StirMark using Octave

Anandha Gopalan and Francis Hoang
Department of Computer Science
Wichita State University

September 29, 2000

Abstract

Digital watermarking has become very important for copyright protection and au-
thentication. Broad claims have been made about the ‘robustness’ of various digital
watermarking method. Unfortunately the criteria as well as the pictures used to demon-
strate these claims vary from one system to the other and recent attacks show that
the robustness criteria used until now are inadequate. This paper shows that majority
of attacks implemented in the Stirmark package can be done in a quick and easy way
using Octave. Given a watermarked image, StirMark will apply several transforma-
tions with various parameters then produce an output image that can be tested using
benchmark to judge the robustness of image watermarking systems.

1 introduction

At the beginning of 1990, there have been a rapid grow of interest in digital watermarking,
embedding imperceptible information ino data. The fears that copyright would be eroded
by the case with which digital media could be copied led people to study ways of embedding
hidden copyright marks and serial numbers in the digital data such as pictures, sound,
program code, etc... for the purpose of ownership verification or authentication. Digital
watermarking for images is done by embedding the information in images in a robust manner
so as to be able to retrieve it later for authentication purposes.

Unfortunately the criteria as well as the pictures used to demonstrate these claims vary
from one system to the other and recent attacks show that the robustness criteria used until
now are inadequate: additive Gaussian noise, low pass filtering rescaling and cropping have
been addressed in most literature but specific distortions such as rotation have been rarely
addressed. In some cases the watermark is simply said to be “robust against common signal
processing algorithms and geometric distortions when used on some standard images.

Most of the potential attacks detailed in:

Martin Kutter and Fabien A. P. Petitcolas. A Fair Benchmark for Image Watermark-
ing Systems. To be presented at the 11th Annual Symposium on Electronic Imaging,
IS&T/SPIE, San Jose, USA, 23-29 January 1999.

http://www.cl.cam.ac.uk/~fapp2/papers/ei99-benchmark/

are actually implemented into this version of StirMark: given a watermarked image,
StirMark will apply these transformations with various parameters. Then the output images
can be tested with watermark detection or extraction programs.

StirMark is a generic tool for simple robustness testing of image watermarking algorithms
and other steganographic techniques. It can be applied to photographic digital images and
it will distort the watermark of too simplistic marking techniques such that the embedded
watermark or steganographic message cannot any more be detected and decoded from the
result image.

2 Implementation of stirmark in Octave

Due to the powerful ability of Octave to perform numerical computation and manipulation
of matrices. The Stirmark package was written entirely in Octave. Octave is a high-level
interactive language for numerical computations. It was originally intended to teach chemical
reactor design [1]. A key functionality of Octave is that it provides a convenient command
line interface for solving linear problems numerically, and for performing other numerical
experiments. It can also be used as a batch-oriented language and for very efficient image
processing. Because of these additional functionalities, it is now being used for other purposes
such as solving differential equations, teaching linear algebra, image processing applications,
etc. Octave is a free software, but it is not in the public domain. Restrictions on its
distribution can be found in the GNU General Public License [2] that comes with Octave.
Octave is also available on the Internet from [3], and additional information is available from
[4].

Octave has been extended by various contributors, and this has vastly enhanced the
abilities of Octave. Contributions by Darrel Hankerson and Greg A. Harris with functions
such as getpgm (), dct (), etc. comprise the JPEGtool package of Octave [5]. The function
getpgm () can read in a PGM image file and store it in a matrix while the function dct ()
computes the discrete cosine transform of the matrix. This fast computation is very desirable
in most image processing applications. For intance, digital media like images, audio, and
video are readily manipulated, reproduced and distributed over information networks.

Octave provides a powerful tool for manipulating matrices. There are a number of func-
tions available for checking to see if the elements of a matrix meet some condition, and for
rearranging the elements of a matrix. For example, Octave can rotate the element, extract
the upper or lower triangular parts, or sort the columns of a matrix. Since PPM and PGM
images are simply matrix of pixels and Octave provides a quick and easy way to manipulate
the matrix, Octave proves to be a very easy and efficient language for graphical manipulation.

3 Image formats

StirMark supports images in the PGM, PPM. Any other formats will automatically be
converted to PPM.
PGM and PPM files have the following header:

e A “magic number” for identifying the file type.

“P2” and “P5” for PGM format in ASCII and raw respectively. “P3” and “P6” for
PPM format in ASCII and raw respectively.

e Whitespace (blank, TABS, CRs, LFs).

e The width, formatted as ASCII characters in decimal.
e Whitespace.

e The height, again in ASCII decimal.

e Whitespace.

e For PGM file, the max gray value formatted as ASCII characters in decimal and for
PPM file, a max color component.

There might be comments in between which begin with #.

PGM is a portable grayscale image while PPM is a portable pixmap image. After the
header is a list of pixels of the image.

Here is an example of a PGM file:

P2

a pgm file

10 5

255

2534 234365879010 30
23 3447438987901 0 30
93 34 524365879019 30
48 34 23 43 65 87901 0 30
2534 234365879010 30

A PPM file looks very similar to a PGM file. The only different is that PPM has three
values for each pixel corresponding to the three components: red, green, and blue. This make
PPM file an ideal color image format for matrix manipulation in Octave. We can use the
reshape function in Octave to reshape the file into three rows where the first row contains
all the pixels for the red component, the second row contains all the pixels for the green
component, and the third for the blue component. We obtain three matrices by cutting
these rows and reshape them to its original size. From then on we can work with these
matrices just like we would with a gray scale image. Whatever we did to one component, we
carry out the same operation for the others. This make it so easy to manipulate any color
image.

Stirmark will look for only four magic number: P2 and P5 (for grayscale images), P3 and
P6 (for color images). If these magic numbers are not found, it will call the system function
“convert” to convert the image to PPM.

To save the matrix back into an image file, we just need to create a header according
to the number of rows and columns of the matrix, and then reshape the matrix into a one
column matrix and then write the pixels to the file. To speed up the process we will always
write them back as raw text instead of ASCII. If we want to save an image in PPM format,
we must reshape and append the three red, green and blue matrices together before writing
them to a file.

To display an image, we just write the pixels of the matrix to a temporary file then call
the system command “XV” to display the file. After XV displayed the image, we can delete
the file.

Octave does not require the user to specify the type of the function parameters, so we
take advantage of this option when working with PGM or PPM file format. If we work with
PGM image then we just pass the matrix to certain function; if we work with PPM image,
we pass a structure contain three matrices to that function. At the beginning of each fuction
we will test whether the input parameter is a matrix or a structure of three matrices. This
make it easy to write the same function that would process either PGM or PPM image.

4 The functions in stirmark

This Stirmark package is written in Octave with the following functions:

e stirmark(matrix, <command_line_option>);

distort the image by the value specify by the user. The command line options are
provided in table 1.

e benchmark(original matrix, watermark_matrix);

check the differences between the two images.

4

readimg(<image>);

read any pgm or ppm image format (if the input file is not a pgm or ppm file Octave
will convert that image file to PPM format) and return a matrix of pixels for that
input file.

writeimg(matrix, <output name>);

write the pixels into a PGM or PPM file.

imagescan(matrix);
display the image by writing the pixels of the input matrix into a file and call xv.

traCrop(matrix, x_coordinate, y_coordinate, size_of x, size_of_y);

crop the image beginning at the specify x and y coordinates to the specify size.

traRemove(matrix, x_coordinate, y_coordinate, # _of rows, # _of_columns);

remove certain numbers of rows or columns at specify point.

traRotate(matrix, angle);

rotate the image by certain angle.

traScale(matrix, percent);

scale the image by a certain percentage (i.e. 50 would reduce the image by half, 200
would doulble the size...)

Restore(image, rows, columns);

restore the image to specific rows and column.

traShearx (matrix, percent);

shear the image in x direction by a certain percentage.

traSheary (matrix, percent);

shear the image in y direction by a certain percentage.

traFilter(matrix, <type>);

filter the image with Median, Gaussian, Sharpen, and Laplacian method.

-h help menu

-C crop image

-med median filter

-shp sharpen filter

-gau gaussian filter

-lap laplacian filter

-rem remove rows or columns
-rot <angle> rotate image

-sca <percent> | scale image
-shx <percent> | shear in x direction
-shy <percent> || shear in y direction

Table 1: Command line options

5 Benchmarking

Even though there are several methods on embedding digital information into images, digital
watermarking remains a largely untested field and very few authors have published extensive
tests on their system [6]. Benchmark provide an efficient tool to find out which techniques
of the research work better than others.

The following equations are used for benchmarking:

Average Difference:

1
AD = — pP,,— P!
XY g | Y w,yl
Mean Square Error:
1
MSE =—S (P, —P..)?
XY Iz’y('Y w,y)
Signal-to-noise Ratio:
1
_ 2 2
PSNR = XYmamm,me,y/XY zz,y (Pry — Pa'w)

Normalized Cross-correlation:
_ 2
NC =3} PP, /> P,
z,y z,y

Correlation Quality:

CQ=2 PoyPry/ 3 Pry
z,y z,y

6 Attacks used in Stirmark

Stirmark can perform a series tests of which serve as the basis for the benchmark. For an
already watermark image, Stirmark will apply several transformation with various parame-
ters. The result image can then be tested with watermark detection or extraction programs.
So the full process can be automated.

Following is a list of attacks that actually implemented into Stirmark

e low-pass filtering: multiply each pixel and its neighbors with certain coefficients

— Gaussian
1 21
2 4 2
1 21
— Simple Sharpening
[0 -1 0]
-1 5 -1
0 -1 0 |
— Laplacian
1 -2 1]
-2 1 =2
1 -2 1|

— Median Filter

Each pixel is replaced by the median of the 3 x 3 neighborhood centered at that
pixel.

Low-pass filter can be performed in a quick and easy way in Octave because Octave
allows the user to shift the row and column of the matrix. For example, for the
Gaussian filter method, to get the center pixels of the entire matrix, we multiplize the
entire matrix by 4. To get the left neighbors, shift the matrix to the right by one
column and multiplize that matrix by 2. To get the upper left neighbors, shift the
original matrix to the right by one column and shift down 1 row. When we add all
nine matrices together, this will yield the filter image without going through each pixel
because the for loop in Octave take tremendous amount of time. The same can be
done for median filter, but after we get all nine matrices, we reshape all of them to
1 column and append all nine of them together. After calling the median fuction, we
will get the median filter matrix. We just have to reshape it to the original size.

e scaling:
the scaling factor enter by the user is the p/q coefficient where:

The new number of columns equal to the factor divide by 100 and multiplize by the
original column. Same way is use to find the new number of rows.

By dividing the original number of rows or columns by the number of new rows or
columns, we have the coefficient to determine with specific row or column should fit
into the new row or column.

In another word, this coefficient determines which pixels should be repeat for enlarging
or which pixels should be throw away for reducing the size of the image. Octave allows
the user to work with an index, so this process can be done quickly by scanning through
all the columns first and then the rows.

Cropping:

Cropping can disturb the watermark of an image since some infringers are just inter-
ested in certain part of the copyrighted image. The extreme case of cropping is the
“Mosaic” attack which web sites take advantage of image segmentation[8]. Octave
provides a very quick way to crop an image. For a matrix of pixels, Octave can copy
all the rows and columns starting from a specific coordinate.

Removing rows or columns:

Removing rows or columns of pixels from an image can make the watermark unde-
tectable. This process can be done in a similar way as cropping. If the user wants to
remove n rows or columns starting from the edge, Octave will copy the pixels starting
from coordinate n (or copy from the beginning to n row or column). The user can also
remove the middle rows or columns of the matrix. Octave allows us to cut the matrix
into smaller matrices and then append them together to remove the specific rows or
columns.

Shearing in x and y direction:

Shearing the image by a small amount is an effective way to distort the watermark.
Shearing in certain direction can be done by multiplize each pixel with the following
matrix:

1 a O
SH,=|10 10
| 0 0 1 |
Where a is the angle from the y axis.
(1 0 0]
SHy=|a 10
L 0 1 =

Where a is the angle from the x axis.

Since Octave allows us to quickly copy rows or columns of the matrix, we only need to
find out the new posion for all the pixels in the first column if we are shearing in the X
direction Or the new position for all the pixels in the first row if we are shearing in the
Y direction. Then start copying the rest of the pixels to their new positions starting
from that coordinate.

In another word, we just need to find the new position of all the pixels in the first row
or column depend on which direction the user wants to shear and then use them as
the coeficients to push that row or column by that factor.

e Rotating:
Watermark are very sensitive to rotation. A combination of small angle rotation and
cropping do not usually change the commercial value of the image but can make the
watermark undectable. The new coordinate of each pixel can be determined by the
following matrix:

z cos —sinf 0O z
y | = | sinf cos® O |x|y
1 0 0 1 1

Even though rotation is important in geometric distortion, this method points out the
weakness of Octave. Octave can not refer to the coordinate of a pixel by two indices.
We cannot refer to matrix A(x,y) where x and y are indices with a list of coordinates.
We cannot avoid going through at least one for loop and the for loop in Octave causes
the running time to be really slow.

Rotation also produces another problem. There might be holes in the picture because
some of the new coordinates might overlap one another when we take the nearest
neighbors. We need to go back and replace all the hole with their neighbors. Since we
initially set all pixels value to 0, we need to go back and replace all the black pixels
with its neighbors.

For more information, please see:
http://www.cl.cam.ac.uk/~fapp2/watermarking/

Still more information is provided in:

Fabien A. P. Petitcolas, Ross J. Anderson and Markus G. Kuhn. Attacks on copyright
marking systems. In David Aucsmith, Ed., second workshop on information hiding, in vol.
1525 of Lecture Notes in Computer Science Portland, Oregon, USA, 14-17 April, 1998, pp.
218-238. ISBN 3-540-65386-4.

http://www.cl.cam.ac.uk/~fapp2/papers/ih98-attacks/

7 Conclusion

StirMark is a quick tool for testing the robustness of image watermarking algorithms and
other steganographic techniques. It can be applied to photographic digital images and it
will distort the watermark with several linear and nonlinear transformations such that the
embedded watermark cannot any more be detected or decoded from the result image.

This paper shows that majority of attacks implemented in the Stirmark package can be
done in a quick and easy way using Octave. This paper describes several numbers of attacks
that are frequently applied by the user. Given a watermarked image, StirMark will apply
several transformations with various parameters then produce an output image that can be
tested using benchmark to judge the robustness of image watermarking systems. Due to the
powerful ability of Octave to perform numerical computation and manipulation of matrices,
Octave proves to be quite an efficient language to manipulate digital images. Working with
PGM and PPM image under the simple environment of Octave also help the user gain more
understanding toward geometrical transformations of computer graphic.

References

[1] http://www.che.wisc.edu/octave/history.html: History of Octave

[2] http://www.gnu.or/copyleft/gpl.html: GNU General Public License

[3] ftp://ftp.che.wisc.edu/pub/octave: Downloading Octave

[4] http://www.che.wisc.edu/octave: Octave Documentation

[5] http://www.dms.auburn.edu/compression: Information Theory and Data Compression

[6] Fabien A. P. Petitcolas and Ross J. Anderson, Evaluation of copyright marking systems.
Proceedings of IEEE Multimedia Systems. Vol. 1, pp.574-579. June 1999.

[7] M. Kutter and F. A. P. Petitcolas. A fair benchmark for image watermarking systems.
Electronic Imaging ’99. Security and Watermarking of Multimedia Contents. Vol. 3657.
pp- 226-239. January 1999.

(8] Fabien A. P. Petitcolas, Ross J. Anderson, Markus G. Kuhn. Attacks on copyright mark-
ing systems. Second Workshop on Information Hiding. Vol. 1525. PP. 218-238. April
1998.

10

