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Abstract. Generative models have recently been applied to unsuper-
vised lesion detection, where a distribution of normal data, i.e. the nor-
mative distribution, is learned and lesions are detected as out-of-distribu-
tion regions. However, directly calculating the probability for the lesion
region using the normative distribution is intractable. In this work, we
address this issue by approximating the normative distribution with local
Gaussian approximation and evaluating the probability of test samples in
an iterative manner. We show that the local Gaussian approximator can
be applied to several auto-encoding models to perform image restoration
and unsupervised lesion detection. The proposed method is evaluated on
the BraTS dataset, where the proposed method shows improved detec-
tion and achieves state-of-the-art results.

1 Introduction

Automated lesion detection has been an active topic in medical imaging research.
Conventionally, lesions are detected by visual inspection based on intensity char-
acteristics in medical scans, such as Computed Tomography (CT) and Magnetic
Resonance Images (MRI).

Algorithmic approaches have emerged as viable automatic alternatives to
visual inspection, where lesion detection is often formulated as a classification
or segmentation problem. Early approaches are based on supervised classifica-
tion [1, 2]. More recently, impressive performance has been achieved by deep
learning-based methods, in supervised [3] and weakly supervised [4] settings.
Despite the success, methods with supervision require laborious image acquisi-
tion for annotated labels. On the other hand, those methods are lesion-specific
as they learn a mapping between images and labels and may be limited in ap-
plications such as pre-screening for a large range of abnormalities. In contrast,
unsupervised methods are not specific to lesions in the training data and enable
critical applications such as automatic screening for radiological assessment.

The principle behind unsupervised detection is to learn a normative distribu-
tion of images from healthy individuals [5]. Lesions can then be detected as out-
of-distribution areas in the images. Compared to supervised methods, unsuper-
vised detection is arguably more difficult as the model cannot encode any lesion
specific characteristics. Earlier attempts model the normative distribution either
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by assuming the expected tissue composition or via atlas registration [6–8]. More
recent methods use deep learning models to estimate the normative distributions,
for example, via Generative Adversarial Nets (GANs) [9] and Variational Auto-
Encoders (VAEs) [10]. AnoGAN [5] uses GANs to model the normative distribu-
tion. Given an image with abnormalities, it estimates a “pseudo-normal” version
of the image by determining the closest image the GAN can generate. Abnormal
pixels are then detected using the absolute differences between the original and
generated pseudo-normal images. VAE-based methods take a similar approach
where pseudo-normal images are estimated by reconstructing the image with
an encoder-decoder model trained only on healthy images. Lesions are then de-
tected as regions with high reconstruction errors [11–13]. An advantage of VAEs
is the explicit estimation of the normative distribution.

However, the generation of pseudo-normal images in previous works relies on
mapping the image to the latent space and back, assuming the healthy regions
would not change during this operation. This assumption may not hold as the
mapping to the latent space may drift away from the ideal point due to the ab-
normality, leading to false positive detection caused by reconstruction errors in
healthy regions. We also seek the ”pseudo-normal” images to detect the lesions,
but with a probabilistic formulation. To find the pseudo-healthy images more
accurately, we use the image with lesion as an observation and the normative dis-
tribution as its prior distribution. The corresponding ”pseudo-normal” image is
then obtained by maximizing the probability of the observation in the normative
distribution. However the normative distribution estimated by models such as
VAE cannot be explicitly accessed, we propose a locally Gaussian approximation
method to perform likelihood maximization with the normative distribution.

Likelihood maximization is performed with the local Gaussian approximator
accessing the prior distribution by approximating its gradients. The most related
work to ours is You et al. [14], where they perform Maximum-a-Posteriori to ob-
tain ”pseudo-normal” images and the normative distribution is approximated
with the Evidence Lower Bound (ELBO) of GMVAE, which can be inaccurate
and cannot be applied to models that do not optimize the ELBO. Unlike [14], our
approximation constructs local Gaussian approximations to the prior for each
gradient ascent step rather than taking derivatives of the ELBO. We investigate
two variations for constructing the proposed approximator. We evaluate the de-
tection performance on BraTS dataset and achieve state-of-the-art performance.

2 Methods

Define a latent space model with z ∈ Rd and X ∈ Rm×n. The latent space model
can estimate P (X) =

∫
P (X|z)P (z)dz with mapping z = f(X) and X = g(z).

Direct computation of P (X) is often very difficult. Depending on the purpose,
such direct computation is not always required. Specifically, for the propose of
maximum likelihood estimation (MLE), one calculates the gradients of P (X)
instead of P (X) itself. We describe a local Gaussian approximation method to
provide gradients for MLE with an indirect P (X) as a prior distribution.
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Fig. 1: Gaussian approximation illustra-
tion where grey shaded region represents
the normative distribution for healthy
images modelled by a VAE. The red
arrow represents the derivative of the
(logP (X))Xi , which is intractable to
compute, while the blue arrow repre-
sents gradient computed using the pro-
posed approach that locally approxi-
mates the image prior with a Gaussian
close to Xi and uses its derivative.

2.1 Local Gaussian Approximation for Likelihood Estimation

To compute the gradients from P (X), we assume that P (X) locally follows a
Gaussian distribution, Plocal(X) ∼ N (X;µlocal, Σlocal), where estimate µlocal

and Σlocal can be easily estimated using the latent space model and MLE can
be performed in an iterative manner until convergence.

For likelihood maximization, we start with the observation X0 and perform
gradient ascent with gradients computed from the approximated local Gaussian
parameterized by µlocal,X|z and Σlocal,X|z at each iteration i to obtain Xi (Eq.1).

(∇ logP (X))Xi ≈
(
∇ logN

(
X;µlocal(X

i), Σlocal(X
i)
))

Xi , (1)

Xi+1 =Xi + η∇ logP (X))Xi

where µlocal(X
i) and Σlocal(X

i) are the mean and covariance matrix of the ap-
proximation, respectively. The principal behind this approximation is pictorially
depicted in Fig. 1. The role of (∇ logP (X))Xi is to direct the gradient ascent
towards the image prior, which is depicted as the gray cloud in the figure with
darker areas illustrating higher probability regions in the prior. At Xi, instead
of taking the derivative of logP (X), which is intractable, the approach approxi-
mates the local region of the prior close to Xi with a local Gaussian distribution
and uses its derivative, which is much easier to compute.

Assuming the mean and covariance are obtained, the local Gaussian approxi-
mation produces gradients w.r.t to X as (∇ logP (X))Xi ≈ −Σlocal(X

i)−1(Xi−
µlocal(X

i)). We observe in this equation that while the gradient direction tries
to move X towards µlocal(X

i), Σlocal(X
i) provides additional knowledge on the

expected variation in pixel intensities of healthy images at that local region of
the prior. Next, we provide technical details on the estimation of µlocal(X

i) and
Σlocal(X

i).
For computational reasons Σlocal(X

i) is modeled as a diagonal matrix. We
compute the mean of the Gaussian as µlocal(X

i) = 1/L
∑

l g(zl), zl ∼ Q(z|Xi)
For Σlocal(X

i) we provide two options. The first is to use the sample vari-
ance at every pixel as Σlocal(X

i)jj = 1/(L− 1)
∑

l(g(zl)j − µlocal(X
i)j)

2, zl ∼
Q(z|Xi), Σlocal(X

i)jk = 0 for j 6= k. which we refer to as Σlocal,est(X
i). The

second option is to learn a deterministic mapping with a neural network that
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takes the image Xi and directly predicts the diagonal covariance matrix as illus-
trated in Fig. 2, which we refer to as Σlocal,neural(X

i). The network predicting
Σlocal,neural can be trained on the healthy images by predicting the expected `2
loss between a given input X and its reconstruction, i.e. Ez∼Q(z|X)[(g(z)−X)2].

2.2 Unsupervised Detection with Probabilistic Image Restoration

One of the task that our approximation can applied to is unsupervised lesion
detection. To perform unsupervised detection, we learn the prior distribution
P (X) for normal samples and perform image restoration using the local Gaussian
approximation to maximize the likelihood of test samples. The lesions can then
be revealed by the absolute difference between the test image and its restoration.

Auto-Encoder (VAE) is a typical model to estimate the prior distribution
from the healthy images without lesions. For detailed explanation of VAEs, we
refer readers to [10]. Note that the proposed local Gaussian approximation is not
limited to combination with VAE but can also be used together with other latent
space models that model P (X), e.g. Adversarial Auto-encoder (AAE) [15]. Here
we use VAE as an example to demonstrate the unsupervised detection work-flow.

VAEs assume that the image distribution can be modelled with a lower-
dimensional latent variable model as P (X) =

∫
P (X | z)P (z)dz, where P (z)

stands for the pre-specified prior distribution in the latent space and P (X|z) is
modeled with a decoding network as P (X|z) = N (X;µ(z), σ(z)I). VAEs build
an encoding network to approximate the true posterior P (z|X) ≈ Q(z|X) =
N (z;µz, σzI). Overall, VAEs encode an image X in the latent space and then
reconstruct it with information encoded in the latent space. With networks for
Q(z|X) and P (X|z) defined, the evidence lower bound (ELBO) can be derived
as Ez∼Q(z|X)[logP (X | z)]−KL[Q(z | X)||P (z)] and used as a lower bound for
logP (X) and is maximized to train VAE as a surrogate of logP (X).

An abnormal image Y is seen as a healthy image X with “errors” δ, Y =
X + δ, where δ corresponds to the lesion. To detect δ, X is restored from Y by
maximizing logP (X|Y ) ∝ log[P (Y |X)P (X)] with respect to X using gradient
ascent with steps defined as,

L(X) = logP (Y |X) + logP (X), Xi+1 = Xi + η(∇L)Xi and X0 = Y, (2)

where η is the step size, superscripts denote iterations and the subscript denotes
where gradient is evaluated. logP (Y |X) integrates modelling assumptions on
the abnormality. The restoration given in Eq.2 iteratively computes the gradient
at each Xi,

(∇L)Xi = (∇ logP (X))Xi + (∇ logP (Y |X))Xi . (3)

Define a generic cost λR(Y,X) to calculate logP (Y |X), we obtain the final
gradient ascent step with the proposed approximation,

Xi+1 = Xi + η
[
−Σlocal(X

i)−1(Xi − µlocal(X
i)) + λ (∇R(Y,X))Xi

]
, (4)

with X0 = Y and for i = 0, . . . , max iter. Here, λ controls the relative strength
of R and is selected on the training data. We select the suitable λ by restoring
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Fig. 2: Unsupervised lesion detection work-flow. a) Learning prior normative dis-
tribution, the network takes healthy images as input and outputs reconstructed
images and predicted variance, b) likelihood maximization via local Gaussian
approximation for test images using the prior distribution learned in a).

healthy images and quantifying the similarity between the restored and original
images with Structural Similarity (SSIM). Specifically, we choose the smallest λ
to obtain SSIM of at least 0.95. The final detection, i.e. an abnormality map, is
computed at the end of the restoration as δ∗ = |Y −Xmax iter|.

2.3 One-class Segmentation with Allowed False Positive Rate

To obtain the lesion segmentation, a threshold on δ∗ is required. Using the same
approach as in [16], we select the minimum τ that produces a false positive rate
(FPR) of at most x% on the training data by assuming all detection is false
positives as training images are lesion-free. The segmented lesion are defined as
the set of pixels {r|δ∗(r) > τ}. Here, x% is a user-defined parameter.

3 Experiments

Datasets and pre-processing. We train and evaluate the proposed method on
publicly available datasets: 1) Healthy individuals from the Cam-CAN study [17]
which contains T2-weighted brain MRI of 652 subjects of age 18–87. All subjects
have been confirmed to be normal by radiological assessment; 2) Abnormal data
from BraTS 2018 [18] which contains T2-weighted images of 285 patients with
high-grade (210) and low-grade (75) gliomas. All images are pre-processed with
N4 bias correction, histogram matching between Cam-CAN and BraTS and in-
tensity normalization to zero mean and unit variance within a brain mask, with
background intensities set to -3.5.

Training details. The encoder network of the fully convolutional VAE has one
conv layer followed by six residual blocks with 8, 16, 32, 64, 128 and 256 channels
and 3x3 kernels, with a latent variable z size of 2×2×256. The decoder network
is symmetrical to the encoder. The variance prediction network has four conv

layers with 8, 16, 8, 1 channels and 3x3 kernels without reducing the image size
in hidden layers. We use LeakyRelu activation for hidden layers and identity

activation for output layers. The network is trained on 128x128 images with a
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Fig. 3: Restoration of low-grade (left) and high-grade (right) gliomas. Abnormal
images are restored using VAE-MAP, VAE-LG(est), VAE-LG(neural) (column
2-4) with TV- and L1-norms. Restoration results (top) and the corresponding
absolute error maps δ (bottom) are shown along with the abnormal images (top)
and reference segmentation (bottom) in the column GT.

batch size of 64 using the Adam optimizer and a learning rate of 2×10−5 for 193k
iterations on one GPU Titan X for approximately 18 hrs. Abnormal images are
restored with λ selected as in Sec. 2.3 using Adam and a learning rate of 5×10−3

for 800 iterations.

3.1 Results

We evaluate VAE and AAE with the proposed approximation, which we re-
fer to as VAE-LG and AAE-LG, specifically VAE-LG(est) with estimated vari-
ance Σlocal,est and VAE-LG(neural) with predicted variance Σlocal,neural, AAE-
LG(neural) with predicted variance Σlocal,neural. We compare to the state-of-
the-art method, VAE-MAP [14] as well as auto-encoding methods without image
restoration as in [19].

When restored with the same constraint, local Gaussian approximation suc-
cessfully restored the lesion area into a healthy-looking region compared to MAP
as shown in Fig.3. For each method, restoration with TV-norm gave better vi-
sual results than with L1-norm. The advantage of TV may be attributed to the
intensity characteristics of the gliomas. The best restoration was achieved by
VAE-LG(neural). In contrast, the other methods either only restore the lesion
partially (VAE-LG (est)) or naively lower the intensity values without restoring
normal structures (VAE-MAP). This confirms the effectiveness of the proposed
variance prediction network which preserves high-frequency details for meaning-
ful restoration.

We quantify detection performance by Area-Under-Curve of ROC (AUC)
and Dice computed at thresholds corresponding to different FPR limits in Ta-
ble 1. The results are consistent with the visual inspection. VAE-LG(neural)
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Table 1: Performance comparison of Dice for different thresholds and AUC. Best
results are in bold. Run-time is reported per iteration. na: evaluation not avail-
able.

Methods Constraints .1%fpr .5%fpr 1%fpr 5%fpr AUC Runtime (s)

GMM [7] / na na na na 0.800 /
AnoGAN [5] / 0.000±0.000 0.006±0.006 0.020±0.020 0.100±0.060 0.670 /

VAE [19] / 0.000±0.000 0.030±0.030 0.090±0.060 0.200±0.140 0.690 /
AAE [19] / 0.000±0.000 0.011±0.011 0.030±0.030 0.180±0.140 0.700 /

VAE-MAP [14] TV 0.039±0.076 0.286±0.222 0.341±0.221 0.365±0.187 0.805 0.177
GMVAE-MAP [14] TV 0.069±0.084 0.195±0.109 0.218±0.208 0.455±0.225 0.827 0.170

VAE-LG(est) L1 0.063±0.025 0.213±0.183 0.269±0.208 0.347±0.216 0.772 0.127
VAE-LG(neural) L1 0.133±0.143 0.309±0.288 0.360±0.276 0.315±0.224 0.824 0.096

VAE-LG(est) TV 0.117±0.101 0.236±0.155 0.296±0.195 0.362±0.203 0.782 0.125
VAE-LG(neural) TV 0.259±0.246 0.407±0.252 0.448±0.209 0.303 ±0.123 0.828 0.098
AAE-LG (neural) TV 0.220±0.207 0.395±0.244 0.418±0.210 0.302±0.156 0.821 0.097

achieves the highest AUC of 0.828 with TV-norm, followed by a slightly lower
AUC of 0.824 for VAE-LG(neural) with L1-norm. VAE-LG(neural) with TV
norm reaches the highest Dice at all thresholds except for 5%fpr outperforming
the other methods by a large margin. Notably, our detection methods using the
predicted variance achieve high Dice at low FPR limits, such as .1%fpr, where the
other methods are ineffective. VAE-LG(neural) with TV norm achieved +0.220,
+0.142 and +0.190 improvement over VAE-MAP with TV norm, VAE-LG(est)
with TV norm and GMVAE-MAP with TV norm at .1%fpr. The high AUC and
low Dice for GMVAE-MAP with TV norm at low FPR limits indicate that it
is difficult to identify the threshold of this method using the training set. Com-
parison between GMVAE-MAP and VAE-MAP indicates that a more complex
prior distribution brings improvement in the detection while neither are effective
at low FPR limits, such as .1%fpr and .5%fpr. We also combine the proposed
local Gaussian approximation with AAE as AAE-LG(neural). AAE-LG(neural)
gives similar results to VAE-LG(neural).

4 Conclusion

We have presented an unsupervised detection method with prior distribution
learning and local Gaussian approximation with estimated pixel-wise variance.
By restoring abnormal images, abnormalities are detected as the absolute dif-
ference resulted from the restoration. With restoration visualization and quan-
titative evaluation, we compared with previous works and observed significant
improvement of detection accuracy with reduced false positives.
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