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Objective: Fully automatic, accurate segmentation Challenge: Vastly heterogeneous lesions

» Manual segmentation is time consuming » Lesions vary in size and shape. They may also occur in various locations

 Multi-modal 3D scans can be challenging to segment even for an expert

* An automatic system could enable studies on large cohorts of patients

* Accurate performance is critical. Small lesions may be of high importance
 Computational analysis may reveal characteristics of the lesions |
* Investigate Deep Learning and CNNs, following advances in Computer Vision , The intensity profile of the lesions is hard to model
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Method: Convolutional Neural Networks R
* Automatic learning of data-driven features for the segmentation %0-002
e Computationally efficient processing of multi-modal scans £ 0.001 ]
* Training on small datasets possible with modern regularisation methods 0.000
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* Scalable to large training datasets
 Generic technique, applicable to various segmentation tasks

» Hand-engineering feature detectors may be problematic
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) g3 1. Input: Multimodal segments of a scan
2. Apply learnt filters W to each image segment
o 194 3. Predict the multiple central voxels of each segment
Training: T2 113 4. Roughly 3 minutes per brain volume

1. Input: multimodal 3D patches with intensities (I) and true labels (L)
2. Learn filters (W) to minimize the error between prediction (C) and

provided true labels (L): W = mV%X P(C = L]], W)
3. Dense voxel prediction is exploited in training as in [1]

4. Takes 1-2 days on a modern GPU

Deep Learning the Lesions:

The neurons of the network act as feature detectors. Neurons
of deeper layers learn to detect more complicated features.
This gradually leads to the final filters that perform the
classification of the patch and the voxel’s segmentation.
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» Additional content should lead to improved classification Deep architectures can learn to model highly non-linear functions 0.85 | 5°Kemels | | 098
* Increasing CNN’s receptive field is computationally prohibited  The complexity of the task suggests this would be beneficial 0.80 : 8:82
 We propose the parallel processing of the image at multiple * The final 11-layer deep 3D CNN is built by replacing 53 with 33 kernels 0.75 0.95
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scales with the use of parallel convolutional pathways * Performance is improved with lower number of total parameters 065 0,93
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Dataset: ISLES’15 SISS Training Data Pre-processing: Post-processing:
» Multimodal brain-scans of 28 patients with » The scans of each patient were normalized > Our 3D version of the CRF presented in [2] was
Sub-acute ischemic stroke lesions to zero mean and unity standard deviation employed for reducing over-segmentation

> Modalities: DWI, FLAIR, T1, T2 » Connected components smaller than 20 voxels

were eliminated
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