
On the implementation and performance of the(�; t) protocol on Linux

Anandha Gopalan
Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260, U.S.A

Email: axgopala@cs.pitt.edu

Sanjeev Dwivedi�
College of Computing

Georgia Institute of Technology

Atlanta, GA 30332, U.S.A

Email: sanjeev@cc.gatech.edu

Taieb Znati
Department of Computer Science

University of Pittsburgh

Pittsburgh, PA 15260, U.S.A

Email: znati@cs.pitt.edu

Bruce McDonaldy
Electrical and Computer Engineering Department

Northeastern University

Boston, MA 02115, U.S.A

Email: mcdonald@ece.neu.edu

Abstract

This paper details the design and implementation of the(�; t) protocol, a clustering and routing protocol for ad-hoc
networks on Linux. Clustering and routing protocols that
are developed, are normally tested using simulations. With-
out actual implementation, it is very difficult to perceive
how efficient and effective the protocol would prove to be in
the real world. The(�; t)�Cluster framework deals with a
unified approach to adapt dynamically to changing network
topology. Nodes are organized into clusters depending on
the ability to bound the probability of path failure due to
node movement. This clustering scheme forms the basis for
an adaptive routing strategy wherein routes within a cluster
are maintained pro-actively and routes between clusters are
managed re-actively. We conclude the paper by discussing
an experimental study to evaluate the performance of the(�; t) protocol.

1. Introduction

The principal reasons for implementing wireless com-
munications systems include support for terminal mobility
[5], and more rapid, widespread access to communications
services, without the need to construct and manage expen-
sive cabling systems on the scale required for wired sys-
tems. In other words, the advantages of a wireless system�The work was done while this author was a student at the University
of PittsburghyThe (�; t) protocol was designed while this author was a student at
the University of Pittsburgh

are mobility, flexibility and cost savings. Most wireless net-
works currently in operation support untethered access for
mobile communications devices by providing a wireless in-
terface between the mobile devices and a fixed network of
limited rangebase-stations(BS). Mobility is managed by
allocating a limited set of communications frequency chan-
nels to eachBS, and dynamically assigning a mobile device
to a local channel as it moves from the coverage area of oneBS to another. This infrastructured model is also referred
to ascellular wireless communications.

The disadvantage of an infrastructured wireless network
is that it requires a fixed infrastructure which constrains
node mobility, thus limiting network deployability and in-
creasing installation and management costs. To overcome
these shortcomings, a class of infrastructureless wireless
networks called ad-hoc networks emerged to fill the void.
Ad-hoc networks offer an alternative to an infrastructured
network whenever a fixed network is too expensive or in-
feasible to implement or less desirable due to cost, security
or lack of flexibility.

It is often argued that in the present scenario, ad-hoc net-
works do not offer significant advantages because we do not
have applications that can utilize them. [4] counters the ar-
gument by stating that, in the absence of infrastructure, the
wireless devices themselves take on the functions yielded
by them. Approaches towards infrastructure-less network
solutions from large vendors like, Apple’s rendezvous pro-
tocol [3], IETF’s zeroconf protocols [25] and Bluetooth [9]
are very important steps in this direction.

Routing in ad-hoc networks is a difficult problem and it
involves a tradeoff between optimality and overhead. An
ad-hoc network routing algorithm must be able to adapt

rapidly to topology changes to meet the performance de-
mands of its users, without over-utilizing its resources.
Clustering provides us with the means to balance the afore-
mentioned tradeoffs. In a clustered ad-hoc network, the net-
work is dynamically organized into partitions calledclus-
terswith the objective of maintaining a relatively stable and
effective topology [15]. The membership and characteris-
tics of each cluster may change dynamically over time in
response to node mobility and is determined by the crite-
ria specified by the clustering algorithm. Clustering in an
ad-hoc network can be used to achieve several objectives,
namely: support hierarchical routing, make the route search
process for re-active routing protocols more efficient, sup-
port a hybrid routing strategy with different routing proto-
cols that operate in different domains or different levels of
the hierarchy.

Even though, theoretically, cluster-based protocols ap-
pear to be better, they have not been investigated much and
as far as we know, no implementations of a cluster-based
ad-hoc routing protocol is in existence. In the course of
this research we have investigated a cluster-based proto-
col called the(�; t) protocol. The(�; t)�Cluster frame-
work is based on dynamic cluster organization, where the
node mobility model is used to bound the probability of
path failure over time. This effectively balances the com-
peting demands for network resources and routing respon-
siveness. The(�; t) protocol has been designed with the
features of both cluster-based and clusterless protocols and
tries to avoid their shortcomings. At the same time, it in-
troduces a new metric for cluster formation which allows
intra-cluster routing to be more efficient. In this paper we
have investigated, redesigned, implemented and analyzed
the(�; t) protocol.

The(�; t) protocol might have far reaching significance
towards QoS in ad-hoc networks, which has been largely
non-existent from other implementations (schemes). This
work is the first step towards the implementation of the(�; t) protocol and tries to build a proof of concept for the
same.

This paper extends the work presented in [1] in the fol-
lowing areas: the protocol architecture, along with its differ-
ent components and their interaction is elaborated; the clus-
tering and routing algorithms of the(�; t)�Cluster frame-
work are explained in more detail; an extensive explanation
of each module in the protocol implementation and the in-
teraction between them is also provided.

The rest of the paper is organized as follows: Section 2
details the requirements of this implementation and the re-
lated work, Section 3 details the architecture used in this
implementation, Section 4 talks in detail about the imple-
mentation, Section 5 talks about the experiments and results
and Section 6 concludes the paper and identifies the areas
for future work.

2. Requirements and Related work

A couple of requirements/system capabilities are re-
quired/called for in an efficient (and easy) implementation
(all implementations thus far have implemented the follow-
ing) [13]:

1. Finding out when a route is needed

2. Initiating a request

3. Queuing packets for an outstanding request

4. Re-injection of outstanding packet in the stream

5. Refreshing timers/validating routes

Ad-hoc networks have emerged in response to advances
in hardware systems, availability of unlicensed radio spec-
trum, and frustrations over the costs and limitations of in-
frastructured wireless networks. As public cellular wireless
system move into their third and fourth generations, wire-
less LANs have become important components of many
corporate information infrastructures. Efforts have been un-
der way to address many of the limitations of these emerg-
ing systems. Specification of the wireless MAC-layer pro-
tocol standard, IEEE 802.11, and the charter of the IETF
MANET working group have reinforced the need for more
flexible wireless networks, and thus a growing sub-field of
wireless communications has taken hold, namely, wireless
ad-hoc networking.

From the earliest adaptations of traditional distance vec-
tor routing proposed for the DSDV protocol [20] to sophis-
ticated techniques that use information gathered from the
GPS to report and estimate node position information for
the purpose of efficiently building on-demand routes [14],
the published work displays a wealth of varied and inter-
esting techniques and ideas; however, a gap remains to be
filled. Specifically, none of the schemes that have been pro-
posed have been shown to perform well enough over a wide
range of environments. Consequently, the question remains
as to: “how to efficiently support routing that is responsive
to a wide range of mobility patterns, and is scalable and one
that can form the nucleus of a strategy capable of supporting
QoS requirements in terms of throughput and delay?”

The problem of routing in wireless ad-hoc networks has
motivated researchers and protocol designers to re-examine
the basic tenets of adaptive routing as they have evolved
over the past several decades. Challenges that were faced
by early routing protocol designers, including limited band-
width and unreliable communications links are being faced
once again in the context of ad-hoc communications. How-
ever, in some ways the ad-hoc routing problem is more
difficult. In particular, node mobility, asymmetric channel
characteristics, and power constraints are added difficulties
which must be addressed in order to implement a truly ef-
fective and commercially acceptable network architecture.

The structure of the Internet suggests that hierarchical
routing is essential to achieve scalability. In ad-hoc net-
works, maintaining hierarchy (clusters) becomes more dif-
ficult due to the dynamic nature of the network. We believe
that clustering can increase the scalability of ad-hoc net-
works by dividing the pro-active and re-active parts of the
network into intra-cluster and inter-cluster domains.

Most of the literature on ad-hoc routing deals with re-
active schemes. However, re-active schemes become ex-
tremely in-efficient when the network is subject to heavy
traffic loads and high mobility. This leads us to the pro-
active schemes. The main arguments against pro-active
schemes are: periodic updates that requires bandwidth and
processing, frequently using scarce resources to maintain
routes that are seldom used.

As a result of the shortcomings present in both the re-
active and pro-active protocols, it is apparent that a hy-
brid scheme is needed. Hybrid schemes contain the fea-
tures of both these methods and hence can use a pro-active
scheme for high mobility elements of the network while rel-
atively immobile elements can communicate using re-active
schemes.

The Destination sequenced distance vector DSDV rout-
ing protocol [20] is a pro-active routing protocol, where
each routing entry is assigned a sequence number. This
helps nodes to easily distinguish between old routes (one
that is no longer valid) and a new routes. Ad-hoc on demand
distance vector protocol (AODV) [19] is a re-active proto-
col, wherein routes are created and maintained as and when
needed. When a source requests a route to a destination, the
source broadcasts a route request message (RREQ). This re-
quest is re-broadcast by the other nodes until it reaches the
destination. The destination on receipt of the RREQ mes-
sage replies using a request reply (RREP) message, which
is sent back to the sender using the reverse path that the
RREQ took. Dynamic source routing (DSR) [12] is another
re-active routing protocol. This protocol is very similar to
AODV, but instead of re-broadcasting the request, nodes do
a limited broadcast. A limited broadcast is when a node
does not broadcast a request, but discards it if it has already
processed the request. Zone routing protocol (ZRP) [10] is
a hybrid routing protocol that divides the network topology
into overlapping zones. Routing inside a zone uses the intra-
zone routing protocol (IARP) and routing between zones
uses a inter-zone routing protocol (IERP).

3. Protocol Architecture

The(�; t)�Cluster framework supports a scalable rout-
ing infrastructure that is able to adapt to a changing network
topology by dynamically organizing nodes into clusters and
hence bounding the impact of routing overhead [16].

The(�; t)�Cluster framework introduces a probabilistic

metric to provide a bound on the availability of paths inside
a cluster. This metric allows for the dynamic balancing of
the trade offs according to temporal and spatial dynamics
of the network. This is achieved by predicting the future
state of the network links in order to provide a bound on
the availability of paths inside a cluster. This well-defined
metric captures the dynamics of node mobility. Using this
metric, cluster organization can be made adaptive with re-
spect to dynamically balancing the tradeoffs according to
temporal and spatial dynamics of the network.

DDCA

Intra Cluster
Routing

Inter Cluster
Routing

Routing

Tables
Routing

Management
Link Mobility

Management
Cluster

Management

MAC ProtocolPhysical Layer

Internet Protocol (IP)

Figure 1. Overview of the design

The logical organization of the(�; t)�Cluster frame-
work is shown in Figure 1. The highest layer in the frame-
work is the Internet Protocol (IP) that is responsible for cre-
ating IP packets and ensuring that they are sent out into
the network towards their intended destination. If there is
a route to the destination (information about the next hop),
the IP packet is sent directly to the MAC layer, which in
turn injects this packet into the network. If there does not
exist any route to the destination, the packet is queued us-
ing the Netfilter framework (section 4.5) and the appropri-
ate function that is registered is invoked to find a route to
the destination. In case a route to the destination is found,
this information is updated in the routing table.

The topological information regarding the next hop node
for a packet is provided by the Intra and Inter-Cluster rout-
ing algorithms. These form the next layer in the framework
and they rely on the clustering information provided by the
Distributed Dynamic Clustering Algorithm (DDCA).

Intra cluster routing is done on a pro-active basis us-
ing a table driven pro-active routing algorithm. The(�; t)�Cluster framework is flexible and independent of the
specific intra-cluster routing algorithm and hence, any pro-
active routing algorithm designed for ad-hoc networks can
be used for routing within a cluster.

Inter cluster routing strategy tries to take advantage of
the cluster topology and the intra-cluster routing tables. The

Inter Cluster Routing Protocol (ICRP) is a fully re-active
cluster based routing protocol that discovers and maintains
routes on an on-demand basis. In ICRP, theparentnodes
(central coordinator for each cluster) of each cluster coop-
erate to control the route query process to avoid flooding the
network.

DDCA is responsible for link management, mobility
management and cluster management. DDCA logically
partitions the network into clusters depending on the(�; t)-
criteria for cluster formation. Each node in the network
needs to be affiliated with a cluster. The information pro-
vided by DDCA is the basis for the routing protocols, since
they differ based on whether a packet has to be routed within
or outside a cluster.

At the lowest level in the framework are the physical and
medium access control (MAC) layers that interact with each
other. DDCA interacts with the physical layer in this frame-
work to avail of the node-characteristics for calculating the
link availability.

3.1. DDCA Protocol Description

DDCA is an event driven algorithm which monitors the
status of each node in order to maintain its cluster affiliation
and current state. Each node can be in one of five states,
namely, inactive, un-clustered, orphan, childand parent.
The algorithm runs continuously and asynchronously on
each active node in the ad-hoc network and forms the plat-
form on which the intra-cluster protocol operates. DDCA
provides ICRP with a clustered platform upon which it can
operate the routing functionality.

The DDCA controls the cluster formation and using the
set of states mentioned above, it provides the means for dis-
tributed control over the clustering process. A node cannot
participate in routing until it is affiliated with a cluster and
hence, as soon as any node becomes active, it tries to be-
come part of a cluster. Once the node has associated itself
with a cluster, the association is maintained until the node
gets disconnected. A disconnected node tries to locate a
feasible cluster; failing which, it forms a cluster of its own.

A scenario depicting the clustering decisions and other
actions in DDCA is described briefly below. Each un-
clustered node seeks a feasible cluster by broadcasting a
join-requestmessage. If it receives no responses it cre-
ates a new cluster in which it is the only member, this
type of a node is called anorphannode. To prevent ad-
jacent un-clustered nodes from each creating new clusters,
simultaneous requests are handled by forcing nodes with
higher identifiers to back-off and try again. A node that
receives at least one join-response message joins the maxi-
mum strength cluster from which a response was received.
A node joins a cluster by changing its state, setting its clus-
ter identifier (CID) and initiating an intra-cluster routing ex-

and clust−strength >=
and clust−size < MAX

α

Send Join−Resp

Send Adopt−Resp

Rcv Adopt−Req

Rcv Join−Req

and clust−strength >=
and clust−size < MAX

Broadcast Adopt−Req
Start Join−Timer
Set adopt−flag

Adopt−Timer Expiration
and join−flag set
Unset join−flag

Adopt−Timer Expiration
and join−flag unset
Start Join−Timer Set join−flag

and join−flag unset
Unset adopt−flag
Start Adopt−Timer

Rcv Adopt−Resp
and adopt−flag set

Join−Timer Expiration

α

α

Send Join−Resp

Send Adopt−Resp

Rcv Join−Req

Rcv Adopt−Req

and clust−strength >=
and clust−size < MAX

and clust−strength >=
and clust−size < MAX

Set join−flag
Unset retry−flag
Rcv Join−Resp

Rcv Join−Req
and my_nid > rcv_nid
and rcv_cid != my_cid
Set retry−flag

UN−CLUSTERED ORPHAN

α

CHILD

my_cid = NULL

PARENT
(Route Tbl Size > 1)

INACTIVE
Broadcast Join−Req

Unset retry−flag
Unset join−flag

Join (max strength*) Cluster

Start Join−Timer
Stop Adopt−Timer

Broadcast Join−Req

Unset retry−flag
Unset join−flag

(Routing Tbl Size = 1)

Start Join−Timer

Node Activation

Join−Timer Expiration

Cluster Disconnection

and join−flag set

Start Adopt Timer
Unset adopt−flag

Join−Timer Expiration
and join−flag unset
and retry−flag unset

* break ties using node−ids

Join (max strength*) Cluster

Join−Timer Expiration
and join−flag set

Unset adopt−flag
Unset join−flag

Rcv Join−Req
αand clust−strength >=

and clust−size < MAX

Unset adopt−flag
Unset join−flag

and clust−size < MAX
and clust−strength >=α
and my_id < rcv_id
Rcv Adopt−Req

Send Adopt Resp

Send Join Resp

Set join−flag

Cluster Expansion

Stop Join−Timer

(set my_cid/send full−dump req)

Create Cluster

Cluster Disconnection

(set cid/send full−dump req)

Unset retry−flag

Broadcast Join−Req
Start Join−Timer

Join−Timer Expiration
and retry−flag set

(Routing Tbl Size = 1)
Broadcast Join−Req

Unset retry−flag
Unset join−flag

Start Join−Timer

(Parent Unreachable)
Cluster Partition

Start Join−Timer

Unset join−flag
Set retry−flag

Figure 2. Description of DDCA events and
states

change with its neighbors. As a child, each node must pro-
cess and respond tojoin-requestmessages and detect if it
has become disconnected from the cluster, or if a cluster
partition has occurred. The parent of every cluster is ini-
tially an orphan. Each orphan node periodically attempts to
join an adjacent cluster until it detects that at least one child
has joined its cluster. This can be detected by the reception
of routing information and the subsequent increase in size
of the intra-cluster routing table. Each parent node must
process and respond to join-request messages and detect if
it has become disconnected from its children. The complete
set of events that can occur along with their interaction with
the nodes in different states is given in Figure 2.

Routing inside a cluster is accomplished using a ta-
ble driven pro-active routing protocol. The(�; t)�Cluster
framework is flexible and it can incorporate any pro-active
table driven routing protocol like DSDV [20].

We have implemented intra-cluster routing by using a
simple table driven protocol that keeps track of all the
nodes in a cluster, and broadcasts messages to all these
nodes when routing takes place. Each node, when it hears
a HELLO from its neighbor adds that node to its list of
routable nodes. UsingHELLOmessages, this list is updated
periodically and stale entries are removed.

Another list, a list ofgateway nodesis also maintained.
Gateway nodes (also called border nodes) are nodes which
are part of a cluster but can hear the broadcast from an-
other cluster. These nodes play an important part in inter-
cluster routing. When a node finds out that it is a gateway
to another cluster, it broadcasts this to the other nodes in
the cluster who update their list ofgateway nodesappropri-
ately. With the help ofHELLOmessages, this list is updated
periodically and stale entries are removed.

DDCA guarantees that each node in a given cluster
knows the addresses of all nodes currently affiliated within
that cluster and the address of each external border node of
that cluster.

3.2. ICRP Protocol Description

ICRP constructs routes on-demand and maintains them.
Each node involved in routing maintains a cache of the
nodes that it can reach via either intra-cluster or inter-cluster
routing. The Inter Cluster route construction and mainte-
nance protocol has four phases:� Route Search� Query Dissemination� Route Setup� Route Maintenance

Route search involves a query initiation by a source that
requires a route to a destination that is neither in its cluster
nor in its inter-cluster destination cache. The query mes-
sages are forwarded to all the gateway nodes of the cluster.

Query dissemination is the process by which the route
search query is propagated through the network. Once a
gateway node to a cluster receives a copy of the query, it
first checks if it is a duplicate query. Duplicate queries are
checked by first forwarding the query to the parent node
and waiting for a reply. If the query is not a duplicate, it
is again forwarded to all the gateway nodes of the cluster
who again forward it to the other adjacent clusters. A cache
is maintained regarding the reception of this query. Once a
gateway node finds that the entry being requested belongs
to its cluster it forwards the query directly to that node or
if it itself is the object of the query, it starts processing the
query.

Route setup is the phase when an actual route is setup
between the source and the destination. Once the destina-
tion has been reached, the query terminates and no further
queries are generated. The destination then updates its rout-
ing table, generates a query reply packet and sends it back
to the node from which it received the query. This node in
turn forwards the query back to the node from which it re-
ceived the query. This continues until the originator of the
query is reached. Once the query reply has been received
by the originator, it updates its routing tables and the setup
phase comes to an end. In case no reply is received within
a timeout interval, the query is discarded from the cache.

Route maintenance is the process by which existing
routes are maintained. In this phase each inter-cluster desti-
nation is checked periodically. Once a path remains inactive
for time greater than a timeout value, the route is deleted. If
a route is lost because the next-hop node is not available, a
query is again initiated for that destination and a new path
is setup if possible, from the point of disconnection.

4. Protocol Implementation

Real Time Timers

 ICRP

Applications

Netfilters

IP Stack

u (user level)
k (kernel level)

 Routing
 Table

IP
Q

/H
el

pe
r

M
od

ul
e

 IP Queue Handler DDCA

 Routing

 RAW Sockets

Figure 3. Architecture

A modular approach has been taken in this implementa-
tion in order to achieve a high degree of openness to poten-
tial changes in the individual components. The main com-
ponents of the software was developed in C++ incorporating
good Object Oriented Programming (OOP) techniques, ex-
cept for some sections of the program which was written in
C. The latter choice was motivated by the need to incorpo-
rate this component into the kernel (or link this component
with the kernel at runtime).

The functional components of the protocol architecture
are depicted in Figure 3. Each component has been imple-
mented as a separate module and they export their interfaces
for other modules to use to interact with this module. Each
module has at least one global instantiation of itself, which
can be used by other modules in the system to access the
functionality of this module.

It was a design concern to keep this implementation as
portable as possible. The implementation has been almost
completely developed in user space. This allowed for a re-
duction in the overhead due to kernel interaction. Notice
also, that as a result of this approach, debugging was made
much easier. System dependent portions of the implemen-
tation were kept to a bare minimum (e.g: Timer functions,
Kernel module). Porting this implementation to another
platform just requires the system dependent modules to be
re-implemented on that platform, while the rest of the im-
plementation does not need to be changed.

A modular implementation allows for easier mainte-
nance of the software. Due to the fact that modules interact
with one another using the interfaces exported by them, any
changes to the implementation of one module does not af-
fect the other modules in the system.

The simple design on which the implementation is based
is shown in Figure 3. Subsections 4.1-4.8 explain the func-
tionalities of each component and the interactions between
them.

4.1. Applications

Applications are the user level applications (usually ap-
plications built on top of the transport layer protocols like
telnet, ftp) that want to initiate a connection and transfer
data. These applications are unaware of the routing protocol
or the underlying infrastructure that is being used. The in-
teraction between the application and Netfilter (see section
4.5) is transparent to the application. Netfilter processes all
the packets being generated by the application and passes
these packets to the IPQ module. If a route exists to the des-
tination, this packet is sent, otherwise, this packet is queued.

4.2. RAW Socket Interface

The raw socket interface provides the upper layer mod-
ules (DDCA and ICRP) with a platform to create and inject
special type of packets into the network by bypassing the
transport layer protocols (and to some extent, network layer
protocols as well). This allows us to create our own packets
with its own packet header and payload. This functionality
enables us to create our own protocol type that is used by
bothDDCA andICRP.

4.3. POSIX Real-Time Timers

The correct operation of DDCA depends on the timely
delivery of the various timers in the clustering algorithm
[16]. The granularity of the timer provided by the Linux
kernel is not sufficient (officially Linux still does not have
POSIX compliant Real-Time timers) for our purpose and
also implementing multiple iterative timers in user space is
not easy. This problem was solved by patching the Linux
kernel with the POSIX 1003.1b compliant Real-Time timers
patch [18].

4.4. DDCA

Distributed Dynamic Clustering Algorithm (DDCA) is
the clustering algorithm on top of which the Inter Cluster
Routing Protocol (ICRP) operates. DDCA creates the clus-
ter and lets ICRP access the elements of the cluster through
various interfaces that it exports. The interaction between
ICRP and DDCA is limited to addition and removal of rout-
ing table entries from the kernel and ICRP receiving routing
packets from DDCA.

DDCA uses RAW sockets to define a new protocol type
(IPPROTODDCA) [2, 16], since it needs to create the IP

Function Description

add gateway()
Adds the given gateway to the kernel
list of gateway nodes.

remove gateway()
Removes the given gateway from
the kernel list of gateway nodes.

add routable() Adds the given routable node to the
kernel list of routable nodes.

remove routable()
Removes the given routable node
from the kernel list of routable
nodes.

changestate() Changes the state of the node.

get state() Returns the current state of the node.

changecid() Changes the cluster id of the current
node.

get cid() Returns the cluster id of the current
node.

Table 1. Description of the system calls

packets, including the header by itself. DDCA also uses the
Real-Time Timers functionality provided by the kernel for
various timer based functions in the clustering algorithm.
The DDCA module interacts with the kernel module using
well-defined system calls that are listed in in Table 1.

4.5. Netfilter

Netfilter [23] is an architecture inside the kernel to filter
packets based on various criteria. It defineshooks, which
are well defined points in a packet’s traversal through that
protocol stack. At each of these points, the protocol will call
the Netfilter framework with the packet and the hook num-
ber. The kernel module can then perform various operations
on the packet before letting it pass further through the pro-
tocol stack. Additionally, it can also specify a verdict for the
packet which can be one ofaccept, reject, queueor steal. If
the kernel module has specified the verdict asqueue, the IP
packet queues up for processing by the IP Queue Handler
module. Stealing the packet implies that the kernel does
not bother about the packet anymore, it will be managed by
the module that has registered to process it. Kernel mod-
ules that are once inserted into the kernel, become a part of
the kernel and hence are able to access thehooksthat are de-
fined by the Netfilter framework. Thehooksthat are defined
in IPv4 and illustrated in Figure 4 are:

1. NF IP PRE ROUTING: Before an incoming packet is
passed through the routing function.

2. NF IP LOCAL IN: After an incoming packet has been
passed through the routing function.

[5]

[1] [ROUTE] [3] [4]

 [2] [ROUTE]

Figure 4. Packet traversal in the IP stack

3. NF IP FORWARD: After an incoming packet has
passed through the routing function and is ready to be
forwarded.

4. NF IP LOCAL OUT: Before a locally originated
packet passes through the routing function.

5. NF IP POSTROUTING: After a packet has passed
through the routing function.

The Netfilter interface is accessible at the user level
through thelibipq library. This library can access the pack-
ets that are queued by the Netfilter based filters inside the
kernel.

Algorithm 1: NF IP LOCAL OUTPUT
Input: packet, interface
Output: Verdict
(1) if a route exists
(2) return Accept
(3) else
(4) return Queue

Algorithm 2: NF IP PRE ROUTING
Input: packet, interface
Output: Verdict
(1) if a route exists
(2) return Accept
(3) else ifa connection to this desti-

nation is still active
(4) return Queue
(5) else
(6) return Discard

4.6. IPQ Helper Module

This kernel module is responsible for deciding which
packets will be routed or dropped or forwarded. This mod-
ule is inserted as part of the kernel before the(�; t) protocol
starts to execute. The kernel module does not export any
functions and all functions are internal to the kernel. Two

libipqIPQ Handler

Netfilters

IP Queue

G
et

 P
ac

ke
t I

nf
o

G
iv

e
P

ac
ke

t V
er

di
ct

Netfilter System Calls k

u

Figure 5. IPQ Handler and Netfilter interaction

functions, namelyoutputhandlerandinput handlerare at-
tached to theNetfilter interface via thenf registerhook
to handle outgoing and incoming packets respectively.
The hooks that are registered for this implementation are:
NF IP LOCAL OUTPUTandNF IP PREROUTING. The
policy ingrained in these functions are given by the algo-
rithms in algorithm 1 and algorithm 2 respectively.

The functionsinit moduleandcleanupmoduleare also
implemented in this module. The functioninit moduleis
invoked when the module is loaded into the kernel and this
function switches on various protocol related activities. The
functioncleanupmoduleis invoked when the module is un-
loaded from the kernel and this function disables all the
functionality related to the protocol and the system resumes
its normal course of operation.

The routing algorithm implemented must be transparent
to the user. Whenever a node tries to initiate a session with
another node, for which there is no route available, the pack-
ets are queued and a search query is initiated. If the search
succeeds before a timeout, the connection is established,
otherwise a failure is returned. To make this operation trans-
parent, the kernel module uses the interface provided by the
Netfilter framework to register the functions that will be in-
voked when the specific hooks are encountered. Figure 5
details the interaction between the IPQ Handler and Netfil-
ter using thelibipq library.

4.7. User Level Routing Table

After reading the implementation ofospfdin [17], it was
decided to develop an interface to add and delete routing
table entries from user space. A user level copy of the kernel
level routing table is maintained as a queue. Any change
made to the user level routing table is reflected in the kernel
level routing table. The advantage of this scheme is that the
kernel routing table need not be queried every time, only
updates need to be sent to the kernel routing table. Routes
are added and deleted from the kernel routing table by using
the ioctl function call with the appropriate parameters and
theSIOCADDRTandSIOCDELRTflags respectively. The
routing table is maintained as a queue and each entry in the
queue has the datatypeRTEntry, which has the following
structure:

typedef struct routingTableEntry
{
unsigned long nid;
unsigned long gw;
unsigned long cid;
unsigned long nextHop;
int aliveSince;

}RTEntry;

The elements of the structureRTEntryare:� nid: node id of the reachable node� gw: node id of the gateway node associated with the
node id: nid� cid: cluster id of the reachable node� nextHop: node if of the nextHop towards the reachable
node� aliveSince: indicates the time this node was alive

4.8. Packet Formats

This section lists the various packet formats used in this
implementation.

Figure 6 shows the format of the DDCA Header packet.
The important fields in this packet are:� Protocol: Contains the type of the protocol that IP

would use to identify the correct protocol stack to hand
the packet over to. In our case, since there is no
registered handler, IP looks for a RAW socket which
has registered to receive a packet of this protocol type
(IPPROTO DDCA).� Source Network ID: Contains the ID of the node that
initiated this packet.� Source Cluster ID: Contains the cluster ID of the node
that initiated this packet.

version protocol TTL reserved

Destination CID

Destination NID

Checksum

 Source Network ID

Source Cluster ID

 Sequence Number

32 bits
8 bits

Figure 6. Format of the DDCA Header packet

32 bits
8 bits

DDCA Message Type

DDCA Network ID

Alpha Value

T Value

Figure 7. Format of the DDCA Body packet

Figure 7 shows the format of the DDCA Body packet.
The important fields in this packet are:� DDCA Message Type: Contains the message type to

be sent. This is used by DDCA for its functioning.� Alpha Value: Contains the value of�, the parameter
used along with the value oft to test the link strength.� T Value: Contains the value oft, the parameter used
along with the value of� to test the link strength.

32 bits
8 bits

 Source Network ID

Source Cluster ID

Destination NID

Destination CID

Target NID

Originator NID

Routing Packet Type

Sequence Number

Figure 8. Format of the Query Body packet

Figure 8 shows the format of the Query Body packet.
Some of the fields in this packet are similar to the fields in
the DDCA Header packet (figure 6). The other important
fields in this packet are:

� Routing Packet Type: Contains the type of the query,
either RREQ (Route Request) or RREP (Route Reply).� Target NID: Contains the NID of the node for which
we need to discover a route.� Originator NID: Contains the NID of the node where
this query packet originated from.

4.9. User Interface to the protocol

For debugging purposes, it was important to have a
method by which to access the status of the protocol in the
kernel. Code in the kernel cannot be easily debugged with
the help of a debugger. Tracing of code inside the kernel
is also very difficult, since it is a set of functionalities not
related to a specific process. Errors in the kernel are very
difficult to track down and reproduce and these errors may
result in a system crash, thus destroying much of the evi-
dence that could have been used to identify the error. To en-
sure knowledge of the functioning of the protocol, we had
two ways to access the information relevant to our protocol
in the kernel.

4.9.1 Using printk()

printk is analogous to using aprintf function at user level.
Theprintk function call also takes in an optional argument,
which is thepriority level, that determines the emergency
of the print statement. A high priority statement is printed
on the system console (usually such statements are used
for system emergencies, like hardware failures) while lower
priority statements are used for purposes like devices failing
to initialize and network failures.

4.9.2 Using thepro file system

The massive use ofprintk statements to debug kernel code
however, has one major drawback. It slows down the system
considerably due to the fact that thesyslogddaemon syncs
its output files, thus causing a disk operation for every line
that is printed. Another problem with using this scheme is
that an error could cause a lot of messages to be printed on
the console, thus making debugging harder.

It would be advantageous to be able to query the system
and request the data that is relevant to the protocol, rather
than continually producing output. Thepro filesystem of-
fers such an alternative.

Thepro filesystem is a special, software created filesys-
tem that is used by the kernel to export information to the
world. Each file under thepro filesystem is tied to a ker-
nel function that generates the contents of the file on the fly
when the file is read.

To create a file in thepro filesystem [21], the kernel
module implemented should implement a kernel function

syscall

/proc

Create /proc files

Register
Functionality

populate_proc_fns()

Data
k

u

K
e

rn
e

l
M

o
d

u
le

Figure 9. Module to create /proc entries

Function Description

show gateways()
Prints all the gateway nodes for the
current node in the decimal-dot no-
tation.

show routables()
Prints all the routable nodes for the
current node in the decimal-dot no-
tation.

Table 2. Utilities that can be used to observe
the state of the system

to generate the data when requested. This function in turn
must be registered to produce the data whenever that file is
read.

When the kernel module is inserted into the kernel, it
switches on the(�; t)�Cluster functionality in the kernel
and makes the system call functional. It also allows us to
collect the kernel data that is relevant to our protocol by
creating the=pro files and also registering the respective
functions to populate these files.

In particular, the following files are created in thepro
filesystem:� /proc/at routing/at routable� /proc/at routing/at gateways� /proc/at routing/at state� /proc/at routing/at cid

Table 2 highlights the utilities that provide an easy in-
terface to the kernel information available through thepro
filesystem. These functions are used in conjunction with
running the protocol to observe the state of the system.

5. Results

To test a hierarchical protocol like the(�; t)�Cluster, we
have to test both aspects of the protocol, the intra-cluster as
well as the inter-cluster part of it. The experimental setup
consisted of three nodes which were used to form a cluster
(for intra-cluster testing) and two nodes used to form a clus-
ter and another node acting as an orphan (for inter-cluster
testing). Three different mobility models were studied.� Static: The nodes are stationary.� Group Mobility: The nodes move in groups, the rate

of disconnections is not very high.� High Mobility: The nodes are constantly on the move,
leading to a very high rate of disconnections.

Experiments were conducted for the above three mobil-
ity models and two types of data analysis were studied.� Goodput Analysis: This study measures the amount of

data that had to be re-transmitted in order for the whole
data to go through (e.g: A file).� Data Rate Analysis: This study measures the sustained
throughput that is achieved in the network.

The experiments were conducted with one node being
stationary, while the other two nodes were moved around
based on the mobility model (the mobility that was used
was random mobility, where the nodes move as they want
to, for example, laptops used in the experiment, were just
carried around the department by the researchers conduct-
ing the experiment). The breaking point of the network
was found (this was the point where inter and intra-cluster
routes were being broken), and this knowledge was used
in the group and high mobility models. During the experi-
ments, the nodes were assigned different IP addresses that
belonged to different domains. This was to make sure that
the protocol worked irrespective of whether the nodes be-
longed to the same network or not (this is to mirror real
life scenarios wherein, ad-hoc networks consist of nodes be-
longing to different networks).

5.1 System specifications

The nodes used in the experiments were Dell Latitude
Laptops running Red Hat Linux (ver. 7.2). The Kernel ver-
sion was 2.4.5 and the following modifications were added
to the kernel:� Kernel was patched with POSIX 1003.1b compliant

Real Time Timers [18].� Kernel was compiled with support for Netfilter.

� System calls were added to enable communication be-
tween the user level process and the kernel level mod-
ule.� PCMCIA package was added to be able to use the cor-
rect drivers for the wireless cards and to be able to uti-
lize them in the ad-hoc mode [11].� Iptables package was added for thelibipq library
which provides an interface for accessing packets
queued by the kernel module [23].

The results were obtained by letting the nodes cluster
and then by moving them around physically according to
the mobility model. A file transfer was initiated between
two nodes, one designated as thesender, the node respon-
sible for sending the file, and the other designated as the
receiver, the node responsible for receiving the file and also
for logging the statistics. The size of the file transferred was
varied from a very small file to a large file. The file to be
transferred was broken down into packets of size 1500 bytes
each.

The sendernode is equipped with aserver program,
which is responsible for sending the file across. This pro-
gram has a timer associated with it to calculate the time
taken to send the file. The file is transferred continuously
without any timeouts (regardless of the state of the connec-
tion). Thereceivernode is equipped with aclient program,
which is responsible for receiving the file. This program is
also responsible for maintaining a count of the number of
packets received and also the size of the packets received
(this is to ensure that packets were not corrupted and wrong
packets not received). Theclientdoes not sent acknowledg-
ments for the packets that are received. Due to the frequent
disconnections that can occur in ad-hoc networks, both the
server and theclient programs were written using RAW
sockets. This does not use the services provided by the
transport layer like acknowledgments and timeouts. This
ensures that even if the connectivity between nodes is lost,
the application does not time out.

5.2. Intra-Cluster evaluation

From Figure 10, we can see that the goodput in the static
case is 100%. This is to be expected as the nodes are sta-
tionary and hence there is continuous connectivity. We can
also conclude that the protocol is very tolerant to discon-
nections. Even as the file size increases (in the order of tens
of megabytes), the protocol is able to maintain a good per-
formance by ensuring that connections are restored quickly
after a disconnection. The high mobility of the nodes helps
in re-forming routes that are broken quickly due to the pres-
ence of other nodes that take the place of the previously
disconnected node.

From Figure 11, we can conclude that the throughput re-
mains constant in the static case. This is because the nodes

 40

 60

 80

 100

 120

 140

 2000 4000 6000 8000 10000 12000 14000 16000

%
 P

ac
ke

ts
 tr

an
sm

itt
ed

 to
 g

et
 th

e
fil

e
ac

ro
ss

File Size (in terms of 1500 byte packets)

High Mobility
Group Mobility

No Mobility

Figure 10. Intra-Cluster: Goodput Analysis

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2000 4000 6000 8000 10000 12000 14000 16000

D
at

a
tr

an
sf

er
 r

at
e

in
 K

bp
s

File Size (in terms of 1500 byte packets)

Throughput (No Mobility)
Throughput (Group Mobility)

Throughput (High Mobility)

Figure 11. Intra-Cluster: Throughput Analysis

are stationary and connectivity is maintained throughout.
The throughput falls significantly once disconnections are
introduced into the network. There is a significant drop
in the throughput in the high mobility case, but due to the
fact that the protocol handles disconnections quickly, the
throughput remains stable across different file sizes. This is
very useful for applications that require a steady throughput
(even though it is much lower than in the static case).

5.3. Inter-Cluster evaluation

From Figure 12, we conclude that the goodput in the
static case is 100%. This does not come as a surprise as
the nodes are stationary and hence have connectivity at all
times. The goodput in the high mobility case has gone down
considerable due to the increase in the number of discon-
nections, but we can see that the the protocol tolerates dis-
connections well and restores the connection soon. Even
though the file sizes increase, thus giving a larger window

 0

 50

 100

 150

 200

 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 P

ac
ke

ts
 tr

an
sm

itt
ed

 to
 g

et
 th

e
fil

e
ac

ro
ss

File Size (in terms of 1500 byte packets)

High Mobility
Group Mobility

No Mobility

Figure 12. Inter-Cluster: Goodput Analysis

for disconnections to take place and hence lower the good-
put, the protocol maintains a steady goodput.

 0

 200

 400

 600

 800

 1000

 1200

 1000 1500 2000 2500 3000 3500 4000 4500 5000

D
at

a
tr

an
sf

er
 r

at
e

in
 K

bp
s

File Size (in terms of 1500 byte packets)

Throughput (No Mobility)
Throughput (Group Mobility)

Throughput (High Mobility)

Figure 13. Inter-Cluster: Throughput Analysis

From Figure 13, we can conclude that the throughput
for the static case averages well. The small dips and peaks
can be attributed to transient environmental factors. When
group mobility is introduced, we see that the data rate falls
significantly, but the protocol handles these disconnections
well, as can be seen from the fact that the data rate is quite
stable. In the high mobility case, the data rate falls signifi-
cantly due to a high number of disconnections, but overall
the data rate remains stable.

6. Conclusions

The (�; t)�Cluster framework was implemented on
Linux and it was tested and evaluated. We believe this to
be one of the few protocols for ad-hoc networks to have a

proof-of-concept work. There is much work that still needs
to be done in terms of tests, modifications and optimiza-
tions to make this protocol worthy of industry standards.
The challenge is to be able to deploy MANET protocols in
the industry so as to be able to test them out more rigorously
which would help in improving the protocol.

We have to determine the overhead caused because of
running DDCA continuously on these nodes. Careful anal-
ysis could determine how this protocol could be optimized
and help reduce the number of packets transmitted, and also
fix the optimum timeouts for the timers used.

Hybrid routing must be looked at in a whole new light
when we talk about routing in Ultra-large scale networks
and wireless sensor networks. Better models of routing
need to be studied, models like data diffusion, content-
based routing and information dissemination could be im-
plemented and analyzed.

7. Acknowledgments

This work has been supported in part by the National
Science Foundation (under grant no: 000073972).

References

[1] A. Gopalan, S. Dwivedi, T. Znati and A. B. McDonald. On
the implementation of the (�; t)-Cluster Protocol on Linux.
In Proc. 37th Annual Simulation Symposium, Apr. 2004.

[2] A.B. McDonald, T. Znati, A. Gopalan.(�; t) protocol spec-
ification. Internet Draft, August 2001.

[3] Apple Computer Inc. Rendezvou’s Developer Page.
http://developer.apple.com/macosx/rendezvous/, 2002.

[4] Charles E. Perkins. Ad-hoc networks.Addison Wesley,
2001.

[5] Committee on Evolution of Untethered Communications et
al. Evolution of Untethered Communications. National
Academy Press, 1997.

[6] W. P. I. Computer Science Department. Adding a system
call. http://fossil.wpi.edu/docs/howtoadd systemcall.html,
2002.

[7] A. Demenshin. Demonstration of libipq usage.
http://aldem.net/netfilter/, September 2001.

[8] H. Glenn. Linux IP Networking: A guide to the imple-
mentation and modification of the Linux Protocol Stack.
Masters Thesis http://www.cs.unh.edu/cnrg/gherrin/linux-
net.html, May. 2000.

[9] J. C. Haarsten. The Bluetooth Radio System.IEEE Personal
Communications Magazine, pp. 28-36, February 2000.

[10] Z. J. Haas and M. Pearlman. The Zone Routing Protocol
(ZRP) for Ad Hoc Networks.Internet Draft, August 1998.

[11] Jean Tourrilhes et al. MPL/GPL drivers
for the Wavelan IEEE/Orinoco and others.
www.hpl.hp.com/personal/JeanTourrilhes/Linux/Orinoco.html,
April 2001.

[12] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in
Ad hoc Wireless Networks. InMobile Computing, volume
353. Kluwer Academic Publishers, 1996.

[13] V. Kawadia, Y. Zhang, and B. Gupta. System services for
implementing ad hoc routing protocols.International Work-
shop on Ad Hoc Networking, 2002.

[14] Y. Ko and N. Vaidya. Location-Aided Routing (LAR) in
Mobile Ad-Hoc Networks. InProc. ACM/IEEE MOBICOM,
Oct. 1998.

[15] C. R. Lin and M. Gerla. Adaptive clustering for mobile wire-
less networks.IEEE Journal on Selected Areas in Commu-
nications, 15(7), Sep. 1997.

[16] A. McDonald and T. Znati. A Mobility Based Frame-
work for Adaptive Clustering in Wireless Ad-Hoc Networks.
IEEE Journal on Selected Areas in Communications (J-Sac),
Special Issue on Ad-Hoc Networks, 17(8), Aug. 1999.

[17] J. T. Moy. OSPF Complete Implementation.Addison Wes-
ley, September 2000.

[18] S. Pather. POSIX 1003.1b timer patches for Linux.
http://www.rhdv.cistron.nl/posix.html, August 2001.

[19] C. Perkins and E. Royer. Ad Hoc On-Demand Distance Vec-
tor Routing. InProceedings 2nd IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’99), 1999.

[20] C. R. Perkins and P. Bhagwat. Highly Dynamic Destina-
tion Sequenced Distance Vector Routing (DSDV) for Mo-
bile Computers. InACM SIGCOMM, pages 234–244, Oct.
1994.

[21] Rubini A. and Corbet J. Linux Device Drivers, 2nd Edition.
O’Reilly, June. 2001.

[22] R. Rusty. Unreliable Guide to Hacking the Linux Kernel.
http://people.netfilter.org/ rusty/unreliable-guides/kernel-
hacking/lk-hacking-guide.htmlz, 1999.

[23] R. Rusty. Linux Netfilter Hacking HOWTO.
http://netfilter.samba.org, 2002.

[24] H. Welte. The journey of a packet through the Linux 2.4 net-
work stack. http://www.gnumonks.org/ftp/pub/doc/packet-
journey-2.4.html, October 2000.

[25] A. Williams. Zero Configuration Networking. Internet
Draft, September 2002.

