STDCS: A Spatio-Temporal Data-Centric Storage Scheme For
Real-Time Sensornet Applications

Mohamed Aly  Anandha Gopalan
Department of Computer Science

Jerry Zhao  Adel M. Youssef
Google Inc.

University of Pittsburgh
{maly,axgopala}@cs.pitt.edu

Abstract

Sensor networks will shortly consist of globally de-
ployed sensors providing real-time geo-centric informa-
tion to users. Particularly, users with mobile devices
will issue ad-hoc queries usually from within, or nearby,
the queried area. In this paper, we propose an in-
network Data-Centric Storage (DCS) scheme, namely
the Spatio-Temporal Data-Centric Storage (STDCS)
scheme, to efficiently answer these mobile user queries.
STDCS is designed to maintain load-balancing among
sensors to cope with query hotspots in the network. It is
different from previous proposals in two aspects. First,
it is based on the novel idea of using a temporally evolv-
ing spatial indexing scheme to balance querying load
among sensors. Furthermore, STDCS uses dynamic
mechanisms for query hotspot detection and decompo-
sition. We conducted extensive simulations that showed
our scheme’s superiority to both local storage and spatial
indexing (the only known geo-centric storage schemes)
whenever experiencing query hotspots of different sizes.

1 Introduction

The next generation of sensor networks will be com-
posed of sensors deployed everywhere [12]. Due to
their huge number, sensors will mostly be clustered
into small clusters/areas and relatively addressed within
each cluster rather than being assigned absolute ad-
dresses. Sensors will mostly be plug-and-play battery-
operated mote-like devices and will be accessible by
mobile users/devices, such as robots, cell phones, and
PDAs [16, 15]. Two examples of sensor clusters are the
Bronzx Zoo cluster and the disaster management cluster.
In the first application, motes are deployed in Bronx Zoo
for habitat monitoring. The park visitors are allowed to
use their mobile devices to query sensors for real-time
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information about animals, their behaviors, the climate
they live in, etc. In the second application, sensors are
deployed in the area of a disaster/emergency in an ad-
hoc manner. As the first responders roam in the dis-
aster area, they query sensors for readings that would
help them to better control the disaster.

Both applications are geo-centric and real-time, i.e.,
users issue ad-hoc queries asking for real-time data gen-
erated by sensors falling in a particular area. Ad-hoc
queries can be issued anywhere in the cluster [14, 3]
and target real-time readings of one or more sensors in
the surrounding area. One way to answer this query
type is to send the sensor readings to stationary Base
Stations (BSs) and let the user directly query the BSs
through a wireless or Internet connection. However, this
approach may be questionable, either because BSs may
not be available in some clusters, such as the disaster
management cluster, or because a wireless or Internet
connection may not be available in the cluster, as in the
Bronx Zoo cluster. Additionally, answering the query
through BSs does not take benefit of the geographic lo-
cality characteristic of our ad-hoc queries. To efficiently
answer real-time geo-centric ad-hoc queries, the sensor-
net can store recent readings temporarily in the sensor
caches, so that mobile users can immediately query the
sensors when asking for real-time information. A mo-
bile user can contact sensors for example using 802.5 or
through an underlying mesh network. Periodic reading
synopsis (or averages) may be sent for archival in BSs,
or a reading may simply be dropped after a lifetime, e.g.
1 hour.

In-network Data-Centric Storage (DCS) schemes pre-
viously presented in literature adopted indexing based
on the sensor reading values [14, 13, 10, 3]. In a DCS
scheme, a readings-to-sensors mapping function assigns
the responsibility for storing the reading of any sensor
to a storage-sensor based on the value of that reading.
As our queries are geo-centric, we realize that reading-



based indexing is not a good fit for our model as process-
ing a geo-centric query will require flooding the whole
cluster. In this paper, we present the Spatio-Temporal
Data-Centric Storage scheme (STDCS), a novel DCS
scheme for real-time geo-centric sensornet applications.
In STDCS, data indexing is based on the sensor loca-
tions rather than the reading values. Hence, STDCS
presents a semsors-to-sensors mapping instead of the
previous readings-to-sensors mappings. Our scheme em-
beds the sensor geographic locations into the leaves of
a k-d tree [4] and assigns virtual addresses to sensors
based on their positions in the k-d tree. The virtual ad-
dress of each sensor is used as an input to the mapping
function as to determine its storage-sensor. Any point-
to-point routing scheme can be then used to route read-
ings to their storage-sensors, e.g. the Greedy Perimeter
Stateless Routing protocol (GPSR) [7]. Query process-
ing can be easily done locally and distributively by the
sensors in a hop-by-hop manner.

Our major design goal for STDCS is load-balancing.
Traffic skewness may easily occur in our applications
due to the time-varying number of users and the hard
task of expecting their behaviors at any point in time.
The main skewness source in our model lies in query
hotspots [1], where most of the mobile users issue queries
targeting a fairly small number of sensors simultane-
ously. Query hotspots may arise because of the differ-
ence in popularity between the readings of different sen-
sor nodes due to the reading type, location, time, etc.
The task of predicting such queries, and thus, the traf-
fic in the network, at any time is very difficult. Traffic
skewness, and in particular query hotspots, is a ma-
jor problem that may result in the early death of our
battery-operated sensors, network partitioning, and a
subsequent reduction in network lifetime.

To maintain load-balancing, we present the novel con-
cept of spatio-temporal data indexing, where the map-
ping of readings to their storage-sensors depends not
only on the location of the generating sensor, but also
on the generation time of the reading. Spatio-temporal
indexing balances the load, in terms of query accesses,
among sensors with no dependence on the query distri-
bution imposed on the cluster. Additionally, we present
a separate load-balancing scheme to adaptively detect
and decompose query hotspots. This scheme is based
on the dynamic adjustment of the parameters of the
spatio-temporal data indexing. Through extensive ex-
perimental evaluation, we show that the main advan-
tages of STDCS are:

e Highly outperforming both local storage and spatial
indexing when facing query hotspots.

e Minimizing load-balancing overhead by adaptively

adjusting the needed load-balancing level based on
the detected skewness level of the hotspot.

Paper Organization: The rest of the paper is orga-
nized as follows. Section 2 describes the components of
STDCS. Experimental results are discussed in Section 3.
Section 4 presents an overview of the related literature
and Section 5 concludes the paper.

2 The Spatio-Temporal Data-Centric
Storage Scheme (STDCS)

Our Spatio-Temporal Data-Centric Storage Scheme
(STDCS) mainly proposes a new load-balancing tech-
nique for DCS schemes taking advantage of both the
spatial and the temporal characteristics of sensor read-
ings. We present STDCS for a cluster of sensors span-
ning a limited geographic area. At the start of the
network operation, sensors are assigned addresses, i.e.,
(z,y) coordinates, relative to a common reference point
within the cluster. We do not assume the existence of
stationary BSs in our cluster. Sensor nodes are assumed
to have the capacity for wireless communication, basic
processing and storage, and they are associated with the
standard energy limitations. There are two main com-
ponents in DCS schemes: the sensor-to-address map-
ping that assigns a virtual (i.e., logical) address to each
sensor, and the reading-to-sensor mapping that deter-
mines a storage-sensor for each reading, which is the
sensor responsible of storing this reading [14, 13, 10, 3].
In light of these two general components, STDCS con-
sists of the following components:

e The repetitive splitting of the geographic area to
form the underlying k-d tree, and locally assign the
virtual sensor addresses.

e The spatio-temporal data indexing which uses the
virtual address of each sensor s and the reading
generation time to map the sensed data of s to its
storage-sensor.

e The point-to-point routing scheme to deliver the
reading of any sensor to its storage-sensor.

e The query processing scheme that distributively
process any query issued by any mobile user.

e The dynamic adjustment of the temporal change of
the mapping function based on the hotspot skew-
ness level.

We describe each of these components in details in the
subsections below.

2.1 Local Virtual Address Assignment

Our virtual address assignment scheme is similar to
that used in DIM [10]. At the start of the network op-
eration, each sensor node populates its relative address
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Figure 1. Virtual addresses in a cluster

(in the form of (z,y) coordinates) to its neighbors (sen-
sors falling in its communication range). At the end of
this process, each sensor makes a list of all its neighbors,
neighbors_list. Each sensor uses its neighbors_list, to-
gether with the knowledge of the approximate bound-
aries of the geographic area spanned by the cluster to
locally form its virtual address as follows. The sensor
uniformly splits (i.e., bisects) the overall service area in
a round robin fashion, horizontally then vertically, left
shifting its bit-code with every split by 0 (or 1) bit when
determining that it falls above (or below) the horizontal
split line (similarly, by a 0 bit if falling on the left of the
vertical split line, or a 1 bit otherwise). This static pro-
cess partitions the area into zones, where a zone is de-
fined to be a rectangular area well defined by an [z, x2]
range and a [y1,y2] range. The sensor stops applying
this process the first iteration it determines that it falls
by itself in a zone. At this point, the sensor relative ad-
dress becomes the zone bit-code. When all sensors are
done with this process, the global address assignment
process ends with a complete partitioning of the service
area into zones, with each zone having exactly one sen-
sor in it. Thus, the length of the binary address of each
sensor (in bits) represents its depth in the underlying
k-d tree. Figure 1 shows the virtual addresses assigned
to a sensor cluster. The circled numbers in the Figure
represent the increasing order of the bisector.

2.2 Spatio-Temporal Data Indexing

Based on the sensor virtual addresses, STDCS uses a
spatio-temporal data indexing scheme. We start by the
spatial aspect of the indexing scheme, then, we describe
its temporal aspect.

Our spatial data indexing scheme determines the
storage-sensor of every sensor s; in the cluster using the
virtual address of s;. The scheme uses two main system
parameters: prefir and of fset. The main idea of the
scheme is to partition the cluster into a set of subclus-
ters and map sensors in each subcluster to the corre-
sponding, or the most similar, ones in another subclus-

ter. This subcluster mapping is unidirectionally unique
in the sense that a cluster ¢c; mapped to cluster ¢y means
that every sensor in ¢; is mapped to a storage-sensor in
co and that sensors in ¢o are not necessarily mapped to
c1’s sensors. To do so, the scheme uses the most signif-
icant bit-code of s;’s virtual address, where the length
of this bit-code is equal to the value of prefix. Further-
more, let base be a number equal to 2P7¢f*® and of fset
be defined as a random number, initially chosen between
0 and base — 1. Both prefixz and of fset are either set
prior to the network operation for all sensors or picked
by a central authority in the cluster, such as a BS (if
available).

The actual spatial mapping is done as follows. Let
sensors s and t be two sensors such that our spatial
scheme maps s to t. The address of s is denoted by
address(s) with bit code length of [ . Let m be the
number formed by the most significant prefiz bits of
address(s), that is: m = (address(s) >>i_prefiz),
where <<; and >>; are defined to be bitwise shift-left
and shift-right for 4 bits, respectively. Let the value of h
be equal to (m + of fset)%base, where h is the defined
to be the mapped value of m. Given the value of h, the
address of sensor t is formed as follows:

address(t) = h <<(—presiz) |(address(s)&e(27"/" 1))

where | and & are bitwise or and bitwise and operators,
respectively. In other words, we hash the number result-
ing from the most significant prefix bits of the virtual
address to another number of equal bit-length. Then, we
concatenate the bit-code of h with the least-significant
bit-code of the original address of s to get the address
of sensor ¢t. The effect of this hashing scheme is to map
all the sensors in the subcluster where all sensors have
the prefix bit-code equal to m to the subcluster where
sensors have the prefix bit-code equal to h.

Figure 2 shows an example for the spatial mapping
in a sensor cluster with prefiz = 2 and of fset = 1. As
an example from the Figure, sensor 0110 is mapped to
sensor 1010. This is done by taking the most-significant
2 bits of sensor 0110, which is the bit-code 01. As the
value of this bit-code is 2, thus, the mapped bit-code will
be 2+of fset =241 = 3. As 3%2P ¢/ = 3%4 = 3, the
resulting most-significant bit-code of the mapping be-
comes 10. Then, we concatenate this bit-code with the
least-significant bit-code of the original address, which
is 10, to form the address of the storage-sensor of sensor
0110, which is 1010.

One problem with the above spatial mapping is as-
suming that the bit-length of both the original sensor
and the storage-sensor addresses are equal. This should
not always be the case. The bit-length of the storage-
sensor may be less than that of the original sensor. As



Figure 2. Spatial mapping in a cluster

an example for this case from Figure 2, sensors 1000 and
1001 are mapped to sensor 110. On the other hand, the
problem becomes more tricky when the bit-length of the
address of the original sensor is longer than that of the
storage-sensor. For example, if we consider sensor 010
in the Figure, we find that two sensors are candidates
to be its storage-sensor, namely sensors 1000 and 1001.
For this case, any arbitration rule can be used to select
one of the two sensors. For example, a 1 bit could be
trivially appended to the mapping result, thus mapping
010 to 1001. A slightly more load-balance oriented rule
may be to append the most-significant bit in the original
sensor address, which is 0 for sensor 010, thus mapping
sensor 010 to sensor 1000. It is worth mentioning that
the arbitration rule is not applied except at the final hop
of the routing path of the reading of sensor 010 in order
to determine its exact final destination. Additionally,
only one arbitration rule should be used by all sensors
in the cluster.

We now move on to add the temporal dimension to
our spatial data indexing. We define the switching_time
to be the time duration after which the mapping func-
tion changes. Repeatedly applying this mapping func-
tion results in partitioning the day into slots, where the
length of each slot is equal to the switching_time. At
the start of each slot, all sensors change the mapping
function (Recall that sensors are assumed to be syn-
chronized). To do so, the value of of fset is incremented.
This means that, instead of cluster 01 being mapped to
cluster 10, it will be mapped to cluster 11. This tem-
poral change of the mapping function has the effect of
changing the mappings among subclusters at the start
of each time slot. Note that the value of the of fset in-
crement may be more than one. However, it should be
constant throughout the cluster.

Our proposal of spatio-temporal data indexing
scheme has its unique advantages. To understand the
advantage of the spatial indexing scheme, we compare it
with the local storage scheme, where each sensor stores
its own readings. When both schemes face data skew-

ness or query hotspots, we find that the major advan-
tage of the spatial scheme is to reduce the load imposed
on sensors falling in the hotspot area by relieving them
from answering queries addressing this area and impos-
ing the responsibility of answering those queries on other
sensors, possibly less overloaded. However, the cost of
this achievement is incurred in forwarding all the read-
ings away from their originating sensors. The problem
right here is that this cost is paid by all sensors in the
cluster, while the achievement is only gained by a small
set of sensors in the cluster. Furthermore, this achieve-
ment is not enough when we consider traffic skewness
problems and specifically query hotspots as the same
location where the hotspot is mapped to will be over-
loaded by queries after a very short time. Assuming
hotspots are recurrent, or spanning long time intervals,
both regions, the original one and the mapped-to one,
will die after a short time period.

To complement the shortcoming of the pure spa-
tial indexing when confronting hotspots, our proposal
uses the time dimension in the mapping. Our tempo-
ral scheme changes the mapping function at the start
of every time slot. The intuition behind this temporal
change is that hot areas/subclusters will be mapped to
different areas throughout time. Thus, it is more likely
to achieve load-balancing between sensors as the high
load will be decomposed among a larger set of sensors.
Furthermore, in case a cluster ¢y is responsible of stor-
ing the readings of a hot cluster in one slot, it is less
likely to be responsible of storing readings of other hot
areas in the following time slots.

2.3 Point-to-Point Delivery of Readings

Data delivery includes delivering readings to their
storage-sensors and delivering query results to the query
issuer mobile users. We first focus on the the reading
delivery in this subsection, then we cover the query pro-
cessing in the next subsection. For both cases, our tech-
niques are based on using an underlying point-to-point
routing protocol.

Data delivery can be implemented in a data-centric
hop-by-hop manner using the sensor virtual addresses,
exactly like in DIM [10] and KDDCS [3]. In such a case,
the packet destination field is set to the virtual address
of the destination sensor (i.e., the result of the mapping
function). Each intermediate node receiving this packet
computes the Least Common Ancestor (LCA) in the k-d
tree between itself and this destination. This is defined
as the most-significant non-matching bit between their
bit-codes. The node then determines the direction to
which the packet should be sent based on the value of
this bit, e.g. if the LCA bit is 0 for the destination and



the bisector of this bit is horizontal, then the packet
should be forwarded up. The process continues till the
packet reaches its destination.

However, the geo-centric nature of our scheme can
give room to the following optimization in the reading
delivery process. Whenever a sensor s computes the vir-
tual address of the destination ¢, s can inversely map the
virtual address of ¢ into a zone z, which is a box formed
by an [z1, 23] range and a [y1,y2] range, where z’s and
y’s are relative coordinates as described in 3.1. Once
zone z is formed, it can be used as a packet destination.
Note that in case the underlying geographic routing pro-
tocol does not support routing to a geographic range,
the packet can easily be routed to the center point of
z. Each intermediate sensor compares the destination
virtual address to its virtual address. Once the packet
reaches the sibling-node/child-node/parent-node of z in
the k-d tree, routing switches to the data-centric scheme
described above to route it to its exact destination. The
mix between geographic routing and data-centric rout-
ing takes benefit from the fact that our virtual addresses
are purely based on geography to optimize energy con-
sumption (as geographic routing tends to be follow a
shorter path when routing a packet to its destination).

2.4 Query Processing

Our query processing scheme is based on using the
data indexing scheme to distributively deduce the set
of sensors targeted by any query and contacting those
sensors to get the all readings stored by these sensors
and matching the issued query.

When a mobile user sends an ad-hoc query @, it is
picked by a nearby sensor s;, the query issuer sensor.
Based on the parameters of @), s; starts the query pro-
cessing of @ by first forming the query area, represented
by the ranges [z1, 22] and [y1, y2] that the query involves,
based on knowing its relative address and the bound-
aries of the cluster. Note that the query box would be
truncated if it goes beyond the boundaries of the cluster.
As a second step, s; uses the query area and the bound-
aries of the cluster to form a bit code for the query with
don’t care (d) bits in the bit locations where the query
area intersects with the uniform bisector corresponding
to this bit location. As an example from Figure 2, a
query issued in sensor 0111 may have a query bit-code
of 01dd when the query spans all the 01 cluster sensors.
The query bit-code is then mapped to get its destination
bit-code, which is 10dd for our example query.

To process the query, the data-centric approach is
used to process the query using the destination bit-code.
Each intermediate sensor (including the query issuer)
processes the bit code from left to right. The sensor

first compares the bit code with its bit code to check
whether it is the destination of the query. If not, the
sensor gets the LCA in the k-d tree between itself and
the destination. Whenever a node determines the LCA
bisector, its determines the direction and the neighbor
to which the query should be forwarded.

Whenever a sensor encounters that its LCA with the
query is a d bit, this is an indication that the query
should be splitted to two locations (up and down the
horizontal bisector or left and right of the vertical bisec-
tor). Thus, the node splits the query into two queries
replacing the d bit with 0 and 1, respectively. The is-
suer of each of the queries will be s;, i.e., exactly like
the original query. Running this process in a hop-by-
hop manner will end up by splitting the query @ into
a set of point-to-point requests to each of the storage-
sensors storing readings of sensors falling in the query
area. Whenever a storage-sensor receives its correspond-
ing request, it processes the query against the readings
it is currently storing and forms its (possibly empty)
result set of Q). If not empty, this result set is sent as
one or more point-to-point requests to s;. Whenever s;
aggregates all the result sets coming from all storage-
sensors (possibly after waiting for a long enough or a
user-defined deadline), it forwards the resulting set to
the mobile user that issued the query.

2.5 Adaptive Hotspot Decomposition

Query hotspots are mainly characterized by being dy-
namically changing as time progresses. For example,
a lot of mobile users may be interested in restaurant
occupancies in downtown Manhattan during the lunch
hour. However, a much smaller set of users would be
interested in the same type of data 2 hours later. To
deal with such a case, our static spatio-temporal data
indexing scheme, where the switching_time is set once
at the start of the network operation, may be either
too optimistic or pessimistic. In the first case, a large
switching_time is used at the expense of not being able
to fully load-balance hotspots if they occur. At the sec-
ond case, a small switching_time is adopted to be able
to cope with query hotspots of different sizes. How-
ever, this introduces an additional overhead in terms
of the average number of sensors involved in answering
any query issued to the system, especially when query
distributions are mostly uniform or very lowly skewed.

To increase the efficiency of our data-indexing, we ex-
tend it with an adaptive query hotspot decomposition
scheme. Our scheme is based on continuously keeping
track of the hotspot distribution in the cluster and dy-
namically changing the value of the switching_time pa-
rameter to recapture the load-balancing effect among



the sensors as time progresses. The is based on an col-
lecting feedback about query loads encountered by all
sensors as follows. Each sensor keeps track of its Av-
erage Querying Frequency (AQF), which is the number
of queries whose result set involve readings stored in
that sensor. We define the variable phase to be a sys-
tem parameter denoting a time duration. At the start
of each phase, one sensor, which is either selected after
a coordination between all sensors or may be constant
throughout the network operation, acts like the central
authority in the cluster. Suppose this central authority
node to be B, it initiates a breadth-first search query in-
volving all the cluster sensors and collecting the AQF's
of all sensors. Results are aggregately sent to B. Thus,
each sensor sends and receives exactly 2 messages in this
process. Based on the max AQF, the collective AQF,
the median AQF, and the minimum AQF of the net-
work, B determines the approximate distribution of the
AQF across all sensors. Based on this distribution, B
easily determines whether a hotspot exists or no, as well
as how severe (in terms of skewness) is the hotspot.

In case of a query hotspot, our scheme deduces that
the current system parameters are not able to deal with
the degree of skewness in the network. Thus, a param-
eter update needs to take place depending on the ex-
pected hotspot degree. In case the AQF distribution is
highly skewed, this is an indication that a hotspot takes
place in a small geographic area. For this case, it is most
likely that a hotspot does not span more than one sub-
cluster, assuming the initial setup of the system param-
eter values, especially the prefiz, used a rough expec-
tation of the query load distribution based on the pop-
ularity of the geographic areas spanned by the cluster.
Therefore, decreasing the value of the switching_-time
would be enough to rotate the mapping of the hot sub-
cluster around the other subclusters, thus, reachieve
load-balancing in the cluster. In decreasing the value of
the switching_time, B follows well-defined steps with
equal length. For example, assuming a user-query does
not span more than 1 hour of reading generation time,
a typical starting switching time would be 1 hour, while
a typical decrement value would be 10 or 15 minutes.

On the other hand, in case the AQF follows a nor-
mal distribution with high tails, this indicates that a
hotspot may be spanning more than one subcluster. In
such a case, a good decomposition would be to increase
the value of the prefix, thus, increase the number of the
subclusters in the network. Additionally, the value of
the increment of the offset should be changed from 1 to
another random value falling to the range [0, 2Pr¢/i* —1].
This results in mapping the subclusters of the hotspot
to far apart subclusters every time slot. It should be

noted that the above changes increase the number of
sensors involved in any query. Thus, assuming a query
hotspot occurred at some time during the network oper-
ation then was decomposed, it is not beneficial to keep
the parameters set to the same values forever. Instead,
B resets the system parameters when it would find the
AQF distribution uniform and close to be so.

3 Experimental Evaluation

We implemented STDCS on top of GPSR [7] using
the Glomosim wireless network simulator [8]. We simu-
lated a typical cluster of stationary sensors with mul-
tiple mobile users. In our simulation setup, Sensors
are randomly distributed in a service area A covering
a 200mx200m square. Each sensor has an equal start-
ing energy amount of e = 30K units. It consumes 1 unit
for either receiving or sending one packet. Each sensor
had a communication range of 25m. Whenever a sensor
s sends a packet p to a neighbor ¢, only s and ¢ con-
sume energy for sending and receiving p. The wireless
medium is assumed to be reliable and not contributing
to any packet loss.

We ran simulations for networks of sizes varying be-
tween 100 and 500 sensors. At the start of every sim-
ulation, node locations are picked at random. Initially,
each node broadcasts one message to know its neighbors’
locations and it receives as many messages as the num-
ber of its direct neighbors. No maintenance messages
are further sent during the simulation. Each sensor was
programmed to sense a reading every 10min. For sim-
plicity, a sensor reading was assumed to be sent in one
packet. Each sensor was mounted with 20 memory loca-
tions, each being able to hold one reading. We assumed
10 reading types. At the start of the network, each sen-
sor node picked a type at random (unless a hotspot is
to be simulated).

Our simulation consisted of two phases: an initial-
ization phase and a running phase. The initialization
phase consisted of running the network for 3 hours in or-
der to achieve a steady state distribution on the sensors’
storage loads. In the running phase, readings contin-
ued to be generated with the same rate. Additionally,
queries started to be generated. To form a query, a
sensor is drawn at random from a uniform distribution
(or normal when simulating hotspots). Once a sensor
is picked, a radius length is picked at random from the
range [10m,50m]. Then, a type is drawn at random
from a uniform distribution (normal for query hotspots).
Then, the query is issued by the sensor, processed by the
network, and the results are sent back to the issuer sen-
sor. For uniform loads, 1 query is generated every 5
min, while for hotspots, x queries are generated every



minute, where z € [10,50]. We simulated each run for
a duration of 1 day.

We analyze the performance using the following three
metrics: throughput, energy level, and node deaths. At
the end of each run, throughput measures the number
of successfully sent packets by all sensors while node
deaths indicate the percentage of sensors with depleted
batteries. The remaining energy level of a sensor rep-
resents the energy left at this sensor node at the end
of the simulation. Both the energy level and the node
deaths are important metrics to indicate how our scheme
balances the work load, thus the energy consumption,
among the different sensors. Throughput on the other
hand shows how load-balancing query hotspots increases
the network performance in terms of the number of suc-
cessfully sent packets.

To provide a comparison baseline for STDCS, we also
implemented two other schemes: A local storage scheme,
where each sensors stores its generated reading, and a
pure spatial indering scheme, where the mapping from
sensor to its storage sensor is solely determined by the
location field of the reading, i.e., mapping does not
change during the simulation. In all graphs below, a
data point represents the average of 10 runs. It is worth
mentioning that we were aware of the standard devia-
tion in all simulation runs and we did not encounter a
large variance in our simulations.

3.1 STDCS vs Query Hotspots

Our first set of experiments studied the load-
balancing ability of STDCS when facing query hotspots.
We first compared STDCS with local storage and spa-
tial indexing when facing query hotspots. We set the
switching_time to be 1 hour (worst case STDCS per-
formance). To simulate query hotspots, 10 queries were
issued per minute (i.e., lowest hotspot skewness level).
Then, we ran a performance study of STDCS for dif-
ferent values of switching_time to monitor how the
change in the temporal dimension of the mapping af-
fects the overall STDCS performance. Additionally, we
compared one version of STDCS for different querying
frequencies to study how STDCS deals with different
skewness levels.

Figures 3 and 4 compare the three schemes in terms
of node death percentages and energy levels, respec-
tively. Figure 3 shows that STDCS outperforms local
storage, which in its turn outperforms spatial indexing.
The difference between STDCS and local storage is al-
most constant and does not depend on the network size.
The main reason for that is that the geographic hotspot
size does not basically change with the network size,
thus, the percentage of sensors affected by the hotspot

40

Spaua\‘ —
Spatio Temporal - %---
sl Local &~ |

25
20

e

15 w7

% of Node Deaths
.

10

51

ok

5 L L L L L
100 200 300 400 500

Number of Nodes

Figure 3. Node deaths for query hotspots

Energy Range 0 (0:25] (2550) (50-75) (75-100)
Size\Scheme|STDCS| Local | Spatial | STOCS | Local | Spatial| STOCS | Local [Spatial| STOCS| Local| Spatial | STOCS | Local | Spatial
w5 7 el e 3R
140 [ b 2] n By |
il B M B8
H)
k1l
H
Fill
)
il

=

i
9

ro[ro|ro oo o] = [eo|rs
P Y P O R ) S
S PR D R Y PO PSP
oo es[em]| | o [ em
=|=|=|s|=|=
Sl B B

=

5]

=

1

Figure 4. Energy levels for query hotspots.
Values represent the percentages of sen-
sors for each network size/lenergy level
range/scheme triplet.

is almost the same in all cases. Considering the fact
that STDCS already adds an additional burden on each
sensor in the cluster for forwarding readings to storage-
sensors, we realize that the load-balancing gain achieved
by STDCS is fairly large when compared to local stor-
age. Of course, the difference is expected to increase
when the querying frequency increases, or or when the
switching_time value decreases. The same conclusions
follow for throughput.

Figure 4 classifies the sensors in the cluster based on
their (remaining) energy levels at the end of the simula-
tion run, for all three schemes with the different network
sizes. STDCS is the scheme having the most percentage
of sensors in the range (75, 100], usually above 85%. Fur-
thermore, we can see that the performance of STDCS
in terms of the percentage of sensors in the the range
(75,100] is almost constant (if not slightly increasing)
with the increase in the network size as opposed to the
decreasing performance of the other two schemes. For
all network sizes, we find that STDCS is consistent in
terms of the percentage of nodes falling in each range,
a property that is not achieved by the other schemes.
STDCS also tends to reduce the number of nodes highly
affected by the hotspot. This is clear when analyzing
the fairly small percentages of sensors falling in ranges
(25,50] and (50, 75]. This shows that STDCS achieves a
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Figure 6. Node deaths vs hotspot levels

better load-balancing among sensors in terms of energy
consumption. The decrease in percentages of these two
ranges with the increase in the network size gives an
idea about the scalability of STDCS, in terms of load-
balancing, when compared to other schemes.

Our next step is to study STDCS’s performance when
the switching_time changes. Figure 5 compares the
throughput STDCS for different switching_time val-
ues. For this experiment, the querying frequency was
30 queries per minute. Thus, generated query hotspots
are of medium skewness levels. The Figure shows
that decreasing the switching_time value improves the
STDCS performance by decreasing increasing the net-
work throughput (and decreasing node deaths). The
difference between the different versions of STDCS tend
to be constant and proportional to the switching_time
difference. This result shows the power of the temporal
indexing. It improves the hotspot decomposition and
balances the load of query processing among the differ-
ent sensors in the cluster. This consequently results in
much more balanced energy consumption among sen-
sors, thus reduces node deaths and increases through-
put.

Our final step is to study the effect of changing
the querying frequency, i.e., the skewness level of the
hotspot, on the performance of our scheme. Figure 6
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Figure 7. Adaptive STDCS performance

compares STDCS with local storage in terms of node
death percentages for different skewness levels, namely
10, 30, and 50 queries per minute. To measure the worst
case STDCS performance, we set the switching_time to
be 1 hour. The main observation from the Figure is that
the performance gap between both schemes consider-
ably increase when the hotspot skewness increases. This
is valid for both, node death percentages and through-
put. Focusing on STDCS, we observe that its perfor-
mance relatively improves when the hotspot becomes
more skewed. To see that, note that STDCS node
deaths are in the range of 5% when 10 queries are is-
sued per minute and 18% when queries jump to 50 per
minute. This shows how STDCS’s load-balancing excels
when traffic skewness increases.

3.2 Adaptive Hotspot Decomposition

In our second set of experiments, we focused on
testing STDCS’s adaptive query hotspot decomposition
functionality and comparing its effect on STDCS with
static STDCS for different switching_time. Our main
goal was to show how much gain in performance the
adaptive STDCS can reach compared to static STDCS.
Figure 7 compares adaptive STDCS with static ver-
sions of STDCS of switching_time = 30 min,1 hr, re-
spectively. To test a worst case performance for the
adaptive STDCS, we set the querying frequency to be
10 queries per minute. The Figure shows that adap-
tive STDCS achieves around 5% performance gain over
STDCS (30 min) and 10% over STDCS (1 hr). This
performance gain shows the advantage of adaptively set-
ting the STDCS system parameters based on the skew-
ness level. It is worth mentioning that adaptive STDCS
pays an additional cost for collecting AQF's from sensors
at the start of each phase. However, this cost is com-
pensated by the gains achieved by the adaptive query
hotspot decomposition scheme. Also, the performance
gains of adaptive STDCS are expected to increase when
the querying frequency increases.



4 Related Work

Many approaches have been presented in literature
defining how to store the data generated by a sensornet.
One category of such storage solutions is to send all
the data to be stored in base stations, lying within, or
outside, the network. However, such approaches may be
more appropriate to answer continuous queries, which
are queries running on servers and mostly processing
events generated by all the sensor nodes over a large
period of time [5, 11, 17].

In order to improve the lifetime of the sensor net-
work, as well as the QoD of ad-hoc queries, in-network
storage techniques have been proposed. These schemes
are mainly based on the DCS concept [14]. In-network
DCS schemes differ from each other based on the events-
to-sensors mapping used. The mapping was done using
hash tables in DHT [14] and GHT [13], or using k-d trees
in DIM [10] and KDDCS [3]. To the best of our knowl-
edge, no spatial or temporal mapping schemes have been
presented in literature.

Irregularities have been classified as a vital issue in
DCS techniques [6], e.g. irregular sensor deployments
or skewed events distribution. However, the problems
of load-balancing traffic skewness and data storage in
DCS schemes has not been thoroughly addressed in lit-
erature. Migrating data among sensors to cope with
data skewness was the main idea explored. Aly et al.
[1] used this idea to decompose Query Hot-Spots in
DIM via two algorithms, Zone Partitioning (ZP) and
Zone Partial Replication (ZPR). Using data migration
to load-balance storage hotspots arising because of the
irreqular events distribution problem was adopted by
[2, 9, 3]. These techniques vary, based on their sophis-
tication, from decomposing storage hotspots [2, 9] to
avoiding them [3]. To our knowledge, no temporal load-
balancing schemes have been presented in literature.

5 Conclusions and Future Work

In this paper, we presented the Spatio-Temporal
Data-Centric Storage (STDCS) scheme, a novel load-
balanced in-network storage scheme for real-time geo-
centric sensornet applications. Our scheme introduces
the novel idea of using both the generation time and
the sensor location of the sensor readings to achieve
load-balancing, in terms of energy consumption, among
sensors. Through extensive simulation, we showed our
scheme’s ability to excel versus query hotspots of dif-
ferent sizes when compared to local storage and plain
unbalanced spatial indexing. In the future, we would
like to consider the effect of skewed sensor deployments
and that of heterogeneous sensor reading frequencies on
the STDCS performance.
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