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1 Introduction and Related Works1

Effective feature extraction and data representation are key factors of successful medical imaging2

predictive modeling tasks [Litjens et al., 2017]. Researchers usually adopt domain knowledge and3

labeling from clinical experts to design image features for image learning tasks. However, using4

predefined features for representation limits the chance to discover novel features. It is also very5

expensive to have clinicians and experts to label the data manually, and such labor-intensive approach6

is hard to be scaled and generalized. Recently, deep neural networks have been adopted in medical7

image analysis and yielded the state-of-the-art performance in different tasks, such as the medical8

image classification [Esteva et al., 2017], segmentation [Havaei et al., 2017], image generation [Nie9

et al., 2017], captioning [Shin et al., 2015], and content-based medical image retrieval (CBMIR) due10

to its capability of learning representations [Litjens et al., 2017, Bengio et al., 2013].11

CBMIR helps clinicians make decisions by retrieving similar cases and images from the electronic12

medical image database. CBMIR for knowledge discovery and similar image identification in massive13

medical image database have been explored. However, deep learning is not widely adopted in the14

CBMIR task except for few studies on lung CT [Sun et al., 2017], prostate MRI [Shah et al., 2016]15

and X-ray [Anavi et al., 2016, Liu et al., 2016]. Nevertheless, the previous works focused more on16

combining single pre-trained CNN structure with other techniques and heavily depended on exact17

manually annotated label information.18

To address the issues, we proposed CNN-based end-to-end deep Siamese convolutional neural net-19

works (SCNN) [Bromley et al., 1994] (Figure 1 left) that can learn fixed-length image representation20

from only image pair information and performed the experiment using CBMIR of diabetic retinopathy21

(DR) fundus images as an application to validate our approach. We hypothesized that the proposed22

deep SCNN can reduce the dependency of expert labeling but still learn image representations well.23

2 Methods and Materials24

Deep Siamese Convolutional Neural Networks SCNN architecture is a variant of neural network25

that can find the relationship and similarity between the input objects. It has multiple symmetric26

subnetworks tying the same parameters and weights and updating mirrorly, and cojoining at the27

top by an energy function. Two identical CNNs with the same weights were constructed. Each28

identical CNN was constructed using ResNet-50 [He et al., 2016] architecture with the ImageNet29

pre-trained weight. We used 25% dropout for regularization to reduce overfitting and adopted batch30

normalization [Srivastava et al., 2014, Ioffe and Szegedy, 2015]. The rectified linear units (ReLU)31

nonlinearilty is applied as the activation function for all layers, and we used Adam optimizer [Kingma32

and Ba, 2014] to control learning rate. The similarity between paired images was calculated by33
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Figure 1: (Left) Structure of proposed deep SCNN and (right) the t-SNE visualizations for the
distribution of learned retina fundus image representation embedding from the last layer of SCNN.
Colors represent the real expert-labeled severity.

Euclidian distance, and we defined loss function by computing the contrastive loss [Hadsell et al.,34

2006]. In this study, we compared the deep SCNN to the single supervised ResNet-50 architecture.35

We used mean reciprocal rank (MRR, 1
QΣQ

i=1
1

ranki
, where Q is the query size and ranki36

means that the rank of the real first-ranked item in the i-th query) and mean average precision37

(MAP, 1
QΣQ

i=1AveP , where AveP is the area under precision-recall curve) for evaluation.38

Data and Preprocessing We used the full training set of Kaggle Diabetic Retinopathy Detection39

challenge with 35,125 fundus images. Five clinical severity labels from normal to severe were40

labeled by experts and used for single supervised CNN. Further preprocessing and data augmentation41

were done to handle the variation between image conditions and class imbalance. The original42

and augmented images were pooled together and split into 70% train and 30% test data based on43

stratification of class labels.44

3 Results45

For both single supervised CNN and deep SCNN architecture, we extracted the last bottleneck layer46

as our latent representations of retina fundus images. We visualized the data distribution of the47

deep SCNN’s image representations using principal component analysis and t-Distributed Stochastic48

Neighbor Embedding (t-SNE) [Maaten and Hinton, 2008] (Figure 1 right). A clear clinically49

interpretable transition from healthy cases (label 0) to severe disease (label 3 and 4) is shown in the50

t-SNE embedding. For CBMIR, Table 1 shows that the proposed deep SCNN architecture yielded51

a comparable performance even with minimal expert labeling information compared to the single52

supervised CNN architecture, which relied on the exact expert labeling.53

Table 1: Performance measurement of CBMIR using latent representations from single pre-trained
CNN or deep SCNN

Layer CNN third-last CNN second-last CNN softmax SCNNs last

MAP 0.6209 0.6369 0.6673 0.6492
MRR 0.7608 0.7691 0.7745 0.7737

4 Conclusions54

In this paper, we have presented a new strategy to learn latent representation of medical images by55

learning an end-to-end deep SCNN with only image pair information. We performed the experiment56

on the CBMIR task using publicly DR image dataset and demonstrated that our proposed deep SCNN57

approach is comparable to the commonly used single pre-trained CNN architecture, which requires58

actual expert labeling that is expensive in the machine learning tasks.59
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