
A GIMP Extension for ImageWatermarkingAnandha Gopalan and Linian LiuDepartment of Computer S
ien
eWi
hita State UniversityWi
hita, KS 67260-0083U.S.A.Abstra
tWith the emergen
e of the World Wide Web and also the popularity of digitalmedia, digital watermarking has be
ome very important for
opyright prote
tion andauthenti
ation. Many watermarking s
hemes for images have been proposed, and theyare evaluated a

ording to four
riteria : transparen
y, robustness, eÆ
ien
y and pay-load. There is a need to
ompare these s
hemes quantitatively. In this proje
t, we haveimplemented a software that provides a variety of ben
hmarking metri
s that measurethe transparen
y of embedded watermarks in images.
Keywords : Digital Watermarking, Ben
hmarking, GIMP.

1 Introdu
tionDigital watermarks are information embedded in digital data (su
h as pi
tures, text,sound, program
ode, et
.) for the purpose of ownership veri�
ation or authenti
ation. There
ent emergen
e of the World Wide Web as a new medium has stimulated works on their useand implementation. The su

ess of digital watermarks in prote
ting intelle
tual propertieswill promote wider use of the Internet as a safe venue for storing and sharing information.Digital watermarking for images is done by embedding the information in images in a robustmanner (slightly modify some bytes) so as to be able to retrieve it later for authenti
ationpurposes.The majority of watermarking s
hemes have been designed for images. These s
hemesare evaluated in terms of four goodness
riteria : transparen
y (
he
k how visually are thewatermarked image and the original image di�erent), robustness (
he
k how good and stableis the watermark), eÆ
ien
y (�nd out how easy is it to watermark) and payload (amountof useful information in a watermark) of the watermark. There is a need to
ompare thevarious watermarking s
hemes quantitatively.In this proje
t, we have implemented a software that
al
ulates a variety of popularben
hmarking metri
s, whi
h re
e
t the transparen
y of the watermark. We have
hosen toimplement this software as an extension of the GIMP (GNUs Image Manipulation Program).The GIMP is the best image manipulation program available for the Linux platform. It alsohas built into it lots of features that we would want to use like rotation, s
aling, jittering,�ltering et
. Also, the GIMP supports various graphi
 �le formats (jpeg, png, pgm, gi�, ti�et
.). GIMP displays ea
h image in a drawable whi
h
onsists of one or many layers. GIMPis extremely extensible and expandable. It has an advan
ed s
ripting interfa
e in S
ript-Fu,a s
heme diale
t.The software used in this proje
t was GIMP version 1.1.8. This was the develop-ers version. The stable version was version 1.0. The reason for
hoosing this versionwas that the plug-in needed for our proje
t plug-in-layers-import was available forthis version (it works with gimp 1.1.x), it was also available for the earlier version (gimp1.0.x), but we needed some more additional PDB-pro
edures (gimp-layer-get-linked,gimp-drawable-set-image) to be able to utilise it.The rest of this paper is organized as follows. Se
tion 2 provides an introdu
tion to digitalwatermarking and ben
hmarking. It also provides a subse
tion on the GIMP and a smalltutorial on S
ript-Fu. There is another subse
tion that talks about how we
an
ombine twoimages in a variety of ways. Se
tion 3 deals with the implementation of various ben
hmarkings
heme as well as the implementation of two popular watermarking te
hniques, namelyPat
hwork and the NEC algorithm. Se
tion 4 wraps up the paper with the
on
lusion. Herewe talk about the problems that we fa
ed during the implementation and also give someideas on how the implementations
an be improved.1

2 Preliminaries2.1 Digital WatermarkingDigital watermarking is nothing but `hiding' information in digital do
uments (DVDs,images, pi
tures, digital do
uments et
.). This is
on
eptually very di�erent from somethinglike
ryptography whi
h deals with `
on
ealing' information. This embedded information isused later for
opyright prote
tion and authenti
ation [7℄. The information that is hiddenhas to
onform to four
riteria : transparen
y, eÆ
ien
y, robustness and payload.Before we
arry on, it would be good to introdu
e some terms that we would be usingquite often in this paper. These terms have been agreed upon by people working in this �eld[1℄. Cover Obje
t : This is the obje
t that is used to embed the information into. EmbeddedInformation : The information that we need to embed. This hidden information is
alleda watermark. Stego Obje
t : The resulting obje
t after the hidden information has beenembedded. Key : The key used to hide the information in the
over obje
t, it is this keythat we would use during the dete
tion of the watermark. Embedding : The method used
Key

 Cover Object Stego Object Embedded

 InformationFigure 1: Basi
 watermarking pro
essfor hiding information. Dete
tion : The method of extra
ting the watermark from the stegoobje
t. Atta
ks : Methods used to try and manipulate or destroy watermarks.Atta
ker :Person who tries to destroy or manipulate the watermark.A watermarking algorithm is
omplete only if we know both the embedding as well asthe dete
tion of the watermark. The reason we distinguish between atta
ks and atta
ker isvery simple : atta
ks need not be
aused by an atta
ker, for e.g : sending digital do
umentsover the network
ould
ause an appre
iable amount of noise that
an be
lassi�ed as anatta
k, whereas an atta
ker is a person who knowingly wants to destroy the watermark.2.2 Goodness CriteriaUntil re
ently, digital watermarking did not re
eive mu
h attention, but the growing rate2

of pira
y and the ease with whi
h digital media like DVDs,
an be dupli
ated has beeninstrumental in getting a lot of people within the resear
h
ommunity interested. This
ouldhave far rea
hing e�e
ts as it is envisioned that digital watermarking will solve a lot of issueslike
opyright prote
tion, DVD a

ess
ontrol, �ngerprinting and advertisement. This is ofutmost use for web designers, for eg : we watermark a pi
ture and put it up on our site and itis
opied and put up on another site, whi
h
laims ownership to the pi
ture. The watermarkin the pi
ture would help resolve the issue if it is ever taken to
ourt. Now that we know howuseful watermarking
an be, we should �rst examine what are the requirements of a goodwatermarking system.These are also the
riteria of judging a `good' watermarking system.These are
olle
tively
alled the `Goodness Criteria' :2.2.1 Transparen
yThe watermark does not
hange the
over obje
t appre
iably (i.e), there is no apparentdi�eren
e between the stego obje
t and the
over obje
t.
Figure 2: Di�eren
e of the original and the pat
hworked image as a third image

2.2.2 RobustnessWatermark
annot be removed without `breaking' the
over obje
t. What this means isthat the watermark must be quite diÆ
ult to be removed and if one does su

eed in removingit, then that pro
ess must have
aused some degradation to the
over obje
t as well. Thereis another kind of watermark in this
ategory whi
h is termed as fragile. These kinds ofwatermarks are destroyed easily upon manipulation to the
over obje
t.2.2.3 EÆ
ien
yIt must be easy to embed/dete
t a watermark, otherwise it defeats the purpose of water-marking if it is going to take a lot of time, in whi
h
ase not too many people would be ableto use it.2.2.4 PayloadWatermark has to
ontain a reasonable amount of information, so that we
an havesome information to dete
t and make sure that we minimize the errors during dete
tion. A`good' payload is espe
ially useful (i.e) in
ase the image is manipulated, then there is bound3

to some loss of data to the watermark, in
ase of a large payload, this would not be thatsigni�
ant. For a payload to be signi�
ant, it must be at least 70 bytes.2.3 Ben
hmarkingBen
hmarking requires a testbed on whi
h to
ompare the di�erent algorithms that areused for embedding information into images [6℄. Most papers whi
h highlighted variouswatermarking algorithms had their own series of tests, their own pi
tures and their ownmethodologies. So, there is no way in whi
h we
an
ompare the performan
e of any twoalgorithms without having to re-implement one of them. Re-implementing an algorithmmight make the algorithm a lot weaker (or) stronger than it was earlier thus defeating ourpurpose of
omparison. With a
ommon testbed (or ben
hmark), one
an have a rough ideaas to how one algorithm works as opposed to another (in this
ase, all one needs is a
ommonset of images that are watermarked with the respe
ted algorithms). This also gives us theopportunity to �nd out how the algorithm is working and helps to
orre
t the defe
ts, ifany to make the algorithm more robust. For ben
hmarking we
ompute the following visualdistortion metri
s [8℄ :Average Di�eren
e AD = 1XY Xx;y jpx;y � p0x;yjMean Square Error MSE = 1XY Xx;y (px;y � p0x;y)2Signal-to-noise Ratio PSNR = XY maxx;y p2x;y=Xx;y (px;y � p0x;y)2Normalized Cross-
orrelationNC =Xx;y px;yp0x;y=Xx;y p2x;yCorrelation Quality CQ =Xx;y px;yp0x;y=Xx;y px;y4

� where X and Y are the height and width of the images respe
tively. px;y and p0x;y arethe pixel values
orresponding to the original and the watermarked image respe
tively.2.4 Atta
ksIt is good that we have all the above metri
s for ben
hmarking, but the basi
 problem withall of them is that they do not take into a

ount the human vision system. So, an algorithmmight appear robust and very good when
ompared to the ben
hmarking te
hniques, whereasthe human eye
ould probably dete
t the di�eren
e between the original and the watermarkedimage. This is of
ourse, not a desirable thing. Another problem that
ould happen in
hoosing the metri
s is that it might be biased towards
ertain kind of algorithms, in thesense that
ertain types of algorithms that are based on a
ommon te
hnique would probablyget a better rating when
ompared to the others.Ben
hmarks are also subje
ted to atta
ks, this might seem a little strange, but when wesay atta
ks, we mean it in a di�erent sense. Suppose, we are ben
hmarking an algorithmand we get algorithm E as the one that has the best results and go ahead and implement it.A user might apply some of the following atta
ks to the image : low-pass �ltering whi
h isgiven by the following matri
es :Gaussian 0B� 1 2 12 4 21 2 11CASimple Sharpening 0B� 0 �1 0�1 5 �10 �1 0 1CA3x3 Median FilterEa
h pixel is repla
ed by the median of the 3 x 3 neighborhood
entered at that pixel.Lapla
e 0B� 1 �2 1�2 1 �21 �2 1 1CAThe �ltering is done as follows : we ignore the border pixels be
ause they do not have alltheir nine neighbors. Starting from pixel (1,1) we do our
al
ulations on every pixel till we5

rea
h pixel (w-1, h-1), where w is the width and h is the height. We take the matrix formedby the 3 x 3 neighborhood
entered at that pixel and then
al
ulate the sum of the produ
tof the two matri
es taken one element at a time. (i.e) we
al
ulatesum = 3Xi=0 3Xj=0nbhdmatrix[i; j℄ � filter[i; j℄For Lapla
e and simple sharpening
ases, we repla
e the pixel value by sum. Sin
e, we areworking with gray s
ale images, if the value is less than 0, then we make it 0 or if the valueis greater than 255 then we make it 255. In
ase of Gaussian �ltering, sum is divided by theweighted mean whi
h is the sum of all the elements in the �lter matrix (=16). In
ase ofthe median �lter ea
h pixel is repla
ed by the median of the 3 x 3 neighborhood
enteredat that pixel. The median is
al
ulated as follows : this is the middle element in a sortedarray (des
ending or as
ending). If the array has n elements, and if n is odd, then medianis the (n+1)/2, element, if n is even, then the median is the mean of the n/2 element andthe (n/2)+1 element.The other types of atta
ks are JPEG
ompression, s
aling, sropping, sotation and othersimple geometri
 transformation. These would probably destroy the watermark that wasembedded using algorithm E, and some other algorithm would have probably done better.What we are trying to say here is that the ben
hmarking te
hnique is sus
eptible to geometri
atta
ks. So, it might make sense to test for robustness on the basis of geometri
 atta
ks,but developing a testbed that takes both geometri
 as well as as noise atta
ks into a

ountis mu
h more diÆ
ult and resear
h is going on in regard to this [6, 7℄.2.5 Watermarking AlgorithmsWithout going into the histori
al aspe
ts, we will now take a look at some modern dayalgorithms used to watermark images. Before we do this, we have to mention about a veryimportant prin
iple that is used. It is
alled Ker
ho�s law (named after Auguste Ker
ho�s,who stated this in 1883.), whi
h states that : "The se
urity of a watermarking s
heme mustbe only in the
hoi
e of the key", what this basi
ally means is that we
annot assume thatthe atta
ker has no idea of the s
heme that we use.2.5.1 LSB AlgorithmThis was proposed by Tirkel and Osborne in 1993 [2, 3℄. In this
ase the message isembedded in the least signi�
ant bit of a number of bits in a gray s
ale image (hen
e thename of the algorithm). There are two versions to this algorithm.� Version 1 : Compress the 8-bit values for the
olor to 7-bit values, and embed infor-mation in the last bit. Dete
tion is done by knowing the key whi
h is basi
ally thepseudo random number generator that we use to �nd the pixels to embed the infor-mation. Sin
e the last bit is
hanged, there is always the danger of not meeting thetransparen
y
riteria, in the sense that we might end up
hanging the image to a largeextent. 6

� Version 2 : Here the watermark is added to the least signi�
ant bit and not repla
edas in the earlier
ase. This method is potentially better o� as it does not
hange theimage all that mu
h. Extra
tion of the watermark is done by performing an auto
orrelation (this is a unique fun
tion and it gives us a unique value).
Figure 3: Pi
ture watermarked using LSB algorithm

2.5.2 Pat
hworkThis algorithm works on the assumption that the given image has 255 levels of grayness,and that all brightness levels are equally likely [4℄. Watermark insertion in the Pat
hworkwatermarking system uses a se
ret key to seed a pseudo-random pro
ess that
hooses pairsof pixels. For ea
h pair of pixels, the brightness level of one of them is subtra
ted by asmall
onstant, say k, while this is added to the brightness level of the other pixel. This isdone a number of times (typi
ally around 10000). Watermark extra
tion requires the samese
ret key used in insertion. The extra
tion pro
ess works by �nding the same pairs of pixelsthat were
hosen in the insertion pro
ess and analyzing the di�eren
e in
ontrast for ea
hpair. This is done by taking the standard deviation of the original and
omparing it to thestandard deviation of the watermarked image. The reason for this is that by
hanging thepixel values of the image, we are a
tually
hanging the statisti
al dimensions of the image.
Figure 4: Pi
ture watermarked using pat
hwork algorithm

2.5.3 NEC AlgorithmThis algorithm was proposed by Cox, Killian, Lathan and Shamoon [5℄. this algorithmtakes the image and breaks it up into its Dis
rete Cosine Transform using the followingformula :DCT (i; j) = C(i)C(j) N1�1Xx=0 N2�1Xy=0 pixel(x; y)
os "(2x + 1)i�2N1 #
os "(2y + 1)j�2N2 # ;7

where C(i) = 1pN if i = 0, else q 2N if i > 0:Leaving the �rst dis
rete
o eÆ
ient aside, we then use the �rst 1000 (this
an vary)
o eÆ
ients taken along the diagonal. For ea
h Ci, we
al
ulate Ci = Ci + �Xi, whereea
h Xi is a real number whi
h is part of the pseudo-random number sequen
e (has normaldistribution) and � is a real number whose value is normally 0.1.The newly
al
ulated
o eÆ
ients are
onverted ba
k into the pixel values using thefollowing formula :pixel(x; y) = N1�1Xx=0 N2�1Xy=0 C(i)C(j)DCT (i; j)
os "(2x+ 1)i�2N1 #
os "(2y + 1)j�2N2 # ;where C(i) = 1pN if i = 0, else q 2N if i > 0:Dete
tion is performed by again generating the sequen
e of real numbers and
omparingthe standard deviation of the original sequen
e to the sequen
e got from the watermarkedimage.
Figure 5: Pi
ture watermarked using NEC algorithm

2.6 GIMP2.6.1 Basi
sThe GIMP is an a
ronyn for GNU Image Manipulation Program written and developedunder X11 for UNIX/Linux platforms. It is a freely distributed pie
e of software suitablefor su
h tasks as photo retou
hing, image
omposition and image authoring. GIMP
an beused as a simple paint program, a expert quality photo retou
hing program, an online bat
hpro
essing system, a mass produ
tion image renderer, a image format
onverter, et
.The GIMP is written by Peter Mattis and Spen
er Kimball, and released under theGNU General Publi
 Li
ense (GPL), version 2. The �rst version of GIMP version 0.54was released in February 1996. Many other developers have
ontributed plug-ins and haveprovided support and testing. GIMP releases are
urrently being handled by Manish Singh.The newest version of the GIMP is version 1.1.19. The stable version is version 1.0. Thisversion was released on June 5, 1998. 8

GIMP is extremely expandable and extensible. It is designed to be augmented withplug-ins and extensions to do just about anything. The advan
ed s
ripting interfa
e allowseverything from the simplest task to the most
omplex image manipulation pro
edures tobe easily s
ripted. The basi
 fun
tions of GIMP in
lude Files And Preferen
es, Sele
tions,Paint, Edit, Transform, Text, Brushes And Other Dialogs. GIMP also has full alpha
hannelsupport, plus sub-pixel sampling for all paint tools for high-quality anti-aliasing. GIMPsupports many �le formats, in
luding gif, jpeg, png, xpm, ti�, tga, mpeg, pgm, p
x, bmp,and many others. GIMP
an load, display,
onvert, save to many �le formats.

Figure 6: GIMP user interfa
e
S
ript-Fu is the �rst GIMP s
ripting extension. Extensions are separate pro
esses that
ommuni
ate with the GIMP in the same way that plug-ins do. Plug-ins are external modulesthat a
tually do the nifty graphi
s transformations. The distin
tion is that extensions donot require an a
tive image to operate on, instead extending the GIMP's fun
tionality. Inparti
ular, the plug-in API has been made far more general with the advent of the pro
eduraldatabase (PDB).The PDB allows the GIMP and its plug-ins to register pro
edures whi
h
an then be
alled from anywhere: internally, from extensions, and from plug-ins. There are alreadyover 200 internal GIMP pro
edures, and more being
reated all the time. Be
ause all ofthese pro
edures
an be easily invoked from extensions, the logi
al next step was to
reatea s
ripting fa
ility; thus, S
ript-Fu was born. S
ript-Fu is a ma
ro language and based onS
heme, whi
h is a interpreted lisp-like language. S
ript-Fu is a s
ript-extension for theGIMP and
onne
ts to GIMP database.GIMP Pro
edural Data Base (PDB) is
orresponden
e between s
ript fun
tions andGIMP interfa
e. What we use is SIOD. SIOD (S
heme in One Defun), is a small-footprintimplementation of the S
heme programming language that is provided with some database,unix programming and
gi s
ripting extensions. An implementation su
h as SIOD usuallyruns by default in an immediate exe
ution mode, where programs are parsed as they are9

entered, then exe
uted with the results being printed [12℄.

Figure 7: Pro
edural Database Browser
2.6.2 Ar
hite
tureIf you are new to the world of image manipulation, then the
on
ept of layers would seemstrange, but you
an think of layers as something lying on top of one another. This is howGIMP handles images. By default, ea
h image has one layer to itself. We
an always makedupli
ate layers, so at a time, we
ould have multiple layers on top of ea
h other.Layering allows for greater manipulation. Let us take an instan
e, suppose we want topaint something that has some drawing, some text, parts of some images, to make it simplerwe
ould keep these elements in di�erent layers, GIMP also gives us the option by whi
hwe
an
ombine layers and also spe
ify the
ombination mode. Even though we
an haveseveral layers on top of ea
h other, we
an have only one a
tive layer to avoid
onfusion.GIMP makes sure that the layer is just the
orre
t size, in
ase of images, the layer is thesize of the image, in
ase of text, then the layer is the boundary of the text. This way a lotof spa
e is saved.The
on
ept of a drawable is signi�
antly di�erent from that of layers. A drawable is awindow whi
h
an have one or more layers. When an image is opened in GIMP, the imageis given a layer and this layer is pla
ed on top of a drawable. A drawable
an have multiplelayers, all lying on top of ea
h other. We
an see the various layers by right-
li
king on theopen image and
li
king on the layers and
hannels option. The drawable is the workingarea for an image, of
ourse one
an in
rease the size of the drawable or de
rease it.10

2.6.3 S
ript-Fu TutorialS
ript-Fu uses the programming language s
heme. Using S
ript-Fu, we
an program inthe environment provided by the GIMP. We
an use most of the fun
tions of the GIMP by
alling the pre-de�ned pro
edures that exist in the GIMP database.The s
ripts that we write must be stored in $HOME/.gimp/s
ripts dire
tory. This iswhere GIMP
he
ks for the presen
e of any s
ripts when it is loaded. The s
ript �les musthave extension .s
m. On
e this is done, you need to refresh the GIMP, if GIMP is not alreadyopen, then open it and it will refresh itself and the s
ript would appear, if GIMP is alreadyopen, then
hoose Xtns|S
ript-Fu|Refresh, this would make the s
ript appear if there is noproblems with it (like syntax errors or something like that). In this tutorial, the built-ins ofGimp are shown using this font and the s
heme built-ins are shown using this font.There are two kinds of s
ripts.� Stand-alone :
an always be used (button
reation, et
.)� Image dependent : dependent on image type (modi�
ations)S
heme is a programming language, a diale
t of Lisp (List Pro
essing) family of lan-guages, generally utilizing a syntax based on parentheti
al expressions delimited by whites-pa
e, although alternative syntax
apabilities are sometimes available [12℄. S
heme pro
essesLISTS. Ea
h list is a fun
tion with its arguments. S
heme evaluates fun
tions to return val-ues. In s
heme, ea
h fun
tion is surrounded by (). Also, in s
heme, all operators pre
edethe operands, s
heme uses the pre�x notation. Any line after a `;' is ignored, so we
an useit for
omments. (+ (* 3 4) (/ 4 2)) = 14Variables (set! orange '(250 240 0)) ;sets the value of orangeDe
laring lo
al variables (let* ((a 3) (b 4) ...) (/ a b) ...)The general form of a let* statement is: (let* (binding1 binding2 ...) expression1 expression2)Fun
tionsFun
tions in s
heme have to be de�ned by using the de�ne keyword. If these fun
tions areto be used later they must be registered with the pro
edural data base (PDB). A fun
tionin S
ript-Fu is de�ned by :(de�ne (s
ript-fu-fun
tion parameters1 parameter2))Every fun
tion in S
ript-Fu must be de�ned with the s
ript-fu
lause in front of it. Thissame name must be given while registering the fun
tion. The parameters are optional.11

List Pro
essingLists are made up of a �rst element (head) and the rest of the list (tail). The emptylist () is also a list!
ar returns the head,
dr returns the tail, these two
an be
ombined asshown. (
ar '(1 2 3)) => 1(
dr '(1 2 3)) => (2 3)(
ddr '(1 2 3 4)) => (3 4)(
addr '(1 2 3 4)) => 3Note : All GIMP fun
tions return lists.Image ManipulationTo �nd out the number and type of parameters for the built-in fun
tions of GIMP thatare mentioned here, do take a look at the pro
edural database (PDB). Before we work onimages, we need to load them. GIMP provides a lot of native loaders to load the images,like file-jpeg-load, file-gif-load, a more generalized loader is gimp-file-load whi
hloads the �le regardless of the type of the �le. This returns the id of the image that has beenloaded, say this is img. After loading the image, we need to know the drawable of the image sothat we
an work on the image. This is done by the fun
tion gimp-image-a
tive-drawable,this returns the id of the drawable, say draw. Now, that we have the drawable we
an getthe pixel values of the image at any given point x and y.(set! pixel (gimp-drawable-get-pixel draw x y))This returns a list whi
h has as its head the number of
hannels and the pixel value of thepoint (x,y) as its tail. So, now that we have got this list we split it into two.(set! bytes (
ar pixel)) ;Gets the number of
hannels.(set! value (
adr pixel)) ;Gets the pixel values.On
e we have the pixel values (this is in the form of a one dimensional array), we
an dosome manipulations to it and then set the values ba
k. The following se
tion of
ode adds1 to the red
omponent of the pixel value. aref allows us to a

ess that parti
ular positionof the array, eg : (aref arr 1) is equivalent to arr[1℄. aset will set that parti
ular array indexvalue eg : (aset arr 1 10) is equivalent to arr[1℄ = 10.(set! red (+ (aref value 0) 1)) ;Adds one to the red
omponent(aset value 0 red) ;Sets the value of the red
omponent.Now, that we have set the value, we need to set the pixel value of the drawable to the newvalue. This is done by(gimp-drawable-set-pixel draw x y bytes (bytes-append value))
12

The reason we do not set the values dire
tly is that the built-in gimp-drawable-set-pixelexpe
ts a byte array, and so we
onvert our array value into a byte array by using the s
hemebuilt-in bytes-append. Image is displayed using the gimp-display-new fun
tion, this takesthe image id as its parameter.Every S
ript-Fu fun
tion must be registered with the pro
edural data base (PDB). Thisway one
an use our s
ript in some other appli
ation just by
alling the fun
tion and passingin the required parameters. We register our s
ript by :(s
ript-fu-register"s
ript-fu-fun
tion" ;Name of our fun
tion"<Toolbox>/S
ript-Fu/fun
tion" ;Where we want our fun
tion to appear"What the fun
tion does" ;Explain the nature of the fun
tion"Author" ;Author of this fun
tion"Copyright, 2000, Author" ;Copyright"Mar 5, 2000" ;Date the s
ript was
reated"") This tutorial has been designed to explain some of the
on
epts used in the implementa-tion of the algorithms. A more
omprehensive tutorial is available as part of the GIMP UserManual (part VII) [11℄. A good tutorial on SIOD (S
heme in One Defun) is also availableon the web [12℄.2.7 Combining ImagesNow, we will talk about a method that would allow us to visually �nd out the di�eren
ebetween two images, by
ombining two images (in other words, superimpose two images)using various
ombination modes. The fundamental question regarding implementing thevarious
ombination modes was how to superimpose images. The GUM (Gimp User Manual)indi
ated a way to do it, wherein you load the two images and then `import' a layer fromone image onto the other and then spe
ify the
ombination mode. This feature was notavailable in the GIMP that we had (version 1.0). This was one of the reasons for
hoosingthe developers version as the plug-in that we got
alled plug-in-layers-import was availablefor version 1.1. This plug-in allows one to import layers from one or more images into animages drawable (this is irrespe
tive of the size of the images), after whi
h we
an spe
ifythe layer
ombination mode. This pro
edure is done in a series of steps.2.7.1 Loading ImagesFirst of all, we have to load the images that we want to work on, this is done by :(�mg (
ar (gimp-file-load 1 �lename �lename)))where �mg is the id of the image that has been loaded. Similarly, we
an load the se
ondimage and
all its id as simg. 13

2.7.2 Getting DrawableTo be able to import a layer from an image, one has to know the id of the drawable of theimage. Here, we get the drawable id of the �rst image.(fdraw (
ar (gimp-image-a
tive-drawable �mg)))where fdraw is the id of the drawable. We do not need the drawable of the se
ond image aswe are going to import the layer of the �rst image into the se
ond image.2.7.3 Import LayersNow, we will import the layer of the �rst image into the se
ond image using the plug-inplug-in-layers-import.(plug-in-layers-import 1 simg fdraw fdraw 0 8)where 1 is the run mode whi
h is non-intera
tive mode, 0 means that the layers gets
opied/imported as is, 8 means that it
opies/imports all the layers found in the drawablefdraw (this is useful in
ase an image has more than one layer).2.7.4 Combining LayersNow that we have imported a layer of an image into another image, we
an spe
ify the
ombination mode. Before that we must set the new layer as the a
tive layer. This is doneby : (set! nlayer (
ar (gimp-image-get-a
tive-layer simg)))where nlayer is the id of the new layer whi
h has been imported from the �rst drawable(fdraw) of the image.We
an now spe
ify the
ombination mode of the layer.(gimp-layer-set-mode nlayer mode)where mode is the
ombination mode that we spe
ify. The di�erent
ombination modesavailable are : 0 - Normal 1 - Dissolve2 - Behind 3 - Multiply4 - S
reen 5 - Overlay6 - Di�eren
e 7 - Addition8 - Subtra
t 9 - Darken only10 - Lighten only 11 - Hue12 - Saturation 13 - Color14 - Value 15 - Divide14

Figure 8: Di�eren
e of the �rst two images as a third image

Figure 9: Image Compare Interfa
e
15

This is indeed very useful, as this gives us a way by whi
h we
an visually see thedi�eren
es between two given images. The good thing about this is that (as mentionedearlier in se
tion 2.6.3) it is independent of the type of image �le. Also, this would workfor images that are not of the same size. The plug-in used here
he
ks if the se
ond imageis larger than the �rst, if so, it blindly imports the layer from the �rst image(this way theimported layer is smaller than the existing layer and so any
hanges to the mode is visibleonly in that part). If the �rst image is larger, then the layer that is imported is of the samesize as the se
ond image (in whi
h
ase, the whole layer of the �rst image is not imported).3 Implementation3.1 Ben
hmarkingImplementing this using the GIMP was not very diÆ
ult. This is one of the reasonsthat we based our software on top of the GIMP, it already gives us the tools to loadthese image and get the pixel values of the images. This is done by a built in
alledgimp-drawable-get-pixel, this gets the pixel value of a point in the image, by iterat-ing through the whole image one
an get the pixel value at every point in the image. Forloading the image, GIMP has this built in routine
alled gimp-file-load that
alled theappropriate �le handler depending on the type of the image, so this makes our softwareimage independent.Being a image manipulation program, GIMP does have problems handling some ofthe large numbers that o

ur be
ause of the ben
hmarking metri
s. Also, the built ingimp-drawable-get-pixel is very slow as it has to
all some basi
 built in routines.

Figure 10: Ben
hmarking of the image whi
h was watermarked using the pat
hwork algorithm,length of the watermark was 1000
16

3.2 Implementing AlgorithmsBefore we started to implement the algorithms, we used the GIMP to get used to theway one has to program in that environment. To program in GIMP, one has to programusing S
ript-Fu whi
h used s
heme as its basi
 language (a small tutorial is given in se
tion2.6.3).These algorithms were �rst implemented on small images (100 x 100) to make sure thatthey worked. Also, these images had a bla
k ba
kground so that it would be
lear tothe human eye on
e the embedding was done. Initially, while using Pat
hwork and NEC,information was hidden in the blue
hannel and then extended to hide information in thepixel as a whole.Design Prin
iples� User Interfa
e : It provides
onvenient user interfa
e. To a
hieve the �st purpose, weuse SF-FILENAME parameter in S
ript-Fu-register fun
tion:SF-FILENAME "Input �le name" (string-append "" gimp-data-dir " /�sh.jpg")This will
reate a widget in the
ontrol dialog. The widget
onsists of a button
on-taining the name of a �le. If the button is pressed, a �le sele
tion dialog would pop-up.� Image Types : It
an deal with various image formats. The watermarks may beembedded not only in a gray s
ale image, but in RGB image as well. We just
hangethe blue
hannel of an RGB image to satisfy the `transparen
y' requirement for a goodwatermarking system.� Seeding : It
an produ
e a unique seed. We
hoose the
urrent time as the key and useit to reset the algorithm seed for rand fun
tion to produ
e pseudo-random numbers.3.2.1 Pat
hworkEmbeddingFirst we get the
urrent time as the seed for rand fun
tion. The seed is stored in a defaultseed �le "PCHseed.dat" in the
urrent dire
tory (but user
an spe
ify his/her own seed �le).This is important, be
ause the dete
tor needs the same seed during de
oding. This is doneby (set! seed (realtime)) ; Get
urrent time (srand seed) ; Reset seedSe
ondly, we use a pseudo-random number generator to
hoose pixel pair (An, Bn) fromthe original image.Thirdly, we modify the brightness level of An and Bn by an amount k:(aset pixelarray index (+ (aref pixelarray index) k)))17

and then put them ba
k to the output image. Repeat this for n steps (n typi
ally around1000). At last, display the original image and the watermarked one.

Figure 11: Pat
hwork Interfa
e
Dete
tionWe open the seed �le to get the key so that we
an run the same pseudo-random numbergenerator to �nd the same pairs of pixels
hosen during the embedding algorithm. Then,we,
ompute the sum of the di�eren
e for ea
h pair, standard deviations SD, and sum/SD.After these
al
ulations, we print out the �nal result.3.2.2 NEC AlgorithmData Stru
ture� In a spatial domain, we do not need to
reate a two dimension array to store pixelsof an image, be
ause through GIMP we
an get a pixel value dire
tly from an image.This
an save time and spa
e.� In a transform domain, we use a list instead of a two dimension array to store DCTarray. This is be
ause that SIOD (S
heme in One Defun)
an only allo
ate one dimen-sion array
urrently. The length of the DCT list is the number of rows of the originalimage. Ea
h element in the list is also a list with the length of the number of
olumnsof the image. That is, ea
h element stores one row of the image.18

Figure 12: Ne
 Interfa
e� The watermarks are random numbers with distribution of N(0,1). They are stored inan array with length of the size of watermark spe
i�ed by the user.� We de�ne our own pseudo-random number generator gaussrand instead of simple fun
-tion rand. The gaussrand fun
tion
an generate random numbers with distribution ofN(0,1).EmbeddingThe following steps are followed in the embedding pro
ess.� The image to be watermark is loaded and the seed is initialized using the
urrent time.The seed is stored in a �le so that we
an retrieve it during dete
tion. Before theimage is loaded, the user is asked for the name of the image, the watermark size andthe alpha value.� The image is broken down into pixels and is
onverted into its Dis
rete Cosine Trans-form (DCT).� The random numbers are generated (say, N) and the �rst N DCT
o e�
ients (ex
ludingthe �rst) are
hosen along the diagonal and their values are modi�ed.� The modi�ed DCT array is on
e again
onverted into its
orresponding pixel valuesand these new pixel values are put ba
k into the image so that the image is nowwatermarked 19

Dete
tionThe following steps are followed in the dete
tion pro
ess.� The original image and the watermarked image are loaded. The seed that was storedin a �le earlier is read and the original pseudo random numbers are generated again(this is the original watermark). The DCT
o eÆ
ients of both the original and thewatermarked image are
al
ulated.� Using the DCT
oeÆ
ients of the original and the watermarked image and the alphavalue the watermark is extra
ted from the se
ond image.� The original watermark and the extra
ted watermark are taken and the standarddeviation is
al
ulated. If this is over the given threshold then we
an safely saythat the image has been watermarked.4 Con
lusionIn this paper we have talked about the ben
hmarking te
hniques and also of a te
hniquewhi
h allows us to
ombine the original and watermarked images into one and allows us todo some interesting manipulations. We have also su

eeded in integrating the two. Both theben
hmarking and the image
ombination were done using two di�erent fun
tions writtenusing S
ript-Fu, all we had to do was to write a third fun
tion and
all the fun
tions writtenearlier. This was made possible be
ause every S
ript-Fu fun
tion that is written in GIMPis registered with the Pro
edural Database (
alled PDB, one
an see all the fun
tions byinvoking the DB browser). In this way, we have two ways to view the embedded watermark,one is by using the mathemati
al te
hnique provided by the ben
hmarking and the other isby viewing the transparen
y of the watermark by using the image
ombination software.At the beginning of this paper, we had mentioned some of the problems regarding usingGIMP to do the ben
hmarking. One of the major problems was that GIMP was not able tohandle big numbers very well. To
ite an example : To make sure that the ben
hmarkingte
hniques had been implemented
orre
tly, we took the same image and ran the algorithmon it. If the image size was below 60x60, then we got the expe
ted values (AD = 0, MSE= 0, SNR = 0, et
), if the size ex
eeded this (or roundabout) then the values were not asbefore. The reason for this, as we
on
luded was that after a point of time, the numbersbe
ome too large for GIMP to handle and it ends up generating some garbage values. Thisis not a problem otherwise, as in the long run this evens out (if we
onsider the garbage asan error, then in the end all the errors kind of
an
el ea
h other out).For people who are not familiar with s
heme, it may seem a daunting task to programin the GIMP environment initially. There is another plug-in available whi
h allows us towrite s
ripts using Perl. We did try to down load that plug-in and install it but were notsu

essful as we did not have all the libraries required by it. You
an visit the web site for20

more information [10℄. Depending on the version you have you
an download the
orre
tplug-in.In the ben
hmarking �eld, there is still a lot of resear
h going on as people are tryingto establish the
orre
t testbed that would be `fair' to all methods in its rating. The basi
problem is that the
urrent method is sus
eptible to atta
ks (not exa
tly intended in thesame way as regards with watermarks) and does not provide a fair ben
hmark regardinggeometri
 transformations done to watermarked images. The problem is that the te
hniquedoes not take into a

ount the type of the atta
k that the watermark has been under, it just
al
ulates the same metri
 regardless of the atta
k.We need to take into a

ount the type of the atta
k, as otherwise we would not knowwhi
h te
hnique would work the best for us depending on the media used (audio, images,video et
). For example, if we are ben
hmarking an audio watermarking s
heme, then it isof no use trying to take geometri
 atta
ks into
onsideration [6℄.Referen
es[1℄ B. P�tzmann Information Hiding Terminology Information Hiding, Springer Le
tureNotes in Computer S
ien
e, v 1174, pp. 347{350, 1996.[2℄ R. G. van S
hyndel, A. Z. Tirkel, C. F. Osborne. A Digital Watermark. Pro
eedings ofthe 1994 1st IEEE International Conferen
e on Image Pro
essing, Part 2 (of 3). Austin,TX. pp. 86{90.[3℄ R. G. van S
hyndel, A. Z. Tirkel, C. F. Osborne, W. J. Ho, N. R. A. Mee and G.A. Rankin. Ele
troni
 Watermark. Digital Image Computing, Te
hnology and Appli
a-tions (DICTA'93), pp. 666{673, Ma
quarie University, Sydney, 1993.[4℄ W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Te
hniques for data hiding. I. B. M.Systems Journal, vol. 35, no. 3&4, pp. 313{336, 1996.[5℄ I. J. Cox, J. Kilian, T. Leighton and T. Shamoon. Se
ure spread spe
trum watermarkingfor multimedia. IEEE transa
tions on image pro
essing, vol. 6, no 12, pp. 1673{1687,1997.[6℄ M. Kutter and F. Petit
olas. A fair ben
hmark for image watermarking systems. InPing Wah Wong and Edward J. Delp, editors, pro
eedings of Ele
troni
 Imaging '99,Se
urity and Watermarking of Multimedia Contents, vol. 3657, pp. 226{239, San Jose,California, U.S.A., 25{27 Jan. 1999.[7℄ F. Petit
olas, R. J. Anderson and M. G. Kuhn. Information hiding { A survey. Pro
eed-ings of the IEEE, spe
ial issue on prote
tion of multimedia
ontent 87(7):1062{1078,July 1999. 21

[8℄ Stefan Katzenbeisser and Fabien Petit
olas (Editors). Information Hiding Te
hniquesfor Steganography and Digital Watermarking. Arte
h House Books, 1999.[9℄ The GIMP web site is at : http://www.gimp.org.[10℄ The GIMP plug-in registry is available at : http://registry.gimp.org.[11℄ The GIMP User Manual written by, Karin Kylander and Olaf S. Kylander is availableat : http://manual.gimp.org/manual/GUM/GUM.html.[12℄ The SIOD (S
heme in One Defun) tutorial is available at :http://people.delphi.
om/gj
/siod.html.

22

