
A GIMP Extension for ImageWatermarkingAnandha Gopalan and Linian LiuDepartment of Computer SieneWihita State UniversityWihita, KS 67260-0083U.S.A.AbstratWith the emergene of the World Wide Web and also the popularity of digitalmedia, digital watermarking has beome very important for opyright protetion andauthentiation. Many watermarking shemes for images have been proposed, and theyare evaluated aording to four riteria : transpareny, robustness, eÆieny and pay-load. There is a need to ompare these shemes quantitatively. In this projet, we haveimplemented a software that provides a variety of benhmarking metris that measurethe transpareny of embedded watermarks in images.
Keywords : Digital Watermarking, Benhmarking, GIMP.

1 IntrodutionDigital watermarks are information embedded in digital data (suh as pitures, text,sound, program ode, et.) for the purpose of ownership veri�ation or authentiation. Thereent emergene of the World Wide Web as a new medium has stimulated works on their useand implementation. The suess of digital watermarks in proteting intelletual propertieswill promote wider use of the Internet as a safe venue for storing and sharing information.Digital watermarking for images is done by embedding the information in images in a robustmanner (slightly modify some bytes) so as to be able to retrieve it later for authentiationpurposes.The majority of watermarking shemes have been designed for images. These shemesare evaluated in terms of four goodness riteria : transpareny (hek how visually are thewatermarked image and the original image di�erent), robustness (hek how good and stableis the watermark), eÆieny (�nd out how easy is it to watermark) and payload (amountof useful information in a watermark) of the watermark. There is a need to ompare thevarious watermarking shemes quantitatively.In this projet, we have implemented a software that alulates a variety of popularbenhmarking metris, whih reet the transpareny of the watermark. We have hosen toimplement this software as an extension of the GIMP (GNUs Image Manipulation Program).The GIMP is the best image manipulation program available for the Linux platform. It alsohas built into it lots of features that we would want to use like rotation, saling, jittering,�ltering et. Also, the GIMP supports various graphi �le formats (jpeg, png, pgm, gi�, ti�et.). GIMP displays eah image in a drawable whih onsists of one or many layers. GIMPis extremely extensible and expandable. It has an advaned sripting interfae in Sript-Fu,a sheme dialet.The software used in this projet was GIMP version 1.1.8. This was the develop-ers version. The stable version was version 1.0. The reason for hoosing this versionwas that the plug-in needed for our projet plug-in-layers-import was available forthis version (it works with gimp 1.1.x), it was also available for the earlier version (gimp1.0.x), but we needed some more additional PDB-proedures (gimp-layer-get-linked,gimp-drawable-set-image) to be able to utilise it.The rest of this paper is organized as follows. Setion 2 provides an introdution to digitalwatermarking and benhmarking. It also provides a subsetion on the GIMP and a smalltutorial on Sript-Fu. There is another subsetion that talks about how we an ombine twoimages in a variety of ways. Setion 3 deals with the implementation of various benhmarkingsheme as well as the implementation of two popular watermarking tehniques, namelyPathwork and the NEC algorithm. Setion 4 wraps up the paper with the onlusion. Herewe talk about the problems that we faed during the implementation and also give someideas on how the implementations an be improved.1

2 Preliminaries2.1 Digital WatermarkingDigital watermarking is nothing but `hiding' information in digital douments (DVDs,images, pitures, digital douments et.). This is oneptually very di�erent from somethinglike ryptography whih deals with `onealing' information. This embedded information isused later for opyright protetion and authentiation [7℄. The information that is hiddenhas to onform to four riteria : transpareny, eÆieny, robustness and payload.Before we arry on, it would be good to introdue some terms that we would be usingquite often in this paper. These terms have been agreed upon by people working in this �eld[1℄. Cover Objet : This is the objet that is used to embed the information into. EmbeddedInformation : The information that we need to embed. This hidden information is alleda watermark. Stego Objet : The resulting objet after the hidden information has beenembedded. Key : The key used to hide the information in the over objet, it is this keythat we would use during the detetion of the watermark. Embedding : The method used
Key

 Cover Object Stego Object Embedded

 InformationFigure 1: Basi watermarking proessfor hiding information. Detetion : The method of extrating the watermark from the stegoobjet. Attaks : Methods used to try and manipulate or destroy watermarks.Attaker :Person who tries to destroy or manipulate the watermark.A watermarking algorithm is omplete only if we know both the embedding as well asthe detetion of the watermark. The reason we distinguish between attaks and attaker isvery simple : attaks need not be aused by an attaker, for e.g : sending digital doumentsover the network ould ause an appreiable amount of noise that an be lassi�ed as anattak, whereas an attaker is a person who knowingly wants to destroy the watermark.2.2 Goodness CriteriaUntil reently, digital watermarking did not reeive muh attention, but the growing rate2

of piray and the ease with whih digital media like DVDs, an be dupliated has beeninstrumental in getting a lot of people within the researh ommunity interested. This ouldhave far reahing e�ets as it is envisioned that digital watermarking will solve a lot of issueslike opyright protetion, DVD aess ontrol, �ngerprinting and advertisement. This is ofutmost use for web designers, for eg : we watermark a piture and put it up on our site and itis opied and put up on another site, whih laims ownership to the piture. The watermarkin the piture would help resolve the issue if it is ever taken to ourt. Now that we know howuseful watermarking an be, we should �rst examine what are the requirements of a goodwatermarking system.These are also the riteria of judging a `good' watermarking system.These are olletively alled the `Goodness Criteria' :2.2.1 TransparenyThe watermark does not hange the over objet appreiably (i.e), there is no apparentdi�erene between the stego objet and the over objet.
Figure 2: Di�erene of the original and the pathworked image as a third image

2.2.2 RobustnessWatermark annot be removed without `breaking' the over objet. What this means isthat the watermark must be quite diÆult to be removed and if one does sueed in removingit, then that proess must have aused some degradation to the over objet as well. Thereis another kind of watermark in this ategory whih is termed as fragile. These kinds ofwatermarks are destroyed easily upon manipulation to the over objet.2.2.3 EÆienyIt must be easy to embed/detet a watermark, otherwise it defeats the purpose of water-marking if it is going to take a lot of time, in whih ase not too many people would be ableto use it.2.2.4 PayloadWatermark has to ontain a reasonable amount of information, so that we an havesome information to detet and make sure that we minimize the errors during detetion. A`good' payload is espeially useful (i.e) in ase the image is manipulated, then there is bound3

to some loss of data to the watermark, in ase of a large payload, this would not be thatsigni�ant. For a payload to be signi�ant, it must be at least 70 bytes.2.3 BenhmarkingBenhmarking requires a testbed on whih to ompare the di�erent algorithms that areused for embedding information into images [6℄. Most papers whih highlighted variouswatermarking algorithms had their own series of tests, their own pitures and their ownmethodologies. So, there is no way in whih we an ompare the performane of any twoalgorithms without having to re-implement one of them. Re-implementing an algorithmmight make the algorithm a lot weaker (or) stronger than it was earlier thus defeating ourpurpose of omparison. With a ommon testbed (or benhmark), one an have a rough ideaas to how one algorithm works as opposed to another (in this ase, all one needs is a ommonset of images that are watermarked with the respeted algorithms). This also gives us theopportunity to �nd out how the algorithm is working and helps to orret the defets, ifany to make the algorithm more robust. For benhmarking we ompute the following visualdistortion metris [8℄ :Average Di�erene AD = 1XY Xx;y jpx;y � p0x;yjMean Square Error MSE = 1XY Xx;y (px;y � p0x;y)2Signal-to-noise Ratio PSNR = XY maxx;y p2x;y=Xx;y (px;y � p0x;y)2Normalized Cross-orrelationNC =Xx;y px;yp0x;y=Xx;y p2x;yCorrelation Quality CQ =Xx;y px;yp0x;y=Xx;y px;y4

� where X and Y are the height and width of the images respetively. px;y and p0x;y arethe pixel values orresponding to the original and the watermarked image respetively.2.4 AttaksIt is good that we have all the above metris for benhmarking, but the basi problem withall of them is that they do not take into aount the human vision system. So, an algorithmmight appear robust and very good when ompared to the benhmarking tehniques, whereasthe human eye ould probably detet the di�erene between the original and the watermarkedimage. This is of ourse, not a desirable thing. Another problem that ould happen inhoosing the metris is that it might be biased towards ertain kind of algorithms, in thesense that ertain types of algorithms that are based on a ommon tehnique would probablyget a better rating when ompared to the others.Benhmarks are also subjeted to attaks, this might seem a little strange, but when wesay attaks, we mean it in a di�erent sense. Suppose, we are benhmarking an algorithmand we get algorithm E as the one that has the best results and go ahead and implement it.A user might apply some of the following attaks to the image : low-pass �ltering whih isgiven by the following matries :Gaussian 0B� 1 2 12 4 21 2 11CASimple Sharpening 0B� 0 �1 0�1 5 �10 �1 0 1CA3x3 Median FilterEah pixel is replaed by the median of the 3 x 3 neighborhood entered at that pixel.Laplae 0B� 1 �2 1�2 1 �21 �2 1 1CAThe �ltering is done as follows : we ignore the border pixels beause they do not have alltheir nine neighbors. Starting from pixel (1,1) we do our alulations on every pixel till we5

reah pixel (w-1, h-1), where w is the width and h is the height. We take the matrix formedby the 3 x 3 neighborhood entered at that pixel and then alulate the sum of the produtof the two matries taken one element at a time. (i.e) we alulatesum = 3Xi=0 3Xj=0nbhdmatrix[i; j℄ � filter[i; j℄For Laplae and simple sharpening ases, we replae the pixel value by sum. Sine, we areworking with gray sale images, if the value is less than 0, then we make it 0 or if the valueis greater than 255 then we make it 255. In ase of Gaussian �ltering, sum is divided by theweighted mean whih is the sum of all the elements in the �lter matrix (=16). In ase ofthe median �lter eah pixel is replaed by the median of the 3 x 3 neighborhood enteredat that pixel. The median is alulated as follows : this is the middle element in a sortedarray (desending or asending). If the array has n elements, and if n is odd, then medianis the (n+1)/2, element, if n is even, then the median is the mean of the n/2 element andthe (n/2)+1 element.The other types of attaks are JPEG ompression, saling, sropping, sotation and othersimple geometri transformation. These would probably destroy the watermark that wasembedded using algorithm E, and some other algorithm would have probably done better.What we are trying to say here is that the benhmarking tehnique is suseptible to geometriattaks. So, it might make sense to test for robustness on the basis of geometri attaks,but developing a testbed that takes both geometri as well as as noise attaks into aountis muh more diÆult and researh is going on in regard to this [6, 7℄.2.5 Watermarking AlgorithmsWithout going into the historial aspets, we will now take a look at some modern dayalgorithms used to watermark images. Before we do this, we have to mention about a veryimportant priniple that is used. It is alled Kerho�s law (named after Auguste Kerho�s,who stated this in 1883.), whih states that : "The seurity of a watermarking sheme mustbe only in the hoie of the key", what this basially means is that we annot assume thatthe attaker has no idea of the sheme that we use.2.5.1 LSB AlgorithmThis was proposed by Tirkel and Osborne in 1993 [2, 3℄. In this ase the message isembedded in the least signi�ant bit of a number of bits in a gray sale image (hene thename of the algorithm). There are two versions to this algorithm.� Version 1 : Compress the 8-bit values for the olor to 7-bit values, and embed infor-mation in the last bit. Detetion is done by knowing the key whih is basially thepseudo random number generator that we use to �nd the pixels to embed the infor-mation. Sine the last bit is hanged, there is always the danger of not meeting thetranspareny riteria, in the sense that we might end up hanging the image to a largeextent. 6

� Version 2 : Here the watermark is added to the least signi�ant bit and not replaedas in the earlier ase. This method is potentially better o� as it does not hange theimage all that muh. Extration of the watermark is done by performing an autoorrelation (this is a unique funtion and it gives us a unique value).
Figure 3: Piture watermarked using LSB algorithm

2.5.2 PathworkThis algorithm works on the assumption that the given image has 255 levels of grayness,and that all brightness levels are equally likely [4℄. Watermark insertion in the Pathworkwatermarking system uses a seret key to seed a pseudo-random proess that hooses pairsof pixels. For eah pair of pixels, the brightness level of one of them is subtrated by asmall onstant, say k, while this is added to the brightness level of the other pixel. This isdone a number of times (typially around 10000). Watermark extration requires the sameseret key used in insertion. The extration proess works by �nding the same pairs of pixelsthat were hosen in the insertion proess and analyzing the di�erene in ontrast for eahpair. This is done by taking the standard deviation of the original and omparing it to thestandard deviation of the watermarked image. The reason for this is that by hanging thepixel values of the image, we are atually hanging the statistial dimensions of the image.
Figure 4: Piture watermarked using pathwork algorithm

2.5.3 NEC AlgorithmThis algorithm was proposed by Cox, Killian, Lathan and Shamoon [5℄. this algorithmtakes the image and breaks it up into its Disrete Cosine Transform using the followingformula :DCT (i; j) = C(i)C(j) N1�1Xx=0 N2�1Xy=0 pixel(x; y) os "(2x + 1)i�2N1 # os "(2y + 1)j�2N2 # ;7

where C(i) = 1pN if i = 0, else q 2N if i > 0:Leaving the �rst disrete o eÆient aside, we then use the �rst 1000 (this an vary)o eÆients taken along the diagonal. For eah Ci, we alulate Ci = Ci + �Xi, whereeah Xi is a real number whih is part of the pseudo-random number sequene (has normaldistribution) and � is a real number whose value is normally 0.1.The newly alulated o eÆients are onverted bak into the pixel values using thefollowing formula :pixel(x; y) = N1�1Xx=0 N2�1Xy=0 C(i)C(j)DCT (i; j) os "(2x+ 1)i�2N1 # os "(2y + 1)j�2N2 # ;where C(i) = 1pN if i = 0, else q 2N if i > 0:Detetion is performed by again generating the sequene of real numbers and omparingthe standard deviation of the original sequene to the sequene got from the watermarkedimage.
Figure 5: Piture watermarked using NEC algorithm

2.6 GIMP2.6.1 BasisThe GIMP is an aronyn for GNU Image Manipulation Program written and developedunder X11 for UNIX/Linux platforms. It is a freely distributed piee of software suitablefor suh tasks as photo retouhing, image omposition and image authoring. GIMP an beused as a simple paint program, a expert quality photo retouhing program, an online bathproessing system, a mass prodution image renderer, a image format onverter, et.The GIMP is written by Peter Mattis and Spener Kimball, and released under theGNU General Publi Liense (GPL), version 2. The �rst version of GIMP version 0.54was released in February 1996. Many other developers have ontributed plug-ins and haveprovided support and testing. GIMP releases are urrently being handled by Manish Singh.The newest version of the GIMP is version 1.1.19. The stable version is version 1.0. Thisversion was released on June 5, 1998. 8

GIMP is extremely expandable and extensible. It is designed to be augmented withplug-ins and extensions to do just about anything. The advaned sripting interfae allowseverything from the simplest task to the most omplex image manipulation proedures tobe easily sripted. The basi funtions of GIMP inlude Files And Preferenes, Seletions,Paint, Edit, Transform, Text, Brushes And Other Dialogs. GIMP also has full alpha hannelsupport, plus sub-pixel sampling for all paint tools for high-quality anti-aliasing. GIMPsupports many �le formats, inluding gif, jpeg, png, xpm, ti�, tga, mpeg, pgm, px, bmp,and many others. GIMP an load, display, onvert, save to many �le formats.

Figure 6: GIMP user interfae
Sript-Fu is the �rst GIMP sripting extension. Extensions are separate proesses thatommuniate with the GIMP in the same way that plug-ins do. Plug-ins are external modulesthat atually do the nifty graphis transformations. The distintion is that extensions donot require an ative image to operate on, instead extending the GIMP's funtionality. Inpartiular, the plug-in API has been made far more general with the advent of the proeduraldatabase (PDB).The PDB allows the GIMP and its plug-ins to register proedures whih an then bealled from anywhere: internally, from extensions, and from plug-ins. There are alreadyover 200 internal GIMP proedures, and more being reated all the time. Beause all ofthese proedures an be easily invoked from extensions, the logial next step was to reatea sripting faility; thus, Sript-Fu was born. Sript-Fu is a maro language and based onSheme, whih is a interpreted lisp-like language. Sript-Fu is a sript-extension for theGIMP and onnets to GIMP database.GIMP Proedural Data Base (PDB) is orrespondene between sript funtions andGIMP interfae. What we use is SIOD. SIOD (Sheme in One Defun), is a small-footprintimplementation of the Sheme programming language that is provided with some database,unix programming and gi sripting extensions. An implementation suh as SIOD usuallyruns by default in an immediate exeution mode, where programs are parsed as they are9

entered, then exeuted with the results being printed [12℄.

Figure 7: Proedural Database Browser
2.6.2 ArhitetureIf you are new to the world of image manipulation, then the onept of layers would seemstrange, but you an think of layers as something lying on top of one another. This is howGIMP handles images. By default, eah image has one layer to itself. We an always makedupliate layers, so at a time, we ould have multiple layers on top of eah other.Layering allows for greater manipulation. Let us take an instane, suppose we want topaint something that has some drawing, some text, parts of some images, to make it simplerwe ould keep these elements in di�erent layers, GIMP also gives us the option by whihwe an ombine layers and also speify the ombination mode. Even though we an haveseveral layers on top of eah other, we an have only one ative layer to avoid onfusion.GIMP makes sure that the layer is just the orret size, in ase of images, the layer is thesize of the image, in ase of text, then the layer is the boundary of the text. This way a lotof spae is saved.The onept of a drawable is signi�antly di�erent from that of layers. A drawable is awindow whih an have one or more layers. When an image is opened in GIMP, the imageis given a layer and this layer is plaed on top of a drawable. A drawable an have multiplelayers, all lying on top of eah other. We an see the various layers by right-liking on theopen image and liking on the layers and hannels option. The drawable is the workingarea for an image, of ourse one an inrease the size of the drawable or derease it.10

2.6.3 Sript-Fu TutorialSript-Fu uses the programming language sheme. Using Sript-Fu, we an program inthe environment provided by the GIMP. We an use most of the funtions of the GIMP byalling the pre-de�ned proedures that exist in the GIMP database.The sripts that we write must be stored in $HOME/.gimp/sripts diretory. This iswhere GIMP heks for the presene of any sripts when it is loaded. The sript �les musthave extension .sm. One this is done, you need to refresh the GIMP, if GIMP is not alreadyopen, then open it and it will refresh itself and the sript would appear, if GIMP is alreadyopen, then hoose Xtns|Sript-Fu|Refresh, this would make the sript appear if there is noproblems with it (like syntax errors or something like that). In this tutorial, the built-ins ofGimp are shown using this font and the sheme built-ins are shown using this font.There are two kinds of sripts.� Stand-alone : an always be used (button reation, et.)� Image dependent : dependent on image type (modi�ations)Sheme is a programming language, a dialet of Lisp (List Proessing) family of lan-guages, generally utilizing a syntax based on parenthetial expressions delimited by whites-pae, although alternative syntax apabilities are sometimes available [12℄. Sheme proessesLISTS. Eah list is a funtion with its arguments. Sheme evaluates funtions to return val-ues. In sheme, eah funtion is surrounded by (). Also, in sheme, all operators preedethe operands, sheme uses the pre�x notation. Any line after a `;' is ignored, so we an useit for omments. (+ (* 3 4) (/ 4 2)) = 14Variables (set! orange '(250 240 0)) ;sets the value of orangeDelaring loal variables (let* ((a 3) (b 4) ...) (/ a b) ...)The general form of a let* statement is: (let* (binding1 binding2 ...) expression1 expression2)FuntionsFuntions in sheme have to be de�ned by using the de�ne keyword. If these funtions areto be used later they must be registered with the proedural data base (PDB). A funtionin Sript-Fu is de�ned by :(de�ne (sript-fu-funtion parameters1 parameter2))Every funtion in Sript-Fu must be de�ned with the sript-fu lause in front of it. Thissame name must be given while registering the funtion. The parameters are optional.11

List ProessingLists are made up of a �rst element (head) and the rest of the list (tail). The emptylist () is also a list! ar returns the head, dr returns the tail, these two an be ombined asshown. (ar '(1 2 3)) => 1(dr '(1 2 3)) => (2 3)(ddr '(1 2 3 4)) => (3 4)(addr '(1 2 3 4)) => 3Note : All GIMP funtions return lists.Image ManipulationTo �nd out the number and type of parameters for the built-in funtions of GIMP thatare mentioned here, do take a look at the proedural database (PDB). Before we work onimages, we need to load them. GIMP provides a lot of native loaders to load the images,like file-jpeg-load, file-gif-load, a more generalized loader is gimp-file-load whihloads the �le regardless of the type of the �le. This returns the id of the image that has beenloaded, say this is img. After loading the image, we need to know the drawable of the image sothat we an work on the image. This is done by the funtion gimp-image-ative-drawable,this returns the id of the drawable, say draw. Now, that we have the drawable we an getthe pixel values of the image at any given point x and y.(set! pixel (gimp-drawable-get-pixel draw x y))This returns a list whih has as its head the number of hannels and the pixel value of thepoint (x,y) as its tail. So, now that we have got this list we split it into two.(set! bytes (ar pixel)) ;Gets the number of hannels.(set! value (adr pixel)) ;Gets the pixel values.One we have the pixel values (this is in the form of a one dimensional array), we an dosome manipulations to it and then set the values bak. The following setion of ode adds1 to the red omponent of the pixel value. aref allows us to aess that partiular positionof the array, eg : (aref arr 1) is equivalent to arr[1℄. aset will set that partiular array indexvalue eg : (aset arr 1 10) is equivalent to arr[1℄ = 10.(set! red (+ (aref value 0) 1)) ;Adds one to the red omponent(aset value 0 red) ;Sets the value of the red omponent.Now, that we have set the value, we need to set the pixel value of the drawable to the newvalue. This is done by(gimp-drawable-set-pixel draw x y bytes (bytes-append value))
12

The reason we do not set the values diretly is that the built-in gimp-drawable-set-pixelexpets a byte array, and so we onvert our array value into a byte array by using the shemebuilt-in bytes-append. Image is displayed using the gimp-display-new funtion, this takesthe image id as its parameter.Every Sript-Fu funtion must be registered with the proedural data base (PDB). Thisway one an use our sript in some other appliation just by alling the funtion and passingin the required parameters. We register our sript by :(sript-fu-register"sript-fu-funtion" ;Name of our funtion"<Toolbox>/Sript-Fu/funtion" ;Where we want our funtion to appear"What the funtion does" ;Explain the nature of the funtion"Author" ;Author of this funtion"Copyright, 2000, Author" ;Copyright"Mar 5, 2000" ;Date the sript was reated"") This tutorial has been designed to explain some of the onepts used in the implementa-tion of the algorithms. A more omprehensive tutorial is available as part of the GIMP UserManual (part VII) [11℄. A good tutorial on SIOD (Sheme in One Defun) is also availableon the web [12℄.2.7 Combining ImagesNow, we will talk about a method that would allow us to visually �nd out the di�erenebetween two images, by ombining two images (in other words, superimpose two images)using various ombination modes. The fundamental question regarding implementing thevarious ombination modes was how to superimpose images. The GUM (Gimp User Manual)indiated a way to do it, wherein you load the two images and then `import' a layer fromone image onto the other and then speify the ombination mode. This feature was notavailable in the GIMP that we had (version 1.0). This was one of the reasons for hoosingthe developers version as the plug-in that we got alled plug-in-layers-import was availablefor version 1.1. This plug-in allows one to import layers from one or more images into animages drawable (this is irrespetive of the size of the images), after whih we an speifythe layer ombination mode. This proedure is done in a series of steps.2.7.1 Loading ImagesFirst of all, we have to load the images that we want to work on, this is done by :(�mg (ar (gimp-file-load 1 �lename �lename)))where �mg is the id of the image that has been loaded. Similarly, we an load the seondimage and all its id as simg. 13

2.7.2 Getting DrawableTo be able to import a layer from an image, one has to know the id of the drawable of theimage. Here, we get the drawable id of the �rst image.(fdraw (ar (gimp-image-ative-drawable �mg)))where fdraw is the id of the drawable. We do not need the drawable of the seond image aswe are going to import the layer of the �rst image into the seond image.2.7.3 Import LayersNow, we will import the layer of the �rst image into the seond image using the plug-inplug-in-layers-import.(plug-in-layers-import 1 simg fdraw fdraw 0 8)where 1 is the run mode whih is non-interative mode, 0 means that the layers getsopied/imported as is, 8 means that it opies/imports all the layers found in the drawablefdraw (this is useful in ase an image has more than one layer).2.7.4 Combining LayersNow that we have imported a layer of an image into another image, we an speify theombination mode. Before that we must set the new layer as the ative layer. This is doneby : (set! nlayer (ar (gimp-image-get-ative-layer simg)))where nlayer is the id of the new layer whih has been imported from the �rst drawable(fdraw) of the image.We an now speify the ombination mode of the layer.(gimp-layer-set-mode nlayer mode)where mode is the ombination mode that we speify. The di�erent ombination modesavailable are : 0 - Normal 1 - Dissolve2 - Behind 3 - Multiply4 - Sreen 5 - Overlay6 - Di�erene 7 - Addition8 - Subtrat 9 - Darken only10 - Lighten only 11 - Hue12 - Saturation 13 - Color14 - Value 15 - Divide14

Figure 8: Di�erene of the �rst two images as a third image

Figure 9: Image Compare Interfae
15

This is indeed very useful, as this gives us a way by whih we an visually see thedi�erenes between two given images. The good thing about this is that (as mentionedearlier in setion 2.6.3) it is independent of the type of image �le. Also, this would workfor images that are not of the same size. The plug-in used here heks if the seond imageis larger than the �rst, if so, it blindly imports the layer from the �rst image(this way theimported layer is smaller than the existing layer and so any hanges to the mode is visibleonly in that part). If the �rst image is larger, then the layer that is imported is of the samesize as the seond image (in whih ase, the whole layer of the �rst image is not imported).3 Implementation3.1 BenhmarkingImplementing this using the GIMP was not very diÆult. This is one of the reasonsthat we based our software on top of the GIMP, it already gives us the tools to loadthese image and get the pixel values of the images. This is done by a built in alledgimp-drawable-get-pixel, this gets the pixel value of a point in the image, by iterat-ing through the whole image one an get the pixel value at every point in the image. Forloading the image, GIMP has this built in routine alled gimp-file-load that alled theappropriate �le handler depending on the type of the image, so this makes our softwareimage independent.Being a image manipulation program, GIMP does have problems handling some ofthe large numbers that our beause of the benhmarking metris. Also, the built ingimp-drawable-get-pixel is very slow as it has to all some basi built in routines.

Figure 10: Benhmarking of the image whih was watermarked using the pathwork algorithm,length of the watermark was 1000
16

3.2 Implementing AlgorithmsBefore we started to implement the algorithms, we used the GIMP to get used to theway one has to program in that environment. To program in GIMP, one has to programusing Sript-Fu whih used sheme as its basi language (a small tutorial is given in setion2.6.3).These algorithms were �rst implemented on small images (100 x 100) to make sure thatthey worked. Also, these images had a blak bakground so that it would be lear tothe human eye one the embedding was done. Initially, while using Pathwork and NEC,information was hidden in the blue hannel and then extended to hide information in thepixel as a whole.Design Priniples� User Interfae : It provides onvenient user interfae. To ahieve the �st purpose, weuse SF-FILENAME parameter in Sript-Fu-register funtion:SF-FILENAME "Input �le name" (string-append "" gimp-data-dir " /�sh.jpg")This will reate a widget in the ontrol dialog. The widget onsists of a button on-taining the name of a �le. If the button is pressed, a �le seletion dialog would pop-up.� Image Types : It an deal with various image formats. The watermarks may beembedded not only in a gray sale image, but in RGB image as well. We just hangethe blue hannel of an RGB image to satisfy the `transpareny' requirement for a goodwatermarking system.� Seeding : It an produe a unique seed. We hoose the urrent time as the key and useit to reset the algorithm seed for rand funtion to produe pseudo-random numbers.3.2.1 PathworkEmbeddingFirst we get the urrent time as the seed for rand funtion. The seed is stored in a defaultseed �le "PCHseed.dat" in the urrent diretory (but user an speify his/her own seed �le).This is important, beause the detetor needs the same seed during deoding. This is doneby (set! seed (realtime)) ; Get urrent time (srand seed) ; Reset seedSeondly, we use a pseudo-random number generator to hoose pixel pair (An, Bn) fromthe original image.Thirdly, we modify the brightness level of An and Bn by an amount k:(aset pixelarray index (+ (aref pixelarray index) k)))17

and then put them bak to the output image. Repeat this for n steps (n typially around1000). At last, display the original image and the watermarked one.

Figure 11: Pathwork Interfae
DetetionWe open the seed �le to get the key so that we an run the same pseudo-random numbergenerator to �nd the same pairs of pixels hosen during the embedding algorithm. Then,we, ompute the sum of the di�erene for eah pair, standard deviations SD, and sum/SD.After these alulations, we print out the �nal result.3.2.2 NEC AlgorithmData Struture� In a spatial domain, we do not need to reate a two dimension array to store pixelsof an image, beause through GIMP we an get a pixel value diretly from an image.This an save time and spae.� In a transform domain, we use a list instead of a two dimension array to store DCTarray. This is beause that SIOD (Sheme in One Defun) an only alloate one dimen-sion array urrently. The length of the DCT list is the number of rows of the originalimage. Eah element in the list is also a list with the length of the number of olumnsof the image. That is, eah element stores one row of the image.18

Figure 12: Ne Interfae� The watermarks are random numbers with distribution of N(0,1). They are stored inan array with length of the size of watermark spei�ed by the user.� We de�ne our own pseudo-random number generator gaussrand instead of simple fun-tion rand. The gaussrand funtion an generate random numbers with distribution ofN(0,1).EmbeddingThe following steps are followed in the embedding proess.� The image to be watermark is loaded and the seed is initialized using the urrent time.The seed is stored in a �le so that we an retrieve it during detetion. Before theimage is loaded, the user is asked for the name of the image, the watermark size andthe alpha value.� The image is broken down into pixels and is onverted into its Disrete Cosine Trans-form (DCT).� The random numbers are generated (say, N) and the �rst N DCT o e�ients (exludingthe �rst) are hosen along the diagonal and their values are modi�ed.� The modi�ed DCT array is one again onverted into its orresponding pixel valuesand these new pixel values are put bak into the image so that the image is nowwatermarked 19

DetetionThe following steps are followed in the detetion proess.� The original image and the watermarked image are loaded. The seed that was storedin a �le earlier is read and the original pseudo random numbers are generated again(this is the original watermark). The DCT o eÆients of both the original and thewatermarked image are alulated.� Using the DCT oeÆients of the original and the watermarked image and the alphavalue the watermark is extrated from the seond image.� The original watermark and the extrated watermark are taken and the standarddeviation is alulated. If this is over the given threshold then we an safely saythat the image has been watermarked.4 ConlusionIn this paper we have talked about the benhmarking tehniques and also of a tehniquewhih allows us to ombine the original and watermarked images into one and allows us todo some interesting manipulations. We have also sueeded in integrating the two. Both thebenhmarking and the image ombination were done using two di�erent funtions writtenusing Sript-Fu, all we had to do was to write a third funtion and all the funtions writtenearlier. This was made possible beause every Sript-Fu funtion that is written in GIMPis registered with the Proedural Database (alled PDB, one an see all the funtions byinvoking the DB browser). In this way, we have two ways to view the embedded watermark,one is by using the mathematial tehnique provided by the benhmarking and the other isby viewing the transpareny of the watermark by using the image ombination software.At the beginning of this paper, we had mentioned some of the problems regarding usingGIMP to do the benhmarking. One of the major problems was that GIMP was not able tohandle big numbers very well. To ite an example : To make sure that the benhmarkingtehniques had been implemented orretly, we took the same image and ran the algorithmon it. If the image size was below 60x60, then we got the expeted values (AD = 0, MSE= 0, SNR = 0, et), if the size exeeded this (or roundabout) then the values were not asbefore. The reason for this, as we onluded was that after a point of time, the numbersbeome too large for GIMP to handle and it ends up generating some garbage values. Thisis not a problem otherwise, as in the long run this evens out (if we onsider the garbage asan error, then in the end all the errors kind of anel eah other out).For people who are not familiar with sheme, it may seem a daunting task to programin the GIMP environment initially. There is another plug-in available whih allows us towrite sripts using Perl. We did try to down load that plug-in and install it but were notsuessful as we did not have all the libraries required by it. You an visit the web site for20

more information [10℄. Depending on the version you have you an download the orretplug-in.In the benhmarking �eld, there is still a lot of researh going on as people are tryingto establish the orret testbed that would be `fair' to all methods in its rating. The basiproblem is that the urrent method is suseptible to attaks (not exatly intended in thesame way as regards with watermarks) and does not provide a fair benhmark regardinggeometri transformations done to watermarked images. The problem is that the tehniquedoes not take into aount the type of the attak that the watermark has been under, it justalulates the same metri regardless of the attak.We need to take into aount the type of the attak, as otherwise we would not knowwhih tehnique would work the best for us depending on the media used (audio, images,video et). For example, if we are benhmarking an audio watermarking sheme, then it isof no use trying to take geometri attaks into onsideration [6℄.Referenes[1℄ B. P�tzmann Information Hiding Terminology Information Hiding, Springer LetureNotes in Computer Siene, v 1174, pp. 347{350, 1996.[2℄ R. G. van Shyndel, A. Z. Tirkel, C. F. Osborne. A Digital Watermark. Proeedings ofthe 1994 1st IEEE International Conferene on Image Proessing, Part 2 (of 3). Austin,TX. pp. 86{90.[3℄ R. G. van Shyndel, A. Z. Tirkel, C. F. Osborne, W. J. Ho, N. R. A. Mee and G.A. Rankin. Eletroni Watermark. Digital Image Computing, Tehnology and Applia-tions (DICTA'93), pp. 666{673, Maquarie University, Sydney, 1993.[4℄ W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Tehniques for data hiding. I. B. M.Systems Journal, vol. 35, no. 3&4, pp. 313{336, 1996.[5℄ I. J. Cox, J. Kilian, T. Leighton and T. Shamoon. Seure spread spetrum watermarkingfor multimedia. IEEE transations on image proessing, vol. 6, no 12, pp. 1673{1687,1997.[6℄ M. Kutter and F. Petitolas. A fair benhmark for image watermarking systems. InPing Wah Wong and Edward J. Delp, editors, proeedings of Eletroni Imaging '99,Seurity and Watermarking of Multimedia Contents, vol. 3657, pp. 226{239, San Jose,California, U.S.A., 25{27 Jan. 1999.[7℄ F. Petitolas, R. J. Anderson and M. G. Kuhn. Information hiding { A survey. Proeed-ings of the IEEE, speial issue on protetion of multimedia ontent 87(7):1062{1078,July 1999. 21

[8℄ Stefan Katzenbeisser and Fabien Petitolas (Editors). Information Hiding Tehniquesfor Steganography and Digital Watermarking. Arteh House Books, 1999.[9℄ The GIMP web site is at : http://www.gimp.org.[10℄ The GIMP plug-in registry is available at : http://registry.gimp.org.[11℄ The GIMP User Manual written by, Karin Kylander and Olaf S. Kylander is availableat : http://manual.gimp.org/manual/GUM/GUM.html.[12℄ The SIOD (Sheme in One Defun) tutorial is available at :http://people.delphi.om/gj/siod.html.

22

