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15.1 Introduction

Humanity is facing existential, societal challenges related to the well-being and sustaining
a growing population of 7.7 billion people, and issues such as food security, the use
of biotechnology in agriculture and medicine, antimicrobial resistance (AMR), and the
emergence of new pathogens and pandemic diseases are on the international agenda.

Scientists are today equipped with an ever-growing volume of human knowledge and
empirical data in addition to advanced technologies such as Artificial intelligence (AI).
AI and machine learning are already playing an important role in tackling these new
scientific challenges. For example, AI in the form of deep learning has recently been
used in the discovery of a new candidate antibiotic which has been successfully tested
against a range of antibiotic-resistant strains of bacteria (Stokes et. al., 2020).

Despite great potential for new scientific discoveries, most current AI approaches,
including deep learning, are limited when it comes to ‘knowledge transfer’ with humans.
It is difficult to incorporate existing human knowledge and the output knowledge is not
human comprehensible. Knowledge transfer is, however, a critically important part of
human–machine discovery which is necessary for collaboration between humans and AI.

Human–machine knowledge transfer is the subject of Human-Like Computing, also
known as the Third Wave of AI. Human-Like Computing (HLC) research aims to endow
machines with human-like perception, reasoning, and learning abilities which support
collaboration and communication with human beings. Such abilities should support
computers in interpreting the aims and intentions of humans based on learning and
accumulated background knowledge.

Figure 15.1 shows the change in perspective which HLC represents in AI research,
in particular with regards to knowledge transfer with humans. The idea of incorporating
human knowledge in AI is not new and it was the basis of Expert Systems in 1980s
where machines were dependent on being fed explicit knowledge from human experts
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Figure 15.1 Perspective of human-machine knowledge transfer as variants of AI research. a) Expert
Systems (1980s) with a dependence on manual encoding of human knowledge, b) Deep Learning and
Big Data in which humans are excluded from the encoded knowledge and c) Human-Like Computing
(HLC) in which Humans and Computers jointly develop and share knowledge.

(Fig. 15.1a). However, incorporating existing knowledge and knowledge transfer are
limited in the present black-box forms of AI where computers learn from Big Data, while
humans are excluded from both the knowledge development cycle and the understanding
of output knowledge (Fig. 15.1b). In HLC, by contrast, humans and machines are
viewed as co-developers of knowledge (Fig. 15.1c). In the HLC world, we envisage a
symmetric form of learning in which humans derive explicit knowledge from machines,
and machines learn from humans and other data sources.

This form of two-way human–machine learning is also related to ultra-strong machine
learning as defined by Michie (1988). Michie’s aim was to provide operational criteria
for various qualities of machine learning which include not only predictive performance
but also comprehensibility of learned knowledge. His weak criterion identifies the case in
which the machine learner produces improved predictive performance with increasing
amounts of data. The strong criterion additionally requires the learning system to provide
its hypotheses in symbolic form. Lastly, the ultra-strong criterion extends the strong
criterion by requiring the learner to teach the hypothesis to a human, whose performance
is consequently increased to a level beyond that of the human studying the training
data alone.

In this chapter, we demonstrate how a logic-based machine learning approach could
meet the ultra-strong criterion and how a combination of this machine learning approach,
text mining, and domain knowledge could enhance human–machine collaboration for the
purpose of automated scientific discovery where humans and computers jointly develop
and evaluate scientific theories.

As a case study, we describe a combination of the logic-based machine learning
(which included human-encoded ecological background knowledge) and text mining
from scientific publications (to evaluate machine-learned hypotheses and also to identify
potential novel hypotheses) for the purpose of automated discovery of ecological
interaction networks (food-webs) from a large-scale agricultural dataset. Many of the
learned trophic links were corroborated by the literature, in particular, links ascribed with
high probability by machine learning corresponded with those having multiple references
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in the literature. In some cases, previously unobserved but high probability links were
suggested and subsequently confirmed by experimental studies.

These machine-learned food-webs were also the basis of a recent study (Ma et. al.,
2019) revealing resilience of agro-ecosystems to changes in farming management using
genetically modified herbicide-tolerant (GMHT) crops.

This chapter is organized as follows. Section 15.2 describes the scientific problem and
dataset. The knowledge gap for modelling agro-ecosystems is discussed in Section 15.3.
Section 15.4 describes a machine learning approach for automated discovery of ecolog-
ical networks. The ecological evaluation of the results and subsequent discoveries are
discussed in Section 15.5. Section 15.6 concludes the chapter.

15.2 Scientific Problem and Dataset: Farm Scale Evaluations
(FSEs) of GMHT Crops

Humanity is facing great challenges to feed the growing population of 7.7 billion people,
and sustainable management of ecosystems and growth in agricultural productivity is at
the heart of the United Nations’ Sustainable Development Goals for 2030. Innovative
agricultural management will be required to minimize greenhouse gas emissions and
enrich biodiversity, provide sufficient nutritious food, and maintain farmers’ livelihoods
and thriving rural economies. Predicting system-level effects will be crucial to introduc-
ing management that optimises delivery of many potentially conflicting objectives of
agricultural, environmental, and social policy.

Replacing existing conventional weed management with GMHT crops, for example,
might reduce herbicide applications and increase crop yields. However, this requires
an evaluation of the risks and opportunities owing to concerns about potential adverse
impacts of GMHT crop management on biodiversity and the functioning of the agro-
ecosystems.

The Farm Scale Evaluations (FSE) was a three-year study to test the effects of GMHT
crop management on farmland biodiversity across the United Kingdom, and the details
of farmland selection and crop field design are described in Champion et al., 2003 and
Bohan et al., 2005. To summarize, a split-field design was used in 64 beet, 57 maize, 65
spring-sown oilseed rape and 65 winter-sown oilseed rape sites in the United Kingdom
(see Fig. 15.2). Each crop field was split approximately in half, and a conventional and
GMHT variety of one of the crops assigned randomly to each half. Plant and invertebrate
species were sampled using a variety of standard ecological protocols. Taxa identity and
abundance information were recorded within the field across all the sites. Approximately
60,000 field visits were made, sampling some 930,000 plants and 650,000 seeds that
were identified to species. In excess of 2 million invertebrates were sampled, and 24,000
bees and 18,000 butterflies counted on the transect walks.

The overarching null hypothesis for the FSEs was that ‘there was no effect of the
herbicide management of GMHT crops on biodiversity’, but with the expectation that
effects on biodiversity would be mediated by a combination of the direct effects of
herbicides killing weed plants and indirect effects on wider biodiversity through the loss
of refuge and food resources provided by these weeds. The FSE scientists and steering



OUP UNCORRECTED PROOF – REVISES, 20/4/2021, SPi

300 Human–Machine Scientific Discovery

Figure 15.2 Map of study fields in the FSEs. The circles show the locations of the field sites of
spring-sown beet, maize, and oilseed rape, and winter-sown oilseed rape overlain across the United
Kingdom.

committee agreed that a biologically significant effect on any taxon was a change in
amount (count, density, biomass) of 50%, either up or down.

The sample data were analysed on a taxon-by-taxon basis using statistical approaches
such as ANOVA (Perry et al., 2003). The null hypothesis was tested with a paired
randomization test using the treatment effect, d (computed as d = log10(GM + 1)−
log10(C + 1)), for the difference in count for a taxon due to management in the GM
and conventional half-fields. The results of the analyses demonstrated that there were
significant changes to the amounts of some taxa of weeds, surface dwelling invertebrates,
and bees and butterflies in the different crops, with some going up and others down in
the GMHT.

Assessment of the probable changes to biodiversity from adopting GMHT crops was
used to inform decision-making by regulatory authorities and companies. For a variety of
environmental policy and commercial reasons, none of the crops were commercialised in
the United Kingdom. Nevertheless, the FSE dataset is the largest agro-ecological census
dataset collected to date and it provided the agricultural Big Data used in the human–
machine discovery of agro-ecological networks described in this chapter. Network
reconstruction was done from invertebrate abundances sampled in the Vortis suction
sampling and Pitfall trapping protocols. A new study using these machine-learned food-
webs has also revealed that network-level responses in GMHT crop fields are remarkably
similar in their composition, network properties, and responses to simulated trajectories
of species removals, to their conventional counterparts, suggesting the resilience of agro-
ecosystems to changes in farming management using GMHT crops (see section 15.5).
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15.3 The Knowledge Gap for Modelling Agro-ecosystems:
Ecological Networks

The agro-ecological mechanistic underpinning of ecosystem services, their response to
change, and how they interact is still poorly understood, as exemplified by the so-called
optimist’s scenario (Pocock et al., 2012), which may be summarized as ‘the management
of one ecosystem service, for improved outcomes, benefits the outcomes of all ecosystem
services’. The specific dependencies of one service on any other are only poorly
understood and the validity of this scenario at system-relevant scales can only be guessed.

Since ecosystems are structured by flows of energy (biomass) between primary
producer plants (autotrophs) and consumers (heterotrophs), such as invertebrates,
mammals, and birds (Lindeman, 1942; Dickinson and Murphy, 1998), food-webs are
key explanations of ecosystem structure and dynamics that could be used to understand
and predict responses to environmental change (Odum, 1974; Caron-Lormier et al.,
2009; Cohen et al., 2009, Woodward et al., 2012).

Still relatively few ecosystems have been described and detailed using food-webs
because establishing interactions, such as predation, between the many hundreds of
species in an ecosystem is resource-intensive, requiring considerable investment in
field observation and laboratory experimentation (Ings et al., 2009). Across such large
datasets, it is often difficult to relate observational data sampled in protocols that
have different basic metrics such as density or activity density or absolute abundance.
Increasing the efficiency of testing for trophic links by filtering out unlikely interactions is
typically not possible because of uncertainty about basic background knowledge of the
network, such as whether any two species are likely even to come into contact and
then interact (Ings et al., 2009). In addition, it may require considerable analysis
and interpretation to translate from the ecological ‘language’ of sample data (count,
abundance, density, etc.) to the network language of nodes and links within a trophic
network. Consequently, of those ecosystems that have been studied using trophic network
approaches, component communities that provide known, valuable ecosystem services
or those that are experimentally tractable or under threat have most often been evaluated
(Ings et al., 2009).

To make good decisions about ecosystem management, e.g. the management of
agricultural land for the optimal delivery of ecosystem services, it is necessary to
have theories that predict the effects of perturbation on ecosystems. Network ecology,
and in particular food-webs, hold great promise as an approach to modeling and
predicting the effects of perturbation on ecosystems. Networks of trophic links (i.e.,
food-webs) that describe the flow of energy/biomass between species are important for
making predictions about ecosystem structure and dynamics. However, relatively few
ecosystems have been studied through detailed food-webs because establishing predation
relationships between the many hundreds of species in an ecosystem is expensive and
in many cases impractical. This is mainly because establishing predation relationships
between the many hundreds of species in an ecosystem requires specialist expertise in
species identification and considerable investment in field observation and laboratory
experimentation.
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The difficulties in deriving ecological networks therefore severely limit our ability to
model and predict responses to changes in ecosystem management and any technique
which can automate the discovery of plausible trophic links from ecological data is highly
desirable.

15.4 Automated Discovery of Ecological Networks from FSE
Data and Ecological Background Knowledge

Many forms of machine learning, such as neural nets (NNs) and support vector ma-
chines (SVMs), cannot make use of domain knowledge (i.e., ecological knowledge in this
study). By contrast, Inductive Logic Programming (ILP) techniques (Muggleton, 1991;
Muggleton and De Raedt, 1994) support the inclusion of such background knowledge
and allow the construction of hypotheses that describe structure and relationships
between sub-parts. ILP systems use given example observations E and background
knowledge B to construct a hypothesis H that explains E relative to B. The components
E, B, and H are each represented as logic programs. Since logic programs can be
used to encode arbitrary computer programs, ILP is arguably the most flexible form of
machine learning, which has allowed it to be successfully applied in complex problems
(Tsunoyama et al., 2008; Bohan et al., 2011; Santos et al. 2012).

In this section, we describe an abductive ILP approach which has been used to
automatically generate plausible and testable food-web theories from ecological census
data and existing ecological background knowledge. The main role of abductive reason-
ing in machine learning of scientific theories is to provide hypothetical explanations of
empirical observations (Flach and Kakas, 2000). Then, based on these explanations,
we try to inject back into the scientific theory new information that helps complete
the theory. This process of generating abductive explanations and updating theory
can be repeated as new observational data become available. The process of abductive
learning can be described as follows. Given a theory, T , that describes our incomplete
knowledge of the scientific domain and a set of observations, O, we can use abduction
to extend the current theory according to the new information contained in O. The
abduction generates hypotheses that entail a set of experimental observations subject
to the extended theory being self-consistent. Here, entailment and consistency refer
to the corresponding notions in formal logic. Abductive Logic Programming (Kakas
et al., 1993) is typically applied to problems that can be separated into two disjoint
sets of predicates: the observable predicates and the abducible predicates. In practice,
observable predicates describe the empirical observations of the domain that we are
trying to model. The abducible predicates describe underlying relations in our model
that are not observable directly but can, through the theory T , bring about observable
information. Hence, the hypothesis language (i.e. abducibles) can be disjoint from the
observation language. We may also have background predicates (prior knowledge),
which are auxiliary relations that help us link observable and abducible information.

In many implementations of abductive reasoning, such as that of Progol 5.0
(Muggleton and Bryant, 2000), as used in this chapter, the approach taken is to choose
the explanation that ‘best’ generalizes under some form of inductive reasoning. This
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link to induction then strengthens the role of abduction to machine learning and the
development of scientific theories. We refer to this approach as Abductive ILP (A/ILP).

A/ILP has been used in a series of studies involving the inference of biological
network models from example data. In Tamaddoni-Nezhad et al. (2006) encoding and
revising logical models of biochemical networks was done using A/ILP to provide causal
explanations of rat liver cell responses to toxins. The observational data consisted of
up and down regulation patterns found in high throughput metabonomic data. This
approach was further extended by Sternberg et al. (2013), where a mixture of linked
metabonomic and gene expression data was used to identify biosynthetic pathways for
capsular polysaccharides in Campylobacter jejuni. In this case, ILP was shown to provide
a robust strategy to integrate results from different experimental approaches.

A/ILP was also used in Tamaddoni-Nezhad et al. (2012) to infer probabilistic
ecological networks from the FSE data described in section 15.2. The Vortis and Pitfall
datasets used for the machine learning were year total data, produced by summing the
counts from each sample date, for each taxon in each half-field. This raw data was used
to measure a treatment effect ratio: counts from each conventional and GMHT half-
field pair were converted into a geometric treatment ratio, as used in Haughton et al.
(2003). Counts were log-transformed, using formula Lij = log10(Cij + 1), where Cij is
the count for a species or taxon in treatment i at site j. Sites where (C1j + C2j) ≤ 1
were removed from the learning dataset (as in Haughton et al., 2003). The treatment
ratio, R, was then calculated as R = 10d where d = (L2j −L1j). Following the rationale in
Squire et al. (2003), important differences in the count between the two treatments were
considered to be greater than 50%. Thus, treatment ratio values of R < 0 .67 and R > 1.5
were regarded as important differences in count with direction of down (decreased)
and up (increased) in the GMHT treatment, respectively. This information on up and
down abundances is considered as our observational data for the learning and can be
represented by predicate abundance(X, S, up) (or abundance(X, S, down)) stating the fact
that the abundance of species X at site S is up (or down).

The knowledge gap that we initially aimed to fill was a predation relationship between
species. Thus, we declare abducible predicate eats(X, Y) capturing the hypothesis that
species X eats species Y . It is clear that this problem has properties that require an
abductive learning approach such as A/ILP: firstly, the theory describing the problem is
incomplete, and secondly, the problem requires learning in the circumstance in which
the hypothesis language is disjoint from the observation language.

In order to use abduction, we also need to provide the rules which describe the
observable predicate (abundance) in terms of the abducible predicate (eats):

abundance(X, S, Dir):-
predator(X),
bigger_than(X, Y),
abundance(Y, S, Dir)
eats(X, Y)

where Dir can be either up or down. This Prolog rule expresses the inference that
following a perturbation in the ecosystem (caused by the management), the increased
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abundance(a, s4, down).
abundance(b, s1, up).
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Ground hypotheses (Abduction) 

eats(a, b). 
eats(a, c). 
eats(b, d). 
eats(b, e). 
eats(c, f ). 

abundance(X, S, Dir):
predator(X), 
bigger_than(X, Y), 
abundance(Y, S, Dir), 
eats(X, Y). 

Figure 15.3 Machine learning of species (left) and functional (right) food-webs from ecological data
using Abductive ILP.

(or decreased) abundance of species X at site S can be explained by X eating species
Y and the abundance of species Y is increased (or decreased). This rule also includes
additional conditions to constraint the search for abducible predicate eats(X, Y). These
constraints are 1) X should be a predator and 2) X should be bigger than Y . Predicates
predator(X) and bigger_than(X, Y) are provided as part of the background knowledge.
The ‘ecological’ background knowledge that a predator should be bigger than a prey
was provided by the domain expert.

Given this model and the observable data, the Abductive ILP system Progol 5.0
(Muggleton and Bryant, 2000) was used to generate a set of ground abductive hy-
potheses in the form of ‘eats’ relations between species as shown in Figure 15.3.
These abductive hypotheses are generated by matching observable input against the
background knowledge (which includes the rule describing the observable predicate
in terms of abducible predicate). In general, many choices for matching could be
made, leading to a variety of alternative hypotheses and a preference is imposed by
Progol 5 using an information-theoretic criterion known as compression (Muggleton and
Bryant, 2000). Here, compression can be defined as p−n−h, where p is the number of
observations correctly explained by the hypothesis, n is the number incorrectly explained
and h is the length of the hypothesis (e.g., 1 for a single fact such as a trophic link). The
set of ground hypotheses can be visualized as a network of trophic links (a food-web) as
shown in Figure 15.4. In this network, a ground fact eats(a, b) is represented by a directed
trophic link from species b to species a.

A Probabilistic ILP (PILP) approach, called Hypothesis Frequency Estimation
(HFE) (Tamaddoni-Nezhad et al., 2012), was used for estimating the probabilities
of hypothetical trophic links based on their frequency of occurrence when randomly
sampling the hypothesis space. HFE is based on direct sampling from the hypothesis
space. In some ILP systems, including Progol 5.0, training examples act as seeds to
define the hypothesis space (e.g. a most specific clause is built from the next positive
example). Hence, permutation of the training examples leads to sampling from different
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parts of the hypothesis space. Using this technique, the thickness of trophic links in
Figure 15.4 (and Figure 15.5) represent probabilities which are estimated based on the
frequency of occurrence from 10 random permutations (a user-selected parameter) of
the training data (and hence different seeds for defining the hypothesis space).

A probabilistic trophic network can be also represented using standard PILP represen-
tations such as SLPs (Muggleton, 1996) or ProbLog (De Raedt et al., 2007). For this we
can use relative frequencies in the same way probabilities are used in PILP. We can then
use the probabilistic inferences based on these representations to estimate probabilities.
For example, the probability p(abundance(a, s, up)) can be estimated by relative frequency
of hypotheses that imply a at site s is up. Similarly, p(abundance(a, s, down)) can be
estimated and by comparing these probabilities we can decide to predict whether the
abundance is up or down.

Species food-web (Figure 15.4) can be used to explain the structure and dynamics
of a particular ecosystem. However, functional food-webs which represent trophic inter-
actions between functional groups of species might be more important for predicting
changes in agro-ecosystem diversity and productivity (Caron-Lormier et al., 2009).
Species in FSE data can be classified into ‘trophic-functional types’ using general
traits that reflect their functional type, primarily resource acquisition, and attributes
(Caron-Lormier et al., 2009).

By assuming that the background knowledge includes information on the functional
group of each species, trophic networks for functional groups can be also learned from
ecological data using the machine learning approach described above (See Figure 15.3).
Here we need a rule which describes the observable predicate in terms of eats relation
between functional groups:

abundance(X,S,Dir):-
predator(X),
bigger_than(X, Y),
group(X, XG),
group(Y, YG),
abundance(Y, S, Dir),
eats(XG, YG)

Given this new model and background information, i.e. functional group of species
in the form of group(X, XG), trophic networks can be constructed for functional groups
in a learning setting similar to the one described above for individual species.

Figure 15.5 shows a functional food-web learned from the FSE data (Vortis). This
food-web is constructed by learning trophic interactions between functional groups
rather than individual species. Each functional group is represented by a species which
can be viewed as an archetype for the functional group.

Evaluating food-webs learned from a set of crops on unseen data from a different
crop was done by repeatedly constructing food-webs from all crops data, excluding test
data from a particular crop, and measuring the predictive accuracy on this test data.
Figure 15.6 shows predictive accuracies of Vortis species-based and functional food-
webs on different crops. The average predictive accuracies (the proportions of correctly
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Figure 15.5 Functional food-web learned from FSE data (Vortis). Each group in the functional
food-web is represented by a species which can be viewed as an archetype for that functional group.
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tests on different crops.

predicted left-out test examples) are reported with standard errors associated with each
point where 0% to 100% of the training examples are provided.

In these experiments, Hypothesis Frequency Estimation (HFE) (Tamaddoni-Nezhad
et al., 2012), was used for estimating probabilities of hypothetical trophic links based
on the frequency of occurrence from 10 random permutations of the training data.
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The HFE method was also used in the leave-one-out cross-validation to compare
the predictive accuracies of species food-web versus functional food-webs (food-webs
shown in Figures 15.4 and 15.5). The experimental materials and methods are described
in Tamaddoni-Nezhad et al., 2013.

According to this figure, the predictive accuracies of the learned food-webs were sig-
nificantly higher than the default accuracy of the majority class (around 55%). Predictive
accuracies for the functional food-webs were the same or higher than their species-
based counterpart, particularly at low to medium percentages of training examples. This
suggests that the functional food-webs are at least as accurate as their species-based
counterpart, but are much more compact (parsimonious). We also expect the higher
predictive accuracy of the functional food-web to be more evident if the food-webs are
evaluated on a different agricultural system where different species (not present in the
training of species food-webs) may exist.

15.5 Evaluation of the Results and Subsequent Discoveries

The initial species food-webs discovered by machine learning, were examined in Bohan
et al. (2011) by domain experts from Rothamsted Research UK and it was found that
many of the learned trophic links, in particular those ascribed with high probability
by machine learning are corroborated by the literature. In some cases, novel and high
probability links were suggested, and some of these were tested and corroborated by
subsequent empirical studies (Davey et al., 2013).

Manual examination of the food-webs was used to corroborate some of known trophic
links and also to identify potential novel hypotheses as shown in Figure 15.7. However,
manual corroboration of hypothetical trophic links is difficult and requires significant
amounts of time and is error prone. Hence, a text-mining technique was adopted
(Tamaddoni-Nezhad et al., 2013) for automatic corroboration of hypothetical trophic
links from ecological publications. This was particularly useful for larger foodwebs from
merged Vortis and pitfall data.

Figure 15.8 illustrates how a literature network can be generated based on the co-
occurrences of predators/prey species in the relevant context, directly from the literature.
The pairs of species (from a given food-web) and the interaction lexicons (from a
dictionary file) are used to generate queries. Then the text-mining module searches
through the text of available publications to match each query. The publications can
be in a local database or accessed via a search engine (e.g., Google Scholar). The output
of the text-mining for each query is the number of publications that matched that query
(number of hits). The output for a whole food-web can be represented by a literature
network in which the number associated with each edge is related to the number of
papers where the co-occurrences of the predator / prey species have been found with at
least one trophic interaction lexicon (eat, feed, prey, or consume). We have shown that
the frequencies of trophic links (using HFE) are significantly correlated with the total
number of hits for these links in the literature networks (Tamaddoni-Nezhad et al., 2013).
Moreover, the proposed approach was used to identify hypothetical trophic relations for
which there are little or no information in the literature (potential novel hypotheses).
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Figure 15.8 Automatic corroboration of the merged Vortis and pitfall food-web. A literature network is
automatically generated from a food-web using text mining of pairs of species from publications.
Thickness of the links in a literature network is related to the number of papers with the co-occurrences
of the pairs of species (number of hits).
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The manual corroboration table (Figure 15.7) represents prey (columns) and preda-
tor (rows) species combination from the Vortis food-web. Each pairwise hypothesised
link has a strength (i.e., frequency between 1 to 10, from the HFE method) followed by
references (in square brackets) in the literature (see Appendix 1 in Tamaddoni-Nezhad
et al., 2012) supporting the link. This table shows that many of the links, suggested
by the model, are corroborated by the literature. In particular, links in the model
ascribed with high frequency correspond well with those having multiple references in
the literature. For example, there are 15 links with more than two references and 8 of
these are with frequency 10, and from these all the 3 links with 3 references (marked
by green ellipses) have frequency 10. In addition, there are also highly frequent links
with no references in the literature, and these could potentially be novel hypotheses for
future testing with targeted empirical data. For example, one surprising result was the
importance of carabid larvae as predators of a variety of prey and in some cases with no
reference in the literature (see Figure 15.7). As another example, some species of spiders
appeared as prey for other predators; a result that was unexpected because spiders are
obligate predators. This hypothesis was tested in a subsequent study using molecular
analysis of predator gut contents and it was found that this hypothesised position in an
animal–animal network is correct (Davey et al., 2013), and spiders do appear to play
an important role as prey at least for part of the agricultural season. Thus, even though
some of the hypothesized links were unexpected, these were in fact confirmed later and
this provided an extremely stringent test for this human–machine scientific discovery
approach.

The food-webs constructed and validated using this human–machine discovery
approach were also the basis of a recent study revealing resilience of agro-ecosystems
to changes in farming management using GMHT crops. Ma et al. (2019) constructed
replicated food-webs using the merged Vortis and pitfall food-webs, populated on the
basis of the sampled taxonomic and abundance information of each half of the split-
field in FSE and obtained a total of 502 food-webs (251 conventional and 251 GMHT).
A network analysis approach was used to characterize the structural properties of all
the individual food-webs. The network analysis metrics include: C, connectance; φ, core
link density; core size; RR, robustness via random removal; RT , robustness via targeted
removal of highest degree nodes, as defined in Ma et al. (2019). Each metric is averaged
across all webs of a given variety and normalized by its overall range. The effects of
crop type can be visualized by comparing results from conventional crops horizontally
as shown in Figure 15.9. As shown in this figure, food-web properties varied significantly
between crop types. However, this figure suggests that the food-web properties remain
unaltered between conventional and GMHT food-webs. The network analysis approach
by Ma et. al. (2019) also revealed that network-level responses of GMHT crops are
remarkably similar in their composition and responses to simulated trajectories of
species removals, to their conventional counterparts. These results suggest that crop
type was by far the dominant driver of differences in web structure and robustness,
across several organizational levels, ranging from sub-structural to whole-network at-
tributes; inter-annual variation is probably greater than differences between conventional
and GMHT.
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Figure 15.9 Pairwise comparisons of structural properties of individual crop food-webs between
conventional and GMHT managements (a,b, beet; c,d maize; e,f , spring oilseed rape; g,h, winter
oilseed rape). C represents network connectance;φ, core link density; RR, robustness via random
removal; RT , robustness via targeted removal of highest degree nodes as described in Ma et al. (2019).
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15.6 Conclusions

In this chapter, we have demonstrated how a combination of comprehensible ma-
chine learning, text mining, and expert knowledge was used to generate plausible
and testable food-web hypotheses automatically from ecological census data. The
logic-based machine learning included human-encoded ecological background knowl-
edge, e.g. size relationship between predator and prey and taxonomical functional
types. Text mining from scientific publications was initially used to verify machine-
learned hypotheses, but it was also useful for identifying potential novel hypotheses,
i.e. high probability hypotheses suggested by machine learning with no references
in the literature. The results included novel food-web hypotheses, some confirmed
by subsequent experimental studies (e.g. DNA analysis of gut contents) and pub-
lished in scientific journals. This case study shows the potentials of human–machine
collaboration/communication for the purpose of hypothesis generation in scientific
discovery.

Figure 15.10 shows the cycle of hypothesis generation and experimentation in
(biological) scientific discovery. In this cycle, machine learning is usually used for ‘Model
Construction’ from ‘New Data’. However, the purpose of human-machine discovery is
to also automate other steps of this cycle by combining machine learning, text mining,
and domain knowledge, as in the case study described in this chapter.

We argue that with ever-growing amount of human knowledge and empirical data as
well as advances in AI, human–machine discovery where humans and computers jointly
develop and evaluate scientific theories will be important for the advancement of the
science in future.

Figure 15.10 Machine learning vs human-machine discovery.
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