Uncertainty-driven Forest Predictors for Vertebra Localization and Segmentation
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Discriminating Vertebrae

Random Forest with Contextual Features [1]:
 Learns features that distinguish object classes
» Contextual features capture anatomical model

Challenges:

* Repetitive nature of structures

« Small field of view

 Variability of normal anatomy, pathologies

Research Motivation:

* Developmental expression profiles
* Population analysis

* Screening

Standard Localization and Segmentation Pipeline based on Random Forest (RF) Classifier and Vertebra Constellation Model

Clinical Motivation:
» Guided visualization and navigation

* Population analysis

3. Candidate Segmentations 4. Inference Result: Pixel Labelling

2. Probability maps output by
Random Forest Classifier
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1. Image Features

Our Contribution:
Model-based "Smoothing” by Probabilistic Inference

MAP inference

Better Probability Maps
with Cascaded Classifiers

Ours: Probabilistic inference, i.e. marginals

Geodesic Smoothing [3] Ground Truth

Ground Truth Auto-context [2]

RF Cascade with prob. inference ‘rescues’ poor early predictions, MAP inference does not

A Denotes true position of first and last somite.

Evaluation: 32 Zebrafish Images

< 2
MAP Level 1 Level 2 Level 3 Ours Level 1 Level 2 Level 3
Dice Score  Variable Importance Evaluation: 121 Human Spine CTs TruePos. Rate Level1l Level?2
Auto-context 60 % (+20) - Auto-context 0.66 0.68
GeoF 66 % (+22) ) Comopared to G!qcker et al. [1](.) . MAP 0.69 0.74
VAP 76 % (+27) 24 % Marginal Features outperform +12 % True Positive Rate, +10 % Precision Ours 0.69 0.75
Ours 82 % (+18) 55% Auto-context, GeoF, and MAP

Taking it further: Mapping cascaded RF to a deep CNN [4]
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