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Abstract—Many missions are deemed dangerous or impractical
to perform by humans, but can use collaborating, self-managing
Unmanned Autonomous Vehicles (UAVs) which adapt their
behaviour to current context, recover from component failure
or optimise performance. This paper describes a policy-based
distributed self-management framework for both individual and
teams of UAVs. We use three levels of specifications — policy,
mission class and mission instance to enable reuse of both
policies and mission classes. The architecture has been tested
on devices ranging from small laptops to body area networks.
Initial evaluation shows the distributed architecture is scalable
and outperforms a centralised mission management scheme.

I. INTRODUCTION

The complexity of modern computing systems requires

autonomic self-management [1], [2]. Self-managing, mobile

autonomous systems are increasingly being used in hazardous

environments for military applications, disaster management

after earthquakes or floods to assist rescue operations by

locating survivors. In this paper, we focus on self-management

for collaborative teams of Unmanned Autonomous Vehicles

(UAVs), i.e. mobile robots but the concepts have also been

used in other application domains such as health care [3].

UAVs need to adapt their behaviour to current context –

location, activity, available resources such as battery power

and available services such as quality of (intermittent) wireless

communication links. They should be self-managing in that

they have to recover or adapt to component failures and opti-

mise performance to best utilise available resources. Collabo-

rating UAVs form a Self-Managed Cell (SMC) [3], the general

autonomic computing [2] architectural principle we use for

realising self-management of individual and teams of UAVs.

A SMC in our scenario consists of one or more commanders

which have the initial mission specification received from a

command base and a team of UAVs with specific capabilities.

An UAV may be composed of various sensors for vision,

sound, vibration, chemical detection, location plus devices for

communication and so provides specialised services for the

mission. The mission specification defines how UAVs will

be assigned to perform specific roles within the SMC, based

on their credentials and capabilities, as well as when and

how to adapt the mission to changes in context or failures.

The adaptive management of UAVs is achieved by using

policy-based techniques that allow dynamic modification of

the management strategy relating to resources, task behaviour,

communications and team management, without reloading the

basic software within the UAV. SMCs can be combined in

peer-to-peer or composition relationships to reflect complex

collaborations between multiple teams to achieve an overall

mission [4].

Although there has been research on control architectures

for autonomous systems, the focus has largely been in or-

ganising intelligence [5]. We argue that if robots such as

UAVs are to be used in real life applications then they should

also be able to manage their intelligence. The focus of this

paper is distributed self-management of a team of UAVs

using the Ponder2 [6] policy framework – a generic object

management system supporting dynamic loading, unloading,

enabling and disabling of active managed objects capable of

receiving action commands and performing actions. Ponder2

supports obligation policies (event-condition-action rules) to

trigger specific actions to be performed when an event, such

as the discovery of a new UAV occurs, or a UAV which is a

member of the team fails as well as authorisation policies to

specify conditions under which services and resources within

a UAV can be accessed by other UAVs performing a specific

role. Policies are interpreted, hence they can be dynamically

loaded, enabled or disabled at run-time without shutting down

a system in order to adapt the management strategy.

The rest of the paper is organised as follows. Section

II presents the distributed mission management architecture.

Section III details the mission specification while Section IV

presents the implementation of the architecture. Section V

describes the experiments and the ensuing results, and Section

VI compares our approach with related work. Section VII

gives conclusions and future work.

II. DISTRIBUTED MISSION MANAGEMENT

A mission for a team of heterogeneous robots is specified

in terms of roles and role-missions. Mission specifications

can be classified into (a) the domain they are targeted to –

application specific [7] or generic [8], (b) the paradigm they

use – plan based [9] or specification (configuration) based [8],

and (c) the number of autonomic systems involved – single

or multi-robot missions. A multi-robot mission could support

homogeneous or heterogeneous robots and a heterogeneous-

multi-robot mission could support static or dynamic task

allocation. Based on the above classification, our mission

specification is generic, specification-based, multi-robot and

heterogeneous with dynamic task allocation.

To illustrate our approach, we consider an example mission

to determine whether an area is safe for humans, with the



following main roles. Commander (C): controls the mission

and allocates UAVs to roles. Surveyor (S): explores the area

and builds a map. Hazardous material detector (H). Commu-

nication relay (R): forms an ad-hoc communication network

amongst the UAVs. Aggregator (A): aggregates information

from all UAVs to produce a map showing the detected haz-

ardous materials.

A. Our Approach

A team of UAVs should execute a mission with a min-

imum number of UAVs with required capabilities although

the configuration may not be optimal. When additional UAVs

are available the team should expand to make use of the

new UAVs, thereby increasing performance. Should there be a

failure or departure of UAVs from the enlarged team, the team

would contract but continue the mission. We define a minimal

team configuration as the fewest types and number of UAVs

needed to accomplish a mission. A reasonably-optimal team

configuration has sufficient types and numbers of UAVs to

achieve both redundancy and good performance. A mission

starts execution when a team satisfying the minimal config-

uration can be formed but expands when additional UAVs

join until it achieves the reasonably-optimal configuration. The

reconnaissance scenario minimal configuration, is 1 C, 1 A,

and 2 S, where S is the primary role given priority with respect

to resource allocation and is also responsible for managing the

other roles; and R and H are secondary roles. As shown in Fig.

1(a), S is collocated with roles R and H. R can be performed in

parallel with either role S or H while the UAV has to switch

between roles S and H as only one of these can be active

at a time. Although R can run in parallel with these roles,

it will potentially hinder the surveying or detection functions

when trying to maximise communication link quality, so it

should be placed in a separate UAV if available. Detecting

hazardous objects is a much slower process than exploration,

consequently the detection and surveying functions can be

performed better by separate but cooperating UAVs which

share information.

(a) Minimal (b) Optimal

Fig. 1. Reconnaissance Mission Configuration

A reasonably-optimal mission configuration consists of 1 C,

2 S, 2 H, 2 R, and 1 A. The team started with the configuration

shown in Fig. 1(a) and reached the configuration shown in

Fig. 1(b) as new UAVs join the team in the mission area.

The S roles, which assigned the R and H roles, serve as their

commanders. Should any of the new UAVs fail or depart, the

roles will revert to their minimal configuration position.

B. Conceptual Model

In this section, we present our model that uses the con-

cepts of team-mission, role and role-mission that allow for

distributed mission management of UAVs.

1) Team Mission (M): is a set of roles, each containing a

set of policies that either governs the behaviour of the role or

handles the assignment of UAVs to roles.

2) Role (R): is a placeholder containing specified role-

missions (RM), authorisations (A) and tasks (T) which are

loaded onto discovered UAVs that are assigned to the role. A

role has an external and a local interface which provides a

context for which role-mission policies can be specified.

2.A)External Interface: defines operations and events relat-

ing to interaction with external collaborating roles: (i) Man-

agement Operations for loading missions, policies etc. which

are common to all roles, (ii) Provided Operations from the

local interface, implemented by tasks in the role, that are made

visible to and can be invoked by other roles in remote UAVs.

(iii) Required Operations that are expected to be provided

by collaborating roles. (iv) Outgoing Events generated by the

tasks inside the role or propagated from the UAV components

such as sensors, and published via an event bus for use by

other roles. (v) Incoming Events generated by collaborating

roles and required by this role, to trigger policies.

2.B) Local Interface: consists of (i) Events generated by the

tasks within the UAV or propagated from UAV components

such as sensors. These may trigger policies in the role-mission

or map to the external interface. (ii) Operations implemented

by the tasks within the UAV and invoked by local role-mission

obligation policies.

3) Role-Mission (RM): a set of policies relating to a single

role for controlling tasks and enabling/disabling other policies.

4) Authorisation Policies (A): specify how roles are permit-

ted to interact with each other in terms of the events that can

be triggered or operations that can be invoked via the external

interface.

5) Tasks (T): are complex operations which the UAV can

perform e.g. move from A to B, follow a path, track an object

using video. Obligation policies in the mission may invoke

operations supported by a task or activate a task. The tasks in

a role are usually inherent to the type of the role and hence

are specified inside the role class.

III. DISTRIBUTED MISSION SPECIFICATION

Fig. 2 shows our three levels of specifications: (a) Policies

specified using Ponder2 [6] and stored in a policy repository,

(b) the XML mission class specifies the types of roles needed

for the mission and the management relation among the roles,

and (c) the XML mission instance defines the mission param-

eters and role cardinalities required to instantiate a mission

class. The policy specification in the repository may apply to

multiple mission classes and there can be multiple instances

of a mission instantiated with different parameters from a

particular mission class. The policy repository is comparatively

small so can be stored in the commander’s memory and

distributed to other UAVs as needed.



Fig. 2. Mission Specification Levels

A. Policy Specification

The policies specified for a role are broadly divided into role

assignment policies, used to assign UAVs to roles based on

their capabilities and operational management policies used by

roles to manage their own or collaborating roles’ operational

behaviour. In the example role assignment policy shown in

Fig. 3(a), the commander checks the capability of a newly

discovered UAV, authenticates it and assigns it to the surveyor

role, if it has the required capability. Fig. 3(b) shows an

example re-assignment policy to deal with a failure.

(a) Initial Role Assignment (b) Role Re-Assignment

Fig. 3. Sample Ponder2 Policies

B. Mission Class Specification

A mission class specifies a team in terms of roles, policies

a role uses to manage itself or other roles (where hierarchy

exists) and indicates the management relation among the

participating roles as well as the cardinality of each role. Fig.

4(a) applies to the reconnaissance scenario with a commander

role managing a surveyor and an aggregator role. The surveyor

role in-turn manages a hazard-detector and relay roles. The

cardinality and other parameters are instantiated later. Mission

parameters such as failure-timeout which are shared by all

roles are also included. This specification can be used to

instantiate different teams of the same configuration with

different cardinalities, mission parameters and role behaviours

using policies. The policy-based role behaviour specification

allows for changing the behaviours of assigned roles.

C. Mission Class Instantiation

A mission class instance (which gives rise to the actual

team of UAVs performing the mission) specifies values for

cardinalities, mission parameters and URIs of policies which

define the role behaviour as shown in Fig. 4(b).

D. Management Tree

As a means of decentralising discovery and role manage-

ment, the UAVs in a mission are arranged in the form of a

management tree, used for defining management hierarchies

as well as data aggregation during execution of the mission.

(a) Mission Class Specification (b) Mission Class Instance

Fig. 4. Mission Specification

Each UAV runs a tree formation algorithm which starts

by broadcasting a discovery message. UAVs receiving this

perform an authentication protocol (Section III-E), and reply

with a summary of their capability description if they can be

assigned to a role. UAVs already assigned to a role may ignore

the discovery message. Upon authenticating and receiving

the capability summary, the broadcaster decides whether to

request a full capability description. The final decision of

assigning the UAV to a role takes place after checking the full

capability description against the requirements of the role. The

broadcaster will be the parent of a UAV it assigns to a role and

the assigned UAV will be listed as a child of the broadcaster.

This tree is also used for management of communication link

or UAV failures (elaborated in [10]). The initial management

tree for the mission class specification in Fig. 4(a) is shown

in Fig. 5(a).

(a) Management Tree (b) Management Architecture

Fig. 5. Management Tree and Architecture

E. Security of UAVs

The UAVs forming a team can change dynamically over

time with new UAVs joining or leaving the team. These new



UAVs may also belong to other organisations (e.g. allies). Au-

thenticating an UAV before it joins the mission and protecting

the ensuing group communication is thus necessary to protect

the mission [11].

Fig. 6. UAVs belonging to different Organisations

Consider the scenario depicted in Fig. 6. UAV1, UAV2 and

commander CD1 form the Self Managed Cell SMC1, while

UAV3, UAV4, UAV5 and commander CD2 form SMC2 and

UAV6, UAV7 and commander CD3 form SMC3. SMC1 and

SMC2 belong to the same organisation (HQ1), while SMC3

belongs to another organisation (HQ2). Individual UAVs may

join or leave a SMC team, e.g., UAV4 and UAV6 join SMC1

during the mission, while UAV1 leaves the SMC. UAV4

joining SMC1 is called Intra-Joining since both SMC1 and

SMC2 belong to the same organisation, while UAV6 joining

SMC1 is called Inter-Joining since SMC3 belongs to a

different organisational unit. We use the Certificate Public Key

Infrastructure (C-PKI) [12] for authentication, confidentiality

and message integrity among the UAVs. The coalition between

the different organisations is achieved by using a single cer-

tification authority (C3), which issues certified public/private

keys to UAVs belonging to all organisations. During the course

of the authentication, a common secret key is generated using

the Diffie-Hellman protocol [13] between each role and its

managing role, thus ensuring a secure communication channel.

After authentication, new UAVs are assigned to specific roles

and authorisation policies, in terms of the roles, control access

to other roles and resources.

IV. IMPLEMENTATION

A. Mission management

The management architecture is implemented using the Java

based Ponder2 policy toolkit with Tasks, Roles and Missions

implemented as Ponder2 managed objects. An outline of the

framework is shown in Fig. 5(b).

We use the UDP protocol for most messages but reliable

delivery is implemented by the Message-Sender object for role

assignment and capability description messages.

The Message-Router handles messages for multiple roles

(and other objects) residing in an UAV. It registers roles to

receive packets of a certain type and/or source and de-registers

them on leaving. In the case when a role registers to receive

packets of more than one type (or source) that intersect, the

registrations are aggregated. A separate exclusion table is used

to indicate a de-registered role which is part of an aggregated

registration. When a new packet arrives the dispatch and

exclusion table are checked before the packet is passed to the

registered roles.

The Role-Manager object is responsible for loading and

withdrawing/loading a role in mission startup and reconfig-

uration respectively.

B. Capabilities

The capability of an UAV is the set of operations which

the software and hardware in the UAV support as well as the

events it generates. It depends on the current set of software

tasks loaded into the UAV. Tasks support reflection so they

can be queried for their interface description by the Capability

module to dynamically produce the capability description.

C. Proof of Concept Demonstration

The distributed mission management architecture detailed in

Section II was implemented on the Koala robots [14] which

have 16 infrared proximity sensors and a camera. Each robot

is controlled by software [15] running on an Asus EEE PC

through a USB to serial cable. The scenario was a search

and rescue mission of a wounded soldier who has a wearable

computer (Asus EEE) and a body sensor network to determine

his medical condition. A laptop was used for the Commander

with all communication via an ad-hoc wireless network.

Fig. 7. Snapshot of Proof of Concept Demonstration

The steps are as follows: (i) Soldier is wounded in the

battlefield; (ii) Wearable computer sends a distress signal to the

base. (iii) Commander assembles the mission for assistance,

comprising unmanned vehicles capable of navigation, com-

munication, surveillance and hazard detection with surveyor

(including hazard detector) assigned to one UAV and aggre-

gator to another. (iv) The surveyor moves towards the soldier,

but detects a hazard along the way causing it to fail. (v) On

detecting the failure (through timeouts), the surveyor role is

re-assigned to the aggregator by the commander. Also, the last

position of the previous surveyor is relayed so that the new

surveyor can avoid the “hazard”. (vi) The new surveyor avoids

the hazard using the information provided and reaches the

soldier to deliver assistance as necessary. This proof of concept

demonstration was shown as part of the Annual Conference of

the ITA, 2008 [16]. A snapshot of the demo is shown in Fig.

7. The first surveyor robot stops on detecting the “hazard”



(the cylinder in the centre). The second surveyor (which

previously was an aggregator before role re-assignment) avoids

the obstacle and reaches the soldier (top right corner).

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The distributed mission management architecture was im-

plemented using the Java based Ponder2 policy toolkit (Section

IV) which enabled experimentation on a testbed of generic

Linux machines running Java to compare our distributed

management versus a centralised scheme and the effect of

the depth of the management tree. At the beginning of the

simulation the number and types of roles are changed in the

mission class specification and the requisite number of SMCs

is started on various machines.

B. Results

In the first experiment the depth of the tree is set to 4. We

measure the initialisation time for the mission (which includes

the UAV discovery, role assignment, loading policies from the

repository and starting roles), as shown in Fig. 8. This indicates

the centralised scheme works best when the number of roles

is relatively small but as the number increases, the distributed

scheme significantly outperforms the centralised scheme. Note

that the time for mission initialisation does not increase very

much, even for large numbers of roles which shows that the

architecture is scalable.

Although the scenario described in the paper uses few roles,

a more realistic scenario would require far more roles each

with different behaviours e.g. for UAVs with specific types of

sensors, for airborne UAVs to support the mission, for soldiers

and medics who may also be part of the mission, as well as

their support vehicles.
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In the second experiment we fixed the number of roles to

210 and varied the depth of the management tree between

1 (centralised) and 10. We then measured the time taken to

initialise the mission assuming that UAVs with all required

capabilities are available at startup. Fig. 9 shows that the

mission initialisation time decreases as we increase the depth

of the tree as a result of load balancing. However it increases

as the tree becomes very deep due to the delay in role

assignment created by an increase in the number of hops. This

suggests the existence of a ratio of number of roles to depth

which guarantees a minimal mission setup time for a given

management tree. The increase in the mission initialisation

time between the first and the second experiment was due

to the C-PKI based mutual authentication performed by each

pair of UAVs that are involved in a role assignment process,

as security was not included in the first experiment.
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VI. RELATED WORK

Specification of the organisation of a set of primitives to

obtain a sophisticated mission to perform complex tasks is

presented in [8]. This includes a Configuration Description

Language (CDL) to configure a single or group of robots

by defining reusable assemblage agents for different tasks

and instantiate the primitives. The MissionLab development

environment supports graphical design of a mission using

CDL, compilation and loading executable code onto to a

robot or a simulator. However, the finite state machine based

approach used to describe a mission is suitable only for low

level components such as tasks and it is not easy to specify

multi-robot missions with many participants.

A case based reasoning approach for generating mission

plans [17] builds on the work in [8] and uses a Contract Net

Protocol [18] based task allocation while [18] presents the

Contract Net Protocol for distributing tasks through negotia-

tion. Each node in the net takes either a manager or contractor

role. Managers announce tasks, potential contractors submit

bids to the managers, the managers then evaluate the bids and

award contracts to the bidders. The problem-domain dependent

contents of negotiation messages are specified by users.

An approach for coordination of robots based on dynamic

role assignment is given in [19]. This has a layered architecture

with a coordination protocol, based on utility functions de-

fined for each role, using a publish-subscribe communication

protocol. The robot with the highest role utility value is

assigned to the role. Formation is selected using a voting

system. Compared to other approaches (e.g., [20]), which tie

the robot control architecture to the coordination architecture

(mechanism), this is more general in that robots with different

control architectures can coordinate.

A paradigm for cooperating robots is presented in [21]

in which hybrid automata are used to represent roles, role

assignments and discrete variables related to each robot. The



composition of these automata is used to model the execution

of cooperative tasks. A role is defined as a function, one or

more robots perform during the execution of a cooperative task

and utility functions are used to decide when to change roles.

Likhachev et al. [22] have proposed an approach to auto-

matic modification of behavioural assemblage parameters for

autonomous navigation tasks using case based reasoning. We

try to solve a similar but more generic problem using policies.

In [23], a general framework, called MURDOCH, is pre-

sented for inter-robot publish-subscribe communication and

dynamic task allocation for cooperation. MURDOCH offers

a distributed approximation to a global optimum of resource

usage, but due to the completely distributed task assignment

scheme, it suffers from the same problems as greedy al-

gorithms – equivalent to an instantaneous greedy scheduler,

where decisions are made based on only the current and/or

local situation without taking into account how the decision

might affect the future and/or the global situation. These al-

gorithms may not always give the best solution. Our approach

allows for optimisation on the set of discovered UAVs in the

role-assignment time window. Due to the fact that a manager

role is aware of future roles to be assigned by itself or its

managed roles (from the mission specification), it can, to

some extent, take the future/global situation into account when

making the assignment decision.

In [24], a distributed constraint programming solution for

assigning tasks to robots is given. This tries to minimise

remote task dependencies by creating a task dependency graph,

called a distributed organisational task network (DOTN), and

searches for minimal dependency solutions at run time and by

trading tasks using the SOLO algorithm for task reallocation.

In [25], a policy-based community specification or doctrine

defines the roles of the participants in an ad-hoc network

community, the characteristics that participants must exhibit

in order to be eligible to play a role, as well as the policies

governing their behaviour within the community. A doctrine

focuses on security but we include security as well as mission

specification and task allocation.

VII. CONCLUSION

We have presented models, concepts and implementation

details of a distributed policy-based management architecture

for mobile collaborative teams. The three levels of specifi-

cations, namely, policy, mission-class and mission-instance

enables flexibility and reuse of specification in different

scenarios. A proof of concept demonstration incorporating

robots, body sensor nodes and portable computers showed

the flexibility of the approach. Future work will mainly focus

on semantic based capability matching to improve the role

assignment process and configuration planning to attain more

optimal team configurations.
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