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Abstract

Bicuspid aortic valve (BAV) is most common congenital malformation of the heart1

occurring in 1-2% of all individuals, and is associated with a variety of poor health2

outcomes. Exploring BAV in large unlabeled imaging datasets such as the UK3

Biobank is complicated by the absence of functional models for classification of4

aortic valve morphology. Fully automated identification of BAV from MRI images5

was not previously studied in the medical literature. In this paper, we show that6

with an extremely limited set of 112 samples, subjected to simple pre-processing7

steps along with data augmentation, we can train a CNN classification model which8

achieves an AUC of 0.76, a 0.14 lift from non-augmented data, thus establishing a9

baseline for automatic BAV identification from cardiac MRIs.10

1 Introduction11

Bicuspid aortic valve (BAV) is a highly prevalent cardiac malformation present in 1-2% of individuals.12

As it may go undiagnosed even in adulthood [1], its early detection can help pinpoint other conditions13

such as congenital aortic stenosis, hypoplastic left heart, and coarctation of the aorta [2, 3]. In14

2006-2010, the UK Biobank (UKBB) recruited 502,638 participants aged 37-73 years and made15

publicly available comprehensive health-related data including genome-wide data, and medical16

imaging data in the form of cardiac MRI [4]. The availability of large unstructured medical imaging17

datasets allows the possibility of performing a variety of genetic and epidemiological studies related18

to anatomical features within the dataset. However there are no extant software tools for unsupervised19

classification of anatomical structures from cardiac MRI data. Here we describe a computer vision20

approach incorporating a small labeled training dataset and data augmentation to classify individual21

participants with bicuspid aortic valve (BAV) within the cardiac MRI data in the UK Biobank.22

2 Methods23

The data consists of dicom files of cardiac MRI sequences [5] including eight sets of cardiac images24

– coronal and transverse scout imaging, cine-images from 2-chamber, 3-chamber, 4-chamber, left-25

ventricular-outflow tract, short axis at 9 separate planes, aortic valve phase-contrast imaging, and26

measures of regional wall motion and diastolic function. Phase-contrast images processed for27

magnitude of flow across the aortic valve taken in the short axis plane were selected for analysis of28

aortic valve morphology [6]. Individual images consisted of 30 frames of 192 by 192 pixels. Training29

data was imbalanced, reflecting the prevalence of BAV within the general population, at 100 healthy30

subjects and 12 with bicuspid aortic valves. As frame brightness is proportional to the magnitude of31

flow through the aortic valve, we selected a sequence of the six brightest frames from each series.32
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The primary model included base CNN layers of the VGG 16 model [7], added with 5-layer feed-33

forward deep neural network model with one node in the output layer. Stacked convolutional neural34

network layers can capture high level concepts such as edge detection, so we employed pre-trained35

CNN layers to extract features from gray scale cardiac MRI data. The FNN layers of VGG 16 model36

were constructed for classification of 1000 common objects, therefore we employed a separate FNN37

top model for classification of aortic valve morphology. For the input of 192 x 192 pixel cardiac38

MRI data used in this project, the CNN layers of the VGG 16 model output 512 layers of feature39

images with the size of 6 x 6 pixels. The feature image size gets smaller, in concordance with the size40

reduction of the input image, but the number of feature image layers (512) will stay the same.41

Due to the small number of MRI samples, the CNN layers may easily overfit when using a complex42

FNN model. Preliminary experiments suggested a relatively simple FNN structure; 5 feed-forward43

layers with the number of each layer being 128, 64, 32, 16, 1. We used binary cross entropy as the44

loss function and the ADAM optimizer. Finally, to deal with the training data imbalance, and to45

penalize false negatives more than false positives, we introduced class weights in the loss function.46

Basic pre-processing of the images to eliminate extraneous information led to increased performance47

of the deep learning model. A black border surrounding the frames due to acquisition or processing48

artifact differed between patients and contained no relevant information or features. Therefore we49

eliminated the 14 pixels on the periphery of each image yielding a borderless image of 164x16450

pixels. Additionally the range of pixel intensity values varied from patient to patient, and thus were51

normalized to give a pixel value range of 0-255 per frame using the Pillow-4.3.0 package PIL.Image52

module. After normalization, we performed Gamma-correction [8] (Gray Level Transformation) to53

enhance contrast of high intensities (f(x) = cxr, r=2) (255.0 x (pixels/255.0)2).54

We tested two different augmentations: translations of 2-4 pixels yielding 36 to 49 additional images,55

and shearing/stretching of up to 20% of the image size yielding 495 additional augmented images.56

3 Results57

We tested the model using 4-fold cross validation, where, within each fold, 50% of the data was used58

for training, 25% for tuning and the remaining 25% for testing. Table 1 shows the performance of the59

models obtained through each transformation. We report the area under the precision-recall curve60

(AUC), accuracy (acc), weighted accuracy (w-acc), negative weighted binary cross entropy (neg_ce),61

the F3 measure (f3), precision (prec), recall (rec), and the confusion matrix.62

Table 1: Performance metrics for each of the tested augmentations. Original – model uses untrans-
formed data. OTA – translation augmentation of original data. B – border removal. BTA – border
removal and translation. GC – gamma correction. GCTA – gamma correction with translation
augmentation. GCSA – gamma correction with stretch augmentation.

auc acc w-acc neg_ce f3 prec rec tp tn fp fn
O 0.62 0.90 0.3275 -11.04 0.26 0.5 0.25 0.75 24.5 0.5 2.25
OTA 0.58 0.89 0.255 -12.23 0.17 0.33 0.17 0.5 24.5 0.5 2.5
B 0.61 0.90 0.3275 -11.04 0.26 0.38 0.25 0.75 24.5 0.5 2.25
BTA 0.65 0.89 0.3975 -10.13 0.35 0.69 0.33 1 24 1 2
GC 0.70 0.92 0.4775 -8.65 0.43 0.58 0.42 1.25 24.5 0.5 1.75
GCTA 0.75 0.88 0.6175 -7.11 0.56 0.48 0.58 1.75 23 2 1.25
GCSA 0.76 0.89 0.62 -6.97 0.58 0.613 0.58 1.75 23.25 1.75 1.25

We described a method to classify BAV from phase contrast images from MRI, using a small training63

dataset and applying simple methods of augmentation to improve the predictive capabilities of the64

classifier. Pre-processing steps reduced inter-subject variability (border removal and normalization)65

and trimmed information irrelevant to the classification task (border removal and gamma correction).66

The VGG16/FNN model on the original data displayed a modest performance (AUC=0.6175). Pre-67

processing steps alone improved performance (AUC=0.70), suggesting that low-level intuitive steps68

to clean the input data are key to optimizing performance in medical imaging classification. When69

translation and stretch augmentations were applied to pre-processed data, the model characteristics70

were additionally improved (AUC=0.76), obtaining a baseline for automated BAV classification.71

Interestingly, improvements to the predictive characteristics of the VGG16/FNN model by both72

translation and stretching augmentation tasks appeared to be dependent on simple pre-processing.73
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