a runtime system with a (non-preemptive) scheduler
that decouples Effpi processes/actors from system threads,
similarly to Akka Dispatchers [18]: i.e., it interleaves the ex-
ecution of active processes/actors, unschedules them when
they are waiting for input, and resumes them when an input
becomes available. Effpi’s runtime supports highly concur-
rent programs: for some benchmarks, and an encouraging
comparisons with Akka’s performance, see [32, Fig. 8].

5 Conclusion, Vision, and Future Work
We gave an overview of Effpi, a toolkit for strongly-typed
message-passing programs in Dotty. Effpi allows to spot
concurrency errors (e.g., protocol violations, deadlocks) at
compile-time, with a recipe that mixes behavioural types,
Dotty’s dependent function types, and model checking.
The broader goal behind Effpi is providing lightweight

software verification capabilities that (1) can be used by
programmers that are not expert in, e.g., theorem proving
or model checking; and (2) do not require the adoption of
entirely new programming languages and toolchains. We
found that Dotty can help achieving this goal, thanks to its
features, and to its interoperability with the JVM ecosystem.

Much future work lies ahead: some is discussed in [32, §6].
We are particularly interested in finding more ways to lever-
age Dotty features for behavioural verification. In particular,
we believe that match types [5] can be used to represent
(a limited form of) data-dependent choices: e.g., a channel
allows to receive A or B, and the protocol continues as T in
the first case, or T’ in the second case. This would allow
to represent and verify more protocols, possibly covering
the whole range of multiparty session types [2, 31]. Effpi
supports programs with mobile code (i.e., sending/receiving
program thunks) [32, Example 3.4]: we will investigate dis-
tributed implementations of the feature, that may benefit
from the work on Spores [24].

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Effpi: Verified Message-Passing Programs in Dotty PL’18, January 01–03, 2019, New York, NY, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

References
[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Gi-

useppe Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert,
Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Mar-
tins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas
Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2017.
Behavioral Types in Programming Languages. Foundations and Trends
in Programming Languages 3(2-3) (2017). https://doi.org/10.1561/
2500000031

[2] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. 2015. A Gentle Introduction to Multiparty Asyn-
chronous Session Types. In Formal Methods for Multicore Programming.
https://doi.org/10.1007/978-3-319-18941-3_4

[3] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stap-
pers, Erik P. de Vink, Wieger Wesselink, and Tim A. C. Willemse.
2013. An Overview of the mCRL2 Toolset and Its Recent Advances.
In Tools and Algorithms for the Construction and Analysis of Systems.
https://doi.org/10.1007/978-3-642-36742-7_15

[4] Dotty developers. 2019. Dotty documentation: dependent func-
tion types. https://dotty.epfl.ch/docs/reference/new-types/
dependent-function-types.html.

[5] Dotty developers. 2019. Dotty documentation: match types. http:
//dotty.epfl.ch/docs/reference/new-types/match-types.html.

[6] Dotty developers. 2019. Dotty documentation: union types. https:
//dotty.epfl.ch/docs/reference/new-types/union-types.html.

[7] Dotty developers. 2019. Dotty documentation: union
types. https://dotty.epfl.ch/docs/reference/new-types/
implicit-function-types-spec.html.

[8] Technische Universiteit Eindhoven. 2019. mCRL2 website. https:
//mcrl2.org/.

[9] Ericsson. 2019. The Erlang/OTP Programming Language and Toolkit.
http://erlang.org/.

[10] Simon Gay and António Ravara. 2017. Behavioural Types: From Theory
to Tools. River Publishers, Series in Automation, Control and Robotics.
https://doi.org/10.13052/rp-9788793519817

[11] Google. 2019. The Go Programming Language. https://golang.org/.
[12] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and

Analysis of Communicating Systems. The MIT Press.
[13] Jiansen He, Philip Wadler, and Philip W. Trinder. 2014. Typecasting

actors: from Akka to TAkka. In SCALA@ECOOP. https://doi.org/10.
1145/2637647.2637651

[14] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR. https:
//doi.org/10.1007/3-540-57208-2_35

[15] Roland Kuhn. 2017. Akka Typed Session. https://github.com/rkuhn/
akka-typed-session.

[16] Roland Kuhn. 2017. Akka Typed Session: audit example. https://github.
com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/
rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala.

[17] Lightbend, Inc. 2017. Akka Typed: Protocols. https://akka.io/blog/
2017/05/12/typed-protocols.

[18] Lightbend, Inc. 2019. Akka Dispatchers documentation. https:
//doc.akka.io/docs/akka/2.5/dispatchers.html.

[19] Lightbend, Inc. 2019. Akka remoting documentation. https://doc.akka.
io/docs/akka/2.5/remoting.html.

[20] Lightbend, Inc. 2019. The Akka toolkit and runtime. http://akka.io/.
[21] Lightbend, Inc. 2019. Akka Typed documentation. https://doc.akka.

io/docs/akka/2.5/typed/index.html.
[22] Lightbend, Inc. 2019. Commonly used patterns with Akka. https:

//doc.akka.io/api/akka/2.5/akka/pattern/index.html.
[23] Microsoft. 2019. The Orleans Framework. https://dotnet.github.io/

orleans/.
[24] Heather Miller, Philipp Haller, and Martin Odersky. 2014. Spores: A

Type-Based Foundation for Closures in the Age of Concurrency and
Distribution. In ECOOP. https://doi.org/10.1007/978-3-662-44202-9_13

[25] Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis,
Heather Miller, and Sandro Stucki. 2017. Simplicitly: Foundations and
Applications of Implicit Function Types. Proc. ACM Program. Lang. 2,
POPL, Article 42 (2017). https://doi.org/10.1145/3158130

[26] Davide Sangiorgi and David Walker. 2001. The π -calculus: a Theory of
Mobile Processes. Cambridge University Press.

[27] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.
2017. A Linear Decomposition of Multiparty Sessions for Safe Distrib-
uted Programming. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.
2017.24

[28] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida.
2017. A Linear Decomposition of Multiparty Sessions for Safe Dis-
tributed Programming (Artifact). Dagstuhl Artifacts Series 3, 1 (2017).
https://doi.org/10.4230/DARTS.3.2.3

[29] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Pro-
gramming in Scala. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.
2016.21

[30] Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Pro-
gramming in Scala (Artifact). Dagstuhl Artifacts Series 2, 1 (2016).
https://doi.org/10.4230/DARTS.2.1.11

[31] Alceste Scalas and Nobuko Yoshida. 2019. Less is More: Multiparty
Session Types Revisited. Proc. ACM Program. Lang. 3, POPL, Article
30 (Jan. 2019). https://doi.org/10.1145/3290343

[32] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Veri-
fying Message-Passing Programs with Dependent Behavi-
oural Types. In PLDI. https://doi.org/10.1145/3314221.3322484
To appear. Pre-print: http://mrg.doc.ic.ac.uk/publications/
verifying-message-passing-programs-with-dependent-behavioural-types/
pldi19-preprint.pdf.

5

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-642-36742-7_15
https://dotty.epfl.ch/docs/reference/new-types/dependent-function-types.html
https://dotty.epfl.ch/docs/reference/new-types/dependent-function-types.html
http://dotty.epfl.ch/docs/reference/new-types/match-types.html
http://dotty.epfl.ch/docs/reference/new-types/match-types.html
https://dotty.epfl.ch/docs/reference/new-types/union-types.html
https://dotty.epfl.ch/docs/reference/new-types/union-types.html
https://dotty.epfl.ch/docs/reference/new-types/implicit-function-types-spec.html
https://dotty.epfl.ch/docs/reference/new-types/implicit-function-types-spec.html
https://mcrl2.org/
https://mcrl2.org/
http://erlang.org/
https://doi.org/10.13052/rp-9788793519817
https://golang.org/
https://doi.org/10.1145/2637647.2637651
https://doi.org/10.1145/2637647.2637651
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://github.com/rkuhn/akka-typed-session
https://github.com/rkuhn/akka-typed-session
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://github.com/rkuhn/akka-typed-session/blob/master/src/test/scala/com/rolandkuhn/akka_typed_session/auditdemo/ProcessBased.scala
https://akka.io/blog/2017/05/12/typed-protocols
https://akka.io/blog/2017/05/12/typed-protocols
https://doc.akka.io/docs/akka/2.5/dispatchers.html
https://doc.akka.io/docs/akka/2.5/dispatchers.html
https://doc.akka.io/docs/akka/2.5/remoting.html
https://doc.akka.io/docs/akka/2.5/remoting.html
http://akka.io/
https://doc.akka.io/docs/akka/2.5/typed/index.html
https://doc.akka.io/docs/akka/2.5/typed/index.html
https://doc.akka.io/api/akka/2.5/akka/pattern/index.html
https://doc.akka.io/api/akka/2.5/akka/pattern/index.html
https://dotnet.github.io/orleans/
https://dotnet.github.io/orleans/
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1145/3158130
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/DARTS.2.1.11
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3314221.3322484
http://mrg.doc.ic.ac.uk/publications/verifying-message-passing-programs-with-dependent-behavioural-types/pldi19-preprint.pdf
http://mrg.doc.ic.ac.uk/publications/verifying-message-passing-programs-with-dependent-behavioural-types/pldi19-preprint.pdf
http://mrg.doc.ic.ac.uk/publications/verifying-message-passing-programs-with-dependent-behavioural-types/pldi19-preprint.pdf

	Abstract
	1 Introduction
	2 Fundamentals
	3 A Whirlwind Tour of Effpi
	3.1 Defining, Composing & Implementing Protocols
	3.2 Verifying Protocols, and Their Implementations
	3.3 Actor-Like DSL

	4 Design and Implementation
	5 Conclusion, Vision, and Future Work
	References

