
On the implementation and performance of the(�; t) protocol on Linux

Anandha Gopalan
Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260, U.S.A

Email: axgopala@cs.pitt.edu

Sanjeev Dwivedi�
College of Computing

Georgia Institute of Technology

Atlanta, GA 30332, U.S.A

Email: sanjeev@cc.gatech.edu

Taieb Znati
Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260, U.S.A

Email: znati@cs.pitt.edu

Bruce McDonaldy
Electrical and Computer Engineering Department

Northeastern University

Boston, MA 02115, U.S.A

Email: mcdonald@ece.neu.edu

Abstract

This paper details the design and implementation of the(�; t) protocol for ad-hoc networks on Linux. The (�; t)
protocol utilizes adaptive clustering to organize nodes into
clusters in which the probability of path failure due to node
movement can be bounded over time. Based on the (�; t)
cluster scheme, routes within clusters are maintained on
a proactive basis while routing between clusters is main-
tained on a reactive basis.

1. Introduction

With the advent of cellular communication and its
prominence, wireless technology is slowly taking over the
role played by LANs in yester years. Increasingly, users
want to be able to access their information while on the
move, thus increasing the demand for wireless networks.
This rapid expansion demands the increasing of the exist-
ing infrastructure which can get quite unwielding. Wireless
networks solve these problems, and hence are the choice of
next generation networks.

Even though wireless connectivity is extremely useful
when infrastructure is present, connectivity in absence ofin-
frastructure is desirable. A large mass of literature is present
in this area (named ad-hoc networks) and there has been de-
mand from the military towards such architectures but no
significant commercial applications had been present so far.�The work was done while this author was a student at the University
of PittsburghyThe (�; t) protocol was designed while this author was a student at
the University of Pittsburgh

Currently wired computing offers a better platform for
users because the Internet is designed based on it. Even
though mobile computing is convenient, it still does not
compare to the wired platform for users. It is our job to
make sure that the Internet is changed/modified to accom-
modate mobile computing in such a way that the inherent
convenience in the paradigm of mobile computing is not
obscured by inefficient and inadequate system design.

Often it is argued that in the present scenario, ad-hoc
networks do not offer significant advantages because we do
not have applications that can utilize them. [2] counters the
argument by stating that in the absence of infrastructure, the
wireless devices themselves take on the functions yielded
by them.

This scenario is changing slowly. Approaches towards
infrastructure-less network solutions from large vendors
like Apple’s rendezvous protocol [6] and IETF’s zeroconf
protocols [15] are very important steps in this direction.

This necessitates giving working solutions for protocols
that have been proposed in the past. Most of the work in the
ad-hoc domain has remained dormant and has been forgot-
ten over time for lack of implementation. For any protocol
to be acceptable to the commercial/internet community, a
real life working implementation that has been tested needs
to be shown.

There are two competing objectives when designing an
ad-hoc network protocol. The first one is to make sure that
each node is able to synchronize itself with the network
rapidly and correctly as the underlying network topology
changes. Also, it is important to make this adaptation pro-
cess consume the least amount of resources. These goals
do not compliment each other because if a node tries to

adapt itself with the network rapidly, it consumes a lot of
resources (processing, transmission and storage capacity).
Since both of the factors are important to our purpose, we
need to make a compromise somewhere. Clustering pro-
vides us with such a compromise. Clustering allows us to
club together elements of the ad-hoc network that are highly
mobile and hence apt to consume a lot of resources. By re-
stricting the number of nodes that can potentially lead to
dissemination of a large number of packets (traffic) we can
restrict the network traffic significantly. Using clustering,
we convert a highly mobile network of nodes into a com-
parably slow network of clusters. We assign one or more
controllers that represent the cluster and help achieve sta-
bility and efficiency within a cluster.

The second factor is that of scalability. Since we do not
have a fixed infrastructure, the query process to search for
a node would involve a large number of nodes. This would
lead to excessive use of resources and strain the network.
Also, it would significantly increase the amount of storage
required at each node. Hence we come across the problem
of reducing the network diameter so that number of mes-
sages passed for queries become small. It also leads us to
the problem of reducing the information required to keep
the elements of network in synchronization. With cluster-
ing, instead of maintaining routes to all the nodes in the
network, each node needs to maintain the routes of its own
cluster. This decreases the storage required at each node
significantly. Clusters only need to maintain information
about adjacent clusters, as opposed to each node maintain-
ing information regarding the whole network. Hence, main-
taining the information needed to keep the network in syn-
chronization abstracts to only maintaining the information
as to the number of clusters present and which clusters are
adjacent to each other. This abstraction of information al-
lows cluster based protocols to scale well.

Having discussed both cluster-based and clusterless pro-
tocols, we believe that cluster-based protocols would per-
form better than clusterless protocols in the construct of
ad-hoc networks. Even though theoretically cluster-based
protocols appear to be better, they have not been much in-
vestigated and as far as we know, no implementations of a
cluster-based ad-hoc routing protocol is in existence. In the
course of this research we have investigated a cluster-based
protocol called the(�; t) protocol. This protocol has been
designed with the features of both cluster-based and clus-
terless protocols and tries to avoid their shortcomings. At
the same time, it introduces a new metric for cluster forma-
tion which allows intra-cluster routing to be more efficient.
In this research we have investigated, redesigned, imple-
mented and analyzed the(�; t) protocol.

The(�; t) protocol might have far reaching significance
towards QoS in ad-hoc networks, which has been largely
non-existent from other implementations (schemes). This

work is the first step towards the implementation of the(�; t) protocol and tries to build a proof of concept.

2. Requirements and Related work

A couple of requirements/system capabilities are re-
quired/called for in an efficient (and easy) implementation
(all implementations thus far have implemented the follow-
ing) [8]:

1. Finding out when a route is needed
2. Initiating a request
3. Queuing packets for an outstanding request
4. Re-injection of outstanding packet in the stream
5. Refreshing timers/validating routes

Ad-hoc networks have emerged in response to advances
in hardware systems, availability of unlicensed radio spec-
trum, and frustrations over the costs and limitations of in-
frastructured wireless networks. As public cellular wireless
system move into their third and fourth generations, wire-
less LANs have become important components of many
corporate information infrastructures. Efforts have beenun-
derway to address many of the limitations of these emerg-
ing systems. Specification of the wireless MAC-layer pro-
tocol standard, IEEE 802.11, and the charter of the IETF
MANET working group have reinforced the need for more
flexible wireless networks, and thus a growing sub-field of
wireless communications has taken hold, namely, wireless
ad-hoc networking.

From the earliest adaptations of traditional distance vec-
tor routing proposed for the DSDV protocol [13] to so-
phisticated techniques that use information gathered from
GPS to report and estimate node position information for
the purpose of efficiently building on-demand routes [9],
the published work displays a wealth of varied and inter-
esting techniques and ideas; however, a gap remains to be
filled. Specifically, none of the schemes that have been pro-
posed have been shown to perform well enough over a wide
range of environments. Consequently, the question remains
as to how to efficiently support routing that is responsive to
a wide range of mobility patterns, that is scalable and that
can form the nucleus of a strategy capable of supporting
QoS requirements in terms of throughput and delay?

The problem of routing in wireless ad-hoc networks has
motivated researchers and protocol designers to re-examine
the basic tenets of adaptive routing as they have evolved
over the past several decades. Challenges that were faced
by early routing protocol designers, including limited band-
width and unreliable communications links are being faced
once again in the context of ad-hoc communications. How-
ever, in some ways the ad-hoc routing problem is more
difficult. In particular, node mobility, asymmetric channel

characteristics, and power constraints are added difficulties
which must be addressed in order to implement a truly ef-
fective and commercially acceptable network architecture.

The structure of the Internet suggests that hierarchical
routing is essential to achieve scalability. In ad-hoc net-
works, maintaining hierarchy (clusters) becomes more dif-
ficult due to the dynamic nature of the network. We believe
that clustering can increase the scalability of ad-hoc net-
works by dividing the pro-active and reactive parts of the
network into intra-cluster and inter-cluster domains.

Most of the literature on ad-hoc routing deals with re-
active schemes. However, reactive schemes become ex-
tremely inefficient when the network is subject to heavy
traffic loads and high mobility. This leads us to the pro-
active schemes. The main arguments against pro-active
schemes are: periodic updates that requires bandwidth and
processing, frequently using scarce resources to maintain
routes that are seldom used.

As a result of the shortcomings present in both the re-
active and pro-active protocols, it is apparent that a hy-
brid scheme is needed. Hybrid schemes contain the fea-
tures of both these methods and hence can use a pro-active
scheme for high mobility elements of the network while rel-
atively immobile elements can communicate using reactive
schemes.

The Destination sequenced distance vector DSDV rout-
ing protocol [13] is a pro-active routing protocol, where
each routing entry is assigned a sequence number. This
helps nodes to easily distinguish between old routes (one
that is no longer valid) and a new routes. Zone routing
protocol (ZRP) [5] is a hybrid routing protocol that divides
the network topology into overlapping zones. Routing in-
side a zone uses the intra-zone routing protocol (IARP)
and routing between zones uses a inter-zone routing proto-
col (IERP). Advanced on demand distance vector protocol
(AODV) [12] is a reactive protocol, wherein routes are cre-
ated and maintained as and when needed. When a source
requests a route to a destination, the source broadcasts a
route request message (RREQ). This request is re-broadcast
by the other nodes until it reaches the destination. The des-
tination on receipt of the RREQ message replies using a
request reply (RREP) message, which is sent back to the
sender using the reverse path that the RREQ took. Dynamic
source routing (DSR) [7] is another reactive routing proto-
col. This protocol is very similar to AODV, but instead of
re-broadcasting the request, nodes do a limited broadcast.
A limited broadcast is when a node does not broadcast a re-
quest, but discards it if it has already processed the request.

3. Architecture

The(�; t)�Cluster framework supports a scalable rout-
ing infrastructure that is able to adapt to a changing network

topology by dynamically organizing nodes into clusters and
hence bounding the impact of routing overhead.

The(�; t)�Cluster framework introduces a probabilistic
metric to provide a bound on the availability of paths inside
a cluster. This metric allows for the dynamic balancing of
the trade offs according to temporal and spatial dynamics of
the network.

Intra cluster routing is done on a pro-active basis us-
ing a table driven pro-active routing algorithm. The(�; t)�Cluster framework is flexible and independent of the
specific intra-cluster routing algorithm and hence, any pro-
active routing algorithm designed for ad-hoc networks can
be used for routing within a cluster.

Inter cluster routing strategy tries to take advantage of
the cluster topology and the intra-cluster routing tables.The
Inter Cluster Routing Protocol (ICRP) is a fully reactive
cluster based routing protocol that discovers and maintains
routes on an on-demand basis. In ICRP, theparent nodes
(central coordinator for each cluster) of each cluster coop-
erate to control the route query process to avoid flooding the
network.

The Distributed Dynamic Clustering Algorithm (DDCA)
is an event driven algorithm which monitors the status of
each node in order to maintain its cluster affiliation and cur-
rent state. Each node can be in one of five states, namely,
inactive, unclustered, orphan, child andparent. The algo-
rithm runs continuously and asynchronously on each ac-
tive node in the ad-hoc network and forms the platform on
which the intra-cluster protocol operates.

The DDCA controls the cluster formation and using the
set of states mentioned above, it provides the means for dis-
tributed control over the clustering process. A node cannot
participate in routing until it is affiliated with a cluster and
hence, as soon as any node becomes active, it tries to be-
come part of a cluster. Once the node has associated itself
with a cluster, the association is maintained until the node
gets disconnected. A disconnected node tries to locate a
feasible cluster; failing which, it forms a cluster of its own.

The set of events that invoke clustering decisions and
other actions in DDCA are described briefly below. Each
un-clustered node seeks a feasible cluster by broadcasting
a join-request message. If it receives no responses it cre-
ates a new cluster in which it is the only member, this
type of a node is called anorphan node. To prevent ad-
jacent un-clustered nodes from each creating new clusters,
simultaneous requests are handled by forcing nodes with
higher identifiers to back-off and try again. A node that
receives at least one join-response message joins the maxi-
mum strength cluster from which a response was received.
A node joins a cluster by changing its state, setting its clus-
ter identifier (CID) and initiating an intra-cluster routing ex-
change with its neighbors. As a child, each node must pro-
cess and respond to join-request messages and detect if it

Intra Cluster
Routing

Inter Cluster

Internet Protocol (IP)

Routing
Tables

 DDCA

Physical Layer MAC Protocol

Routing

Clustering

Routing

Figure 1. Overview of the design

has become disconnected from the cluster, or if a cluster
partition has occurred. The parent of every cluster is ini-
tially an orphan. Each orphan node periodically attempts to
join an adjacent cluster until it detects that at least one child
has joined its cluster. This can be detected by the reception
of routing information and the subsequent increase in size
of the intra-cluster routing table. Each parent node must
process and respond to join-request messages and detect if
it has become disconnected from the its children.

The DDCA guarantees that each node in a given cluster
knows the address of all nodes currently affiliated within the
same cluster and the address of each external border node
(also called a gateway node) of the cluster. Theborder node
of a cluster is a node that can listen to the messages from
another cluster.

ICRP constructs routes on-demand and maintains them.
Each node involved in routing maintains a cache of the
nodes that it can reach via either intra-cluster or inter-cluster
routing. The Inter Cluster route construction and mainte-
nance protocol has four phases:� Route Search� Query Dissemination� Route Setup� Route Maintenance

3.1. Route Search

Search phase involves query initiation by a node that re-
quires a route to a destination that is neither in its cluster
nor in its inter-cluster destination cache. The query mes-
sages are forwarded to all the gateway nodes of the cluster.

3.2. Query Dissemination

Once a gateway node to a cluster receives a copy of the
query, it first checks if it is a duplicate query. Duplicate
queries are checked by first forwarding the query to the par-
ent node and waiting for a reply. If the query is not a du-
plicate, it is again forwarded to all the gateway nodes of the
cluster who again forward it to the other adjacent clusters.
A cache is maintained regarding the reception of this query.
Once a gateway node finds that the entry being requested
belongs to its cluster it forwards the query directly to that
node or if it itself is the object of the query, it starts process-
ing the query.

3.3. Route Setup

Once the destination has been reached, the query termi-
nates and no further queries are generated. The destina-
tion then updates its routing table, generates a query reply
packet and sends it back to the node from which it received
the query. This node in turn forwards the query back to the
node from which it received the query. This continues until
the originator of the query is reached. Once the query reply
has been received by the originator, it updates its routing ta-
bles and the setup phase comes to an end. In case no reply
is received within a timeout interval, the query is discarded
from the cache.

3.4. Route Maintenance

In this phase each inter-cluster destination is checked pe-
riodically. Once a path remains inactive for time greater
than a timeout value, the route is deleted. If a route is lost
because the next-hop node is not available, a query is again
initiated for that destination and a new path is setup if pos-
sible, from the point of disconnection.

4. Implementation

There are many approaches to protocol implementation.
The simple design on which the implementation is based
is shown in Figure 2. Following sub-sections explain the
function of each component and the interactions between
different components.

4.1. Applications

Applications are the user level applications (usually ap-
plications built on top of the transport layer protocols like
telnet, ftp) that want to initiate a connection and transfer
data. These applications are unaware of the routing protocol
or the underlying infrastructure that is being used. The in-
teraction between the application and Netfilter (see section

Real Time Timers

 ICRP

Applications

 RAW Sockets

Netfilters

 IP Queue Handler

 Routing

IP
Q

/H
el

pe
r

M
od

ul
e

IP Stack

u
k

 Routing

 DDCA

 Table

Figure 2. Architecture (u = user level, k = kernel level)

4.5) is transparent to the application. Netfilter processesall
the packets being generated by the application.

4.2. RAW Socket Interface

The raw socket interface provides the upper layer mod-
ules (DDCA and ICRP) with a platform to create and inject
special type of packets into the network by bypassing the
transport layer protocols (and to some extent, network layer
protocols as well.)

4.3. Real Time Timers

The Real Time Timers module provides the protocol
with a framework by which we can define multiple iterat-
ing Real-Time timers. These timers are required for various
book-keeping functions of DDCA.

4.4. DDCA

Distributed Dynamic Clustering Algorithm (DDCA) is
the clustering algorithm on top of which the Inter Cluster
Routing Protocol (ICRP) operates. DDCA creates the clus-
ter and lets ICRP access the elements of the cluster through
various interfaces that it exports. The interaction between
ICRP and DDCA is limited to addition and removal of rout-
ing table entries from the kernel and ICRP receiving routing
packets from DDCA.

DDCA uses RAW sockets to define a new protocol type
(IPPROTO DDCA) [1] [10] since it needs to create the IP
packets including the header by itself. DDCA also uses with
the Real-Time Timers [11] provided by the kernel for vari-
ous timer based functions in the clustering algorithm.

4.5. Netfilter

Netfilter is an architecture inside the kernel to filter pack-
ets based on various criteria. It exports functions through
which kernel modules can have access to packets passing
through the network layer protocol. The kernel module can
then perform various operations on the packet before let-
ting it pass further through the protocol stack. Additionally,
it can also specify a verdict for the packet which can be
one ofaccept, reject, queue or steal. If the kernel module
has specified the verdict asqueue, the IP packet queues up
for processing by the IP Queue Handler module. Stealing
the packet means that the kernel need not bother about the
packet anymore, it will be managed by the module that reg-
istered to process it.

4.6. IPQ Helper Module

This kernel module is responsible for deciding which
packets will be routed or dropped or forwarded. This mod-
ule is inserted as part of the kernel before the(�; t) protocol
starts to execute.

4.7. Routing Table Entries

After reading the implementation ofospfd in [14], it was
decided to develop an interface to add and delete routing ta-
ble entries from user space. A user level copy of the kernel
level routing table is maintained as a queue. Any change
made to the user level routing table is reflected in the ker-
nel routing table. The advantage of this scheme is that the
kernel routing table need not be queried every time, only
updates need to be sent to the kernel routing table.

4.8. Packet Formats

This section lists the various packet formats used in this
implementation.

version protocol TTL reserved

Destination CID

Destination NID

Checksum

 Source Network ID

Source Cluster ID

 Sequence Number

32 bits
8 bits

Figure 3. Format of the DDCA Header packet

Figure 3 shows the format of the DDCA header packet.
The important fields in this packet are:

� Version: Contains the version number of the protocol.� Protocol: Contains the type of the protocol that IP
would use to identify the correct protocol stack to hand
the packet over to. In our case, since there is no reg-
istered handler, IP looks for a RAW socket which has
registered to receive a packet of this protocol type.� Source Network ID: Contains the ID of the node that
initiated this packet.� Source Cluster ID: Contains the cluster ID of the node
that initiated this packet.� Destination NID: Contains the ID of the node for
whom this packet is intended.� Destination CID: Contains the cluster ID of the node
for whom this packet is intended.

32 bits
8 bits

DDCA Message Type

DDCA Network ID

Alpha Value

T Value

Figure 4. Format of the DDCA Body packet

Figure 4 shows the format of the DDCA Body packet.
The important fields in this packet are:� DDCA Message Type: Contains the message type to

be sent.� DDCA Network ID: Contains the ID of the node that
initiated this packet.� Alpha Value: Contains the value of�, the parameter
used along with the value oft to test the link strength.� T Value: Contains the value oft, the parameter used
along with the value of� to test the link strength.

32 bits
8 bits

 Source Network ID

Source Cluster ID

Destination NID

Destination CID

Target NID

Originator NID

Routing Packet Type

Sequence Number

Figure 5. Format of the Query Body packet

Figure 5 shows the format of the Query Body packet.
The important fields in this packet are:

� Routing Packet Type: Contains the type of the query,
either RREQ (Route Request) or RREP (Route Reply).� Source Network ID: Contains the ID of the node that
initiated this packet.� Source Cluster ID: Contains the cluster ID of the node
that initiated this packet.� Destination NID: Contains the ID of the node for
whom this packet is intended.� Destination CID: Contains the cluster ID of the node
for whom this packet is intended.� Target NID: Contains the NID of the node for which
we need to discover a route.� Originator NID: Contains the NID of the node who
originated this packet.� Sequence Number: Contains the sequence number of
the query.

5. Results

To test a hierarchical protocol like the(�; t)�Cluster, we
have to test both aspects of the protocol, the intra-clusteras
well as the inter-cluster part of it. The experimental setup
consisted of three nodes which were used to form a cluster
(for intra-cluster testing) and two nodes used to form a clus-
ter and another node acting as an orphan (for inter-cluster
testing). Three different mobility models were studied.� Static: The nodes are stationary.� Group Mobility: The nodes move in groups, the rate

of disconnections is not very high.� High Mobility: The nodes are constantly on the move,
leading to a very high rate of disconnections.

Experiments were conducted for the above three mobil-
ity models and two types of data analysis were studied.� Goodput Analysis: This study measures the amount of

data that had to be re-transmitted in order for the whole
data to go through (e.g: A file).� Data Rate Analysis: This study measures the sustained
throughput that is achieved in the network.

The experiments were conducted with one node being
stationary, while the other two nodes were moved around
based on the mobility model (the mobility that was used
was random mobility, where the nodes move as they want
to, for example, laptops used in the experiment, were just
carried around the department by the researchers conduct-
ing the experiment). The breaking point of the network
was found (this was the point where inter and intra-cluster
routes were being broken), and this knowledge was used
in the group and high mobility models. During the experi-
ments, the nodes were assigned different IP addresses that

belonged to different domains. This was to make sure that
the protocol worked irrespective of whether the nodes be-
longed to the same network or not (this is to mirror real
life scenarios wherein, ad-hoc networks consist of nodes be-
longing to different networks).

The results were obtained by letting the nodes cluster
and then by moving them around physically according to
the mobility model. A file transfer was initiated between
two nodes, one designated as thesender, the node respon-
sible for sending the file, and the other designated as the
receiver, the node responsible for receiving the file and also
for logging the statistics. The size of the file transferred was
varied from a very small file to a large file. The file to be
transferred was broken down into packets of size 1500 bytes
each.

The sender node is equipped with aserver program,
which is responsible for sending the file across. This pro-
gram has a timer associated with it to calculate the time
taken to send the file. The file is transferred continuously
without any timeouts (regardless of the state of the connec-
tion). Thereceiver node is equipped with aclient program,
which is responsible for receiving the file. This program is
also responsible for maintaining a count of the number of
packets received and also the size of the packets received
(this is to ensure that packets were not corrupted and wrong
packets not received). Theclient does not sent acknowledg-
ments for the packets that are received. Due to the frequent
disconnections that can occur in ad-hoc networks, both the
server and theclient programs were written using RAW
sockets. This does not use the services provided by the
transport layer like acknowledgments and timeouts. This
ensures that even if the connectivity between nodes is lost,
the application does not time out.

5.1. Intra-Cluster evaluation

 40

 60

 80

 100

 120

 140

 2000 4000 6000 8000 10000 12000 14000 16000

%
 P

ac
ke

ts
 tr

an
sm

itt
ed

 to
 g

et
 th

e
fil

e
ac

ro
ss

File Size (in terms of 1500 byte packets)

High Mobility
Group Mobility

No Mobility

Figure 6. Intra-Cluster: Goodput Analysis

From figure 6, we can see that the goodput in the static

case is 100%. This is to be expected as the nodes are sta-
tionary and hence there is continuous connectivity. We can
also conclude that the protocol is very tolerant to discon-
nections. Even as the file size increases (in the order of tens
of megabytes), the protocol is able to maintain a good per-
formance by ensuring that connections are restored quickly
after a disconnection. The high mobility of the nodes helps
in re-forming routes that are broken quickly due to the pres-
ence of other nodes that take the place of the previously
disconnected node.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2000 4000 6000 8000 10000 12000 14000 16000

D
at

a
tr

an
sf

er
 r

at
e

in
 K

bp
s

File Size (in terms of 1500 byte packets)

Throughput (No Mobility)
Throughput (Group Mobility)

Throughput (High Mobility)

Figure 7. Intra-Cluster: Throughput Analysis

From figure 7, we can conclude that the throughput re-
mains constant in the static case. This is because the nodes
are stationary and connectivity is maintained throughout.
The throughput falls significantly once disconnections are
introduced into the network. There is a significant drop
in the throughput in the high mobility case, but due to the
fact that the protocol handles disconnections quickly, the
throughput remains stable across different file sizes. Thisis
very useful for applications that require a steady throughput
(even though it is much lower than in the static case).

5.2. Inter-Cluster evaluation

From figure 8, we conclude that the goodput in the static
case is 100%. This does not come as a surprise as the nodes
are stationary and hence have connectivity at all times. The
goodput in the high mobility case has gone down consider-
able due to the increase in the number of disconnections,
but we can see that the the protocol tolerates disconnec-
tions well and restores the connection soon. Even though
the file sizes increase, thus giving a larger window for dis-
connections to take place and hence lower the goodput, the
protocol maintains a steady goodput.

From figure 9, we can conclude that the throughput for
the static case averages well. The small dips and peaks
can be attributed to transient environmental factors. When
group mobility is introduced, we see that the data rate falls

 0

 50

 100

 150

 200

 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 P

ac
ke

ts
 tr

an
sm

itt
ed

 to
 g

et
 th

e
fil

e
ac

ro
ss

File Size (in terms of 1500 byte packets)

High Mobility
Group Mobility

No Mobility

Figure 8. Inter-Cluster: Goodput Analysis

 0

 200

 400

 600

 800

 1000

 1200

 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
at

a
tr

an
sf

er
 r

at
e

in
 K

bp
s

File Size (in terms of 1500 byte packets)

Throughput (No Mobility)
Throughput (Group Mobility)

Throughput (High Mobility)

Figure 9. Inter-Cluster: Throughput Analysis

significantly, but the protocol handles these disconnections
well, as can be seen from the fact that the data rate is quite
stable. In the high mobility case, the data rate falls signifi-
cantly due to a high number of disconnections, but overall
the data rate remains stable.

6. Conclusions

The (�; t)�Cluster framework was implemented on
Linux and it was tested and evaluated. We believe this to
be one of the few protocols for ad-hoc networks to have a
proof-of-concept work. There is much work that still needs
to be done in terms of tests, modifications and optimiza-
tions to make this protocol worthy of industry standards.
The challenge is to be able to deploy these kinds of proto-
cols in the industry so as to be able to test them out more
rigorously which would help in improving the protocol.

We have to determine the overhead caused because of
running DDCA continuously on these nodes. Careful anal-
ysis could determine how this protocol could be optimized
and help reduce the number of packets transmitted, and also

fix the optimum timeouts for the timers used.
Hybrid routing must be looked at in a whole new light

when we talk about routing in Ultra-large scale networks
and wireless sensor networks. Better models of routing
need to be studied, models like data diffusion, content-
based routing and information dissemination could be im-
plemented and analyzed.

7. Acknowledgments

This work has been supported in part by the National
Science Foundation (under grant no: 000073972).

References

[1] A.B. McDonald, T. Znati, A. Gopalan.(�; t) protocol spec-
ification. Internet Draft, August 2001.

[2] Charles E. Perkins. Ad-hoc networks.Addison Wesley,
2001.

[3] S. Dwivedi. Implementation and analysis of the(�; t) rout-
ing protocolon linux. Masters Thesis, University of Pitts-
burgh, 2002.

[4] A. Gopalan. Implementation and analysis of the(�; t) clus-
tering protocol on linux.Masters Thesis, University of Pitts-
burgh, 2002.

[5] Z. J. Haas and M. Pearlman. The Zone Routing Protocol
(ZRP) for Ad Hoc Networks.Internet Draft, August 1998.

[6] A. C. Inc. Rendezvou’s Developer Page.
http://developer.apple.com/macosx/rendezvous/, 2002.

[7] D. J. J. Broch and D. Maltz. The Dynamic Source Routing
Protocol for Mobile Ad-Hoc Networks.Internet Draft, Mar.
1998.

[8] V. Kawadia, Y. Zhang, and B. Gupta. System services for
implementing ad hoc routing protocols.International Work-
shop on Ad Hoc Networking, 2002.

[9] Y. Ko and N. Vaidya. Location-Aided Routing (LAR) in
Mobile Ad-Hoc Networks. InProc. ACM/IEEE MOBICOM,
Oct. 1998.

[10] A. McDonald. A Mobility Based Framework for Adaptive
Dynamic Cluster-Based Hybrid Routing in Wireless Ad Hoc
Networks.PhD. Thesis, University of Pittsburgh, December
2000.

[11] S. Pather. POSIX 1003.1b timer patches for Linux.
http://www.rhdv.cistron.nl/posix.html, August 2001.

[12] C. Perkins and E. Royer. Ad Hoc On Demand Distance Vec-
tor (AODV) Routing. Internet-Draft, Nov. 1998.

[13] C. R. Perkins and P. Bhagwat. Highly Dynamic Destina-
tion Sequenced Distance Vector Routing (DSDV) for Mo-
bile Computers. InACM SIGCOMM, pages 234–244, Oct.
1994.

[14] M. J. T. OSPF Complete Implementation.Addison Wesley,
September 2000.

[15] A. Williams. Zero Configuration Networking. Internet
Draft, September 2002.

