
Policy driven Remote Attestation

Anandha Gopalan, Vaibhav Gowadia, Enrico Scalavino, and Emil Lupu

Department of Computing
Imperial College London

180, Queen’s Gate
London, SW7 2RH, U.K.

{a.gopalan,v.gowadia,e.scalavino,e.c.lupu}@imperial.ac.uk

Abstract. Increasingly organisations need to exchange and share data
amongst their employees as well as with other organisations. This data is
often sensitive and/or confidential, and access to it needs to be protected.
Architectures to protect disseminated data have been proposed earlier,
but absence of a trusted enforcement point on the end-user machine
undermines the system security. The reason being, that an adversary
can modify critical software components. In this paper, we present a
policy-driven approach that allows us to prove the integrity of a system
and which decouples authorisation logic from remote attestation.

Key words: Remote Attestation, Trusted Platform Module, Policy
based attestation

1 Introduction

Governments, businesses and social organisations require the exchange of data
between employees as well as with other organisations. This data is often sensi-
tive and/or confidential but its exchange is vital for the successful functioning
of these organisations. In particular, this becomes more important with more
and more organisations and employees using mobile devices which increases the
probability of the data falling into the wrong hands due the thefts of these de-
vices.

Privacy and business confidentiality requirements demand that only autho-
rised people should be granted access to sensitive data, and the usage of sensitive
data needs to be controlled even after the data has been disseminated to data
consumers. Data may reside at many locations such as server-side data stores,
end-user machines, and portable disks. Controlling usage of sensitive data irre-
spective of its location requires that the sensitive data is always encrypted when
stored or transmitted to force all access through a trusted Policy Enforcement
Point (PEP). Only the PEP should be able to obtain decryption keys when
permitted by a trusted Policy Decision Point (PDP).

Sandhu et al. [14, 18] and Gowadia et al. [7] have described various security
architectures to protect disseminated or shared data. A common factor among
these architectures is the need for a trusted policy enforcement point. A poten-
tial threat is that an adversary can modify critical software components such

2 Anandha Gopalan et al.

as enforcement and policy evaluation components, or the underlying operating
system. Such attacks can be mitigated in corporate environments by restricting
the rights of users, so that they are unable to modify critical files on a system
where sensitive data may be used. However, this assumption does not hold when
dealing with a malicious insider, when the equipment is stolen or otherwise falls
into the wrong hands. This is especially true in the case of using mobile devices
due the high risk of theft. It is then necessary to increase the level of assurance
provided. To provide a high assurance of system integrity we must rely on a
trusted hardware component (e.g., the Trusted Platform Module (TPM), whose
specifications are defined by the Trusted Computing Group (TCG) [23]). The
TCG is working on the Mobile Trusted Module (v2.0) specification to improve
mobile phone security.

The process of verifying integrity of remote systems using TPMs is called
remote attestation. Remote attestation requires that a trusted verifier is able to
verify integrity based on a digitally signed list of checksums provided by the
data consumer. The process of verifying this evidence requires the verifier to
maintain a large up to date database of acceptable software components that
may exist on a data consumer’s system. It is often desired that such a task
be outsourced to a specialist. Managing trusted reference data for computing
software measurements is a cumbersome task and by outsourcing the task to a
specialist, we can reuse work done by the specialist verifier, thus reducing the
cost of maintaining updates. However, out-of-the-box implementations of verifier
software (e.g. [17]) only provide a boolean decision regarding a system’s integrity.
A decision about the system’s integrity is often not sufficient to ensure that a
program’s behaviour will be as expected [8]. For example, acceptable program
behaviour may depend on specific compositions of system components and their
versions.

Considering the above requirements, an authorisation policy for accessing
sensitive data should be able to specify whether remote attestation is required
or not. If required, it should also specify who the trusted verifier is and which
conditions should be satisfied by system components in addition to the conditions
over subject and data attributes.

Different organisations may want to specify different constraints over system
components. Therefore, a boolean result from a common verification authority
is not sufficient. Instead, a verifier should provide functionality to allow a data
provider to identify attributes of components on the data consumer’s machine
in addition to verifying their integrity. These attributes can then be utilised to
evaluate authorisation policies within an organisation as needed.

In this paper, we present a policy-driven approach that allows us to specify
the remote attestation requirements as part of authorisation policies. We also
describe our architecture (and its implementation) that is used to prove the
integrity of the system. A Trusted Platform Service (TPS) was designed and
developed to allow easy integration of secure applications with the remote at-
testation module. The decoupling of remote-attestation and authorisation logic
allows for greater flexibility for an organisation to integrate data protection

Policy driven Remote Attestation 3

frameworks (such as Consequence [5]) with third-party attestation authorities.
Our Trusted Platform service can be used by applications to handle remote
attestation requests.

The major contribution of this paper is to illustrate the specification of re-
mote attestation requirements as part of authorisation policies and to describe a
modular implementation for easy integration of Trusted Computing technology
with existing usage control systems. We believe that our approach and imple-
mentation on this platform will spur further investigation in this field.

The rest of the paper is organised as follows. Section 2 presents the overall
architecture of our system. Section 3 presents the implementation details along
with the various components that are used by our system. Section 4 presents
research related to this paper, while Section 5 concludes the paper and provides
ideas for future work.

2 Architecture

Evaluation of access rights on protected data requires identification of applicable
policies and characteristics of the data. Therefore, metadata and policies are
typically attached with the protected data during dissemination. In addition,
the content key used for encrypting the data is encrypted with the public-key of
a policy enforcement authority and also attached to the protected data. When
a user requests access to the protected data, user and contextual attributes are
also needed to evaluate the access request. These attribute values (as part of
a credential / security token) must be provided by an authority trusted by the
data provider or data owner.

Requirements for remote attestation of a system’s integrity and state can be
considered as contextual attributes and expressed as part of the usage control
policies. An example policy using trusted credentials is shown below. Users can
obtain the privileges for the “commander” role only if they present the required
credentials. Access conditions can be further specified as part of authorisation
policies (e.g. users must have an acceptable version of the glibc library).

authority A = "MyOrgCA"; authority V = "verifierCA";

credtype authn(uid, group);
credtype attestation(integrityCheck);
credtype version(glibcMajor, glibcMinor);

credential authnCred = authn signedby A;
credential attCred = attestation signedby V;
credential verCred = version signedby V;

role commander requires attCred.integrityCheck =="true"
and verCred and authnCred.group="officer" ;

authorization confidentiality0auth0 = allow read()
target(dataCategory == "personalSensitive")
to commander
when ((verCred.glibcMajor == 2 and verCred.glibcMinor>5)

or verCred.glibcMajor>2);

4 Anandha Gopalan et al.

Fig. 1. Overall Architecture of the Remote Attestation Service

In Fig. 1, we show the interactions between components of our data protection
framework. In this section, we describe how the framework can be integrated with
a Trusted Platform Service (TPS). However, similar ideas may also be applied for
integration with other dissemination control systems. The framework can be used
to enforce usage control over data when data is shared within an organisation,
and also if the data is shared across administrative domains using a Data Sharing
Agreement (DSA).

The Policy Enforcement Point (PEP) comprises a Data Protection Object
(DPO) API and the application used to access the data. The DPO API is a
generic enforcement component that can be used in different applications to
enforce usage control. The framework contains both local and remote policy
evaluation and enforcement components. The remote components play an im-
portant role in verifying credentials and evaluating policies for granting initial
access to data. The local components are used to reevaluate policies and enforce
a continuous control over the usage of data.

When a request to access protected data is made, the DPO API asks the
Policy Decision Point (PDP) to determine the credentials needed to evaluate
the access request. This is an optimisation step, as otherwise time may be spent
on obtaining unnecessary credentials. The PDP then searches the policies associ-
ated with the protected data to determine the applicable ones on the basis of the
metadata and requested action and determines the corresponding credential re-
quirements. The credential requirements are expressed as pairs (credential type,
issuer), where an issuer is the authority trusted to specify values for the creden-
tial type. For example, (authn, “MyOrgCA”) is a requirement for a credential of
the type authn that is signed by authority “MyOrgCA”. The credential type is
defined by a list of attribute names that must be present in a credential of that

Policy driven Remote Attestation 5

type. The issuer or authority value, e.g. “MyOrgCA” is a unique name for the
authority used by the Policy Information Point (PIP) to identify it.

The PIP dispatches requests for the credentials to security token services.
The architecture allows configuration of multiple context adapters into the PIP.
Each context adapter can interact with a particular type of credential provider
and obtain the requested credentials. The integration of the remote attestation
process with the data protection framework has been realised by creating a
specific context adapter.

If remote attestation is required, the DPO API requests the Trusted Plat-
form Service (TPS) to obtain credentials from the specified verifier. The TPS
collects the checksums values of all applications and modules loaded on the data
consumer’s machine (using the Integrity Measurement Architecture (IMA) [17]),
along with a cumulative checksum maintained by the trusted hardware compo-
nent called the Trusted Platform Module (TPM). The checksums are sent to
the remote attestation authority specified in the given credential requirement.
The verifier validates the checksums from the data consumer’s machine against a
database of known checksums for the trusted applications and system software.
The attestation authority verifies that the measurements are from acceptable
applications and then it calculates an expected value for the aggregate check-
sum based on the measurements presented. If the calculated aggregate checksum
matches with the value signed by the data consumer’s TPM, then the attestation
authority knows that the data consumer’s system has loaded only trusted com-
ponents. In such a case, the attestation authority can issue a certificate for the
successful integrity check of the data consumer’s system. In addition, the verifier
can attest specific information (such as version number) about components that
were relevant for the policy evaluation.

In the previous example, the policy requires a minimum version (but not
the latest version) for the glibc library. Such a policy may be useful as the
applications accessing the data may have a vulnerability when using an older
version of the library. The intention of such a policy is to capture organisation-
specific security requirements that need not be enforced by the verifier. This
separation of responsibilities between the verifier and the organisation specific
authorisation policies is referred to as decoupling of remote attestation logic from
authorisation logic.

After obtaining the required credentials, the DPO API requests the decryp-
tion key from the policy enforcement service, which verifies the credentials and
asks a policy-service to check whether the access is authorised. As shown in
Fig. 1, a successful evaluation leads to the issue of a use-license (which includes
the decryption key).

Our approach has the advantage of mitigating the possibility of granting
access to systems with known vulnerabilities in a way that does not require the
attestation authority to know the organisation policy. After the use-license has
been released, the enforcement module at the data consumer’s machine protects
decryption keys using the secure storage feature of the TPM. To ensure the
correct functioning of the system, it is critical to ensure the integrity of the

6 Anandha Gopalan et al.

PDP, DPO API and PIP components. These must be verified during a secure
boot procedure as mentioned in Schmidt et al. [20].

To cope with a system’s state change after attestation, we require re-
attestation of the system to obtain a use-license for each data item and to renew
any existing use-licenses, which expire at a time governed by the usage control
policy. In our work, we do not specify an integrity metric, since one may need to
analyse a huge number of software components and identify which ones are criti-
cal to system security. This only furthers our case for outsourcing the attestation
task to a specialist.

3 Implementation

In this section, we present the background and implementation details of the
architecture presented in Section 2.

3.1 Trusted Platform Module

The Trusted Platform Module is a micro-controller chip located on the moth-
erboard and contains cryptographic engines and memory (both persistent and
volatile). The components of a TPM are shown in Fig. 2. The TPM specification
is an industry specification released by the Trusted Computing Group [23]. A
TPM provides sealed storage and remote attestation capabilities. It performs
cryptographic computations internally, i.e. hardware and software components
outside the TPM do not have access to the execution of crypto functions within
the TPM hardware.

Cryptographic operations are performed in a TPM by using a cryptographic
accelerator, an engine for SHA-1, a HMAC engine, a Key Generator and a Ran-
dom Number Generator. This allows RSA encryption and decryption and can
also be used to sign data. The Platform Configuration Registers (PCRs) are each
20-bytes long and are used to store measurements (SHA-1 hash values) of the
hardware and software configurations of the platform. A PCR r (with value rt
at time t) is updated with a new measurement m by padding m to the existing
value in r and then taking the hash (using SHA-1) of the resultant value. In
particular, rt+1 = SHA− 1(rt || m).

To use the TPM functionalities such as TPM Quote (which produces a signed
composite hash of the selected PCRs and external data, such as a nonce), the
TPM needs to be set up with an Attestation Identity Key (AIK) and it’s appro-
priate credentials. This key will be used to sign PCR values (such as from TPM
Quote) and the associated credential will guarantee that the quote is coming
from a genuine TPM. Using the platform credentials of the TPM, an AIK was
created apriori by using the services provided by PrivacyCA [15].

3.2 Integrity Measurement Architecture

The runtime system of the device used by the requester must be attested to
ensure its integrity. Attestation requires measurement of all components from the

Policy driven Remote Attestation 7

Fig. 2. Trusted Platform Module (TPM)

boot process up to the application layer. This is achieved by using the Integrity
Measurement Architecture (IMA) [17]. To aid in taking measurements, hooks are
placed in the Linux kernel. All executable content, as well as application-related
file content (configuration files, libraries, etc.) are measured (a SHA-1 checksum
of the file is taken) before they are loaded. The files measured include: kernel
modules, executables, configuration input files. Each time a file is measured, a
given PCR (PCR-10) is extended with the new value, and this value is also added
to the measurement list that is stored in the kernel. This measurement list is
also accessible using the filesystem. To attest a platform, the value of PCR-10
along with its measurement list is sent to the verifier (Attestation Authority)
who can check the state of the software stack. We use the Integrity Measurement
Architecture that is available as part of the Linux Kernel (version 2.6.32).

3.3 Trusted Boot

A basic principle followed in trusted platform technologies is to verify the in-
tegrity or trust of every critical component before it is executed or loaded. There-
fore, in addition to checking the runtime integrity of a system, we must also
ensure that the system was booted correctly and is running the appropriate op-
erating system. This is achieved by building a chain of trust starting with the
Core Root of Trust for Measurement (CRTM), which is a trusted code in the
BIOS boot block. It reliably measures integrity values of other entities, and stays
unchanged during the lifetime of the platform. CRTM is an extension of normal
BIOS which is run first to measure other parts of the BIOS block before passing
control. The BIOS then measures hardware and the bootloader and passes con-
trol to the bootloader. The bootloader measures the OS kernel image and passes
control to the OS. Each step of the boot process extends the appropriate PCR
value in the TPM with the measurements taken in that step. These measure-
ments attest the integrity of the system. For the purpose of our implementation,
we used Trusted Grub v1.1.5 [24] as our boot loader and Linux kernel 2.6.32.
This process is shown in Fig. 3.

8 Anandha Gopalan et al.

Fig. 3. Trusted Boot Process

3.4 Trusted Platform Service

The Trusted Platform Service (TPS) provides the enforcement architecture with
two functions to: (i) verify the integrity of the system and (ii) protect encryption
keys. The Trusted Platform Service is implemented in C and modelled as a
“listener” service that waits for requests on a particular port. It provides the
functionality of interacting with system-level libraries that measure system state
and is also responsible for interactions with the verifier. This service uses the
TrouSerS (Trusted Computing Software Stack) API [22] for accessing the various
functionalities of the TPM. The verification of the software stack is done using
the Trusted Platform Module, along with kernel and boot-loader improvements,
and the Integrity Measurement Architecture (IMA) [17].

When the Trusted Platform Service receives a request from the PIP, it ini-
tiates the verification process. The request from the PIP contains information
about the verifier (including the name and port number) and using this the
TPS contacts the verifier. Upon receipt of a nonce (to ensure freshness) from
the verifier, the TPS packages the required data and sends it to the verifier.
The packaged data consists of: (i) TPM Quote (signed by the TPM), (ii) TPM
credentials, (iii) values of selected TPM PCRs (chosen depending on what we
wish to check - this includes PCR-10), and (iv) IMA measurement list.

3.5 Attestation Authority

The Attestation Authority is implemented in C and modelled as a “listener”
service that waits for requests on a particular port. The Attestation Authority
is provided with a database of expected checksum values of various programs. It
is against this list that incoming requests are checked. Upon receiving a request
from the Trusted Platform Service, the Attestation Authority replies back with
a nonce. The resultant response from the Trusted Platform Service is the data
blob containing the results of the TPM Quote function along with the TPM
credentials, as well as the IMA measurement list. The Attestation Authority
initially verifies the TPM Quote (using the credentials provided for the TPM),

Policy driven Remote Attestation 9

after which the PCR values are checked. To verify the integrity of the software
stack, the IMA measurement is used to re-compute the value of PCR-10 and it
is compared to the received value. Finally, the hash values of the applications
(and their versions) are checked against the available database.

Depending on the outcome of the verification process, the Attestation Au-
thority will send back an Attestation certificate (signed by it to ensure authentic-
ity) certifying the required credentials (as specified by the authorisation policy).
We use X.509 certificates for this purpose. This method of attestation allows
for decoupling between the evaluation of authorisation policies (at the data con-
sumer’s side) and remote-attestation at the Attestation Authority.

4 Related Work

Remote attestation is an integral part of Trusted Computing and the ability
to verify the software and/or hardware running on a machine is of paramount
importance. There has been however, some criticism about whether this is a
viable or impractical solution, since it requires the attesting authority (or verifier)
to know apriori the needed software configurations as well as their checksums.
Lyle et al. show that this is indeed a viable solution for web services [11]. Our
remote attestation scheme is generic enough to work with web services as well
as other technologies.

The Integrity measurement architecture (IMA) proposed by Sailer et al. [17]
uses binary attestation to measure all the programs and code before they are
loaded into the system to run. This architecture was extended by Jaeger et al. in
[9], where the proposed architecture only measures the programs and code that
are needed by the verifier. This was due to the fact that the verifier does not
necessarily need to know the measurements of all the programs that are running
on the system. In our work, we use IMA because we do not distinguish between
what is required by the verifier and that which is required by the enforcement
layer. This is due to the fact that these two are decoupled and different third-
party verifiers could be used for our purpose.

In the event that the software platform cannot guarantee that the software it
is running is reliable, it is advisable to move the required program code away from
the untrusted platform. The technique used for this is called code-splicing, which
involves splitting the program code into “critical” and “non-critical” sections,
so that only non-critical code is run on the untrusted platform. This in turn
guarantees that code that is critical has not been tampered with. These ideas
have been presented by Ceccato et al. [3], Dvir et al. [6] and Zhang et al. [27].

Kennell et al. proposed a system called “Genuinity”, which verifies if the
hardware and the software running on a system are “genuine” [10]. This is
achieved without the use of any special hardware and by using a timed execution
of a checksum function that provides a fingerprint of the running applications.
The time taken to execute the checksum is verified by the verifier. As shown by
Shanker et al. [21], this is not a viable solution due to the assumptions that are
to be imposed and it is also prone to substitution attacks.

10 Anandha Gopalan et al.

Using the idea of calculating a checksum, Schellekens et al. [19] proposed a
system where the time stamping functionality of the TPM is used to calculate
the execution time of the checksum locally. This is then used in conjunction
with a timing based remote attestation mechanism to prove the integrity of the
system.

Alawneh et al. propose an architecture to protect data within an organisa-
tion [1]. Their threat model is that of a rogue employee who can potentially
disseminate data to the outside world. The proposed system binds the sensitive
content within the organisation to specific devices, thereby restricting the con-
tent from being leaked to other devices. In the case when devices need to share
information, these devices are allocated to the same dynamic domain.

Although the aforementioned systems all provide varying degrees of remote
attestation and verification, none of them decouples the attestation process from
the enforcement process. This allows for more flexibility with respect to the type
of remote attestation chosen, as well as more fine grained access control at the
enforcement layer.

Sadeghi et al. [16] provide reasons as to why binary attestation may not
be the most useful form of attestation. They argue that rather than using the
checksums of the software programs on a machine, it is better to asses the state
of a platform based on some pre-determined security properties. This type of
attestation that uses the security property rather than binary attestation is re-
ferred to as property-based attestation. Property-based attestation uses binary
attestation to prove some “property” of the system (for example, if certain hash
values match, then we can state that the system is in a particular state). There
have been several techniques that have been proposed for property-based attes-
tation [4, 13]. In [12], the authors have proposed the idea of a Property Manifest,
which can be used to define security policies for policy-based attestation.

Haldar et al. proposed the concept of semantic remote attestation in [8],
wherein the security of the system is guaranteed through program analysis. To
verify whether a program’s execution will satisfy the security properties, the
authors analyse the program by using a Trusted Virtual Machine.

Though both property-based attestation and semantic remote attestation
provide the techniques to attest whether a remote machine is trusted or not,
neither of these decouple the enforcement layer from the attestation author-
ity. Also, this decoupling allows our system to use any underlying attestation
mechanism and this adds to the flexibility of the presented system.

In [26], Yu et al. propose a system for guaranteeing the freshness of the
integrity measurement that is used in the attestation. This proposed solution,
called RTRA, uses the run-time state of the attesting party. RTRA can be di-
rectly integrated into our architecture by using it as the underlying attestation
mechanism.

Often privacy is also a concern when sharing system measurements with the
verifier. Our scheme may be used together with privacy preserving protocols
such as Brickell et al.’s attestation scheme [2]. The high-level description of their
scheme implies changes in the cryptographic protocol between IMA, TPM, and

Policy driven Remote Attestation 11

the verifier. However, our architecture resides at a higher-level and is independent
of the cryptography specifics used (e.g. signature schemes).

The goals of Trusted Network Connect [25] seem very similar to our work.
In their architecture the integrity measurement verifiers act as the PDP, which
is different from our architecture as we separate the PDP and verifier. They also
have the problem of policies being evaluated by the verifier itself.

5 Conclusion and Future Work

In this paper, we have presented a policy-driven approach that allows us to prove
the integrity of a system while decoupling authorisation logic from remote attes-
tation. This decoupling of remote attestation and authorisation logic allows for
greater flexibility for an organisation to fine tune their authorisation policies by
using different data protection frameworks with third-party attestation authori-
ties. This system relies on a trusted hardware component, the Trusted Platform
Module and uses the Integrity Measurement Architecture. In the future, we
would like to evaluate our system with different policy-based data protection
frameworks as well as with different attestation mechanisms.

References

1. M. Alawneh and I. M. Abbadi. Sharing but protecting content against internal
leakage for organisations. In DBSec, pages 238–253, 2008.

2. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In Pro-
ceedings of the 11th ACM conference on Computer and communications security,
CCS ’04, pages 132–145, New York, NY, USA, 2004. ACM.

3. M. Ceccato, M. Preda, J. Nagra, C. Collberg, and P. Tonella. Barrier slicing
for remote software trusting. In Source Code Analysis and Manipulation, 2007.
SCAM 2007. Seventh IEEE International Working Conference on, pages 27 –36,
30 2007-oct. 1 2007.

4. L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi, and C. Stüble. A
protocol for property-based attestation. In Proceedings of the first ACM workshop
on Scalable trusted computing, STC ’06, pages 7–16, New York, NY, USA, 2006.

5. Consequence Project. http://www.consequence-project.eu/.
6. O. Dvir, M. Herlihy, and N. Shavit. Virtual leashing: Internet-based software piracy

protection. In Distributed Computing Systems, 2005. ICDCS 2005. Proceedings.
25th IEEE International Conference on, pages 283 –292, june 2005.

7. V. Gowadia, E. Scalavino, E. C. Lupu, D. Starostin, and A. Orlov. Secure cross-
domain data sharing architecture for crisis management. In Proceedings of the tenth
annual ACM workshop on Digital rights management, DRM ’10, pages 43–46, New
York, NY, USA, 2010.

8. V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation - a virtual
machine directed approach to trusted computing. In USENIX Virtual Machine
Research and Technology Symposium, pages 29–41, 2004.

9. T. Jaeger, R. Sailer, and U. Shankar. Prima: Policy-reduced integrity measurement
architecture. In Proceedings of the eleventh ACM symposium on Access control
models and technologies, SACMAT ’06, pages 19–28, New York, NY, USA, 2006.

12 Anandha Gopalan et al.

10. R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer
systems. In Proceedings of the 12th conference on USENIX Security Symposium -
Volume 12, pages 21–21, Berkeley, CA, USA, 2003. USENIX Association.

11. J. Lyle and A. Martin. On the feasibility of remote attestation for web services. In
Computational Science and Engineering, 2009. CSE ’09. International Conference
on, volume 3, pages 283 –288, aug. 2009.

12. A. Nagarajan, V. Varadharajan, M. Hitchens, and S. Arora. On the applicability
of trusted computing in distributed authorization using web services. In DBSec,
pages 222–237, 2008.

13. A. Nagarajan, V. Varadharajan, M. Hitchens, and E. Gallery. Property based
attestation and trusted computing: Analysis and challenges. In NSS, pages 278–
285, 2009.

14. J. Park, R. S. Sandhu, and J. Schifalacqua. Security architectures for controlled
digital information dissemination. In Proc. of ACSAC, page 224, 2000.

15. PrivacyCA. http://www.privacyca.com/.
16. A.-R. Sadeghi and C. Stüble. Property-based attestation for computing platforms:

caring about properties, not mechanisms. In Proceedings of the 2004 workshop on
New security paradigms, NSPW ’04, pages 67–77, New York, NY, USA, 2004.

17. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a
tcg-based integrity measurement architecture. In Proceedings of the 13th conference
on USENIX Security Symposium - Volume 13, SSYM’04, pages 16–16, Berkeley,
CA, USA, 2004. USENIX Association.

18. R. S. Sandhu, K. Ranganathan, and X. Zhang. Secure information sharing enabled
by Trusted Computing and PEI models. In ASIA CCS, pages 2–12, 2006.

19. D. Schellekens, B. Wyseur, and B. Preneel. Remote attestation on legacy oper-
ating systems with trusted platform modules. Sci. Comput. Program., 74:13–22,
December 2008.

20. A. U. Schmidt, A. Leicher, I. Cha, and Y. Shah. Trusted platform validation and
management. International Journal of Dependable and Trustworthy Information
Systems (IJDTIS), 1(2):1–31, 2010.

21. U. Shankar, M. Chew, and J. D. Tygar. Side effects are not sufficient to authenti-
cate software. In In Proceedings of the 13th USENIX Security Symposium, pages
89–101, 2004.

22. TrouSerS - The open-source TCG Software Stack. http://trousers.

sourceforge.net/.
23. Trusted Computing Group. http://www.trustedcomputinggroup.org/.
24. Trusted Grub. http://sourceforge.net/projects/trustedgrub/.
25. Trusted Network Connect. http://www.trustedcomputinggroup.org/files/

resource_files/51F9691E-1D09-3519-AD1C1E27D285F03B/TNC_Architecture_

v1_4_r4.pdf.
26. A. Yu and D. Feng. Real-time remote attestation with privacy protection. In Pro-

ceedings of the 7th international conference on Trust, privacy and security in digital
business, TrustBus’10, pages 81–92, Berlin, Heidelberg, 2010. Springer-Verlag.

27. X. Zhang and R. Gupta. Hiding program slices for software security. In Proceedings
of the international symposium on Code generation and optimization: feedback-
directed and runtime optimization, CGO ’03, pages 325–336, Washington, DC,
USA, 2003. IEEE Computer Society.

