
Deep Generative Adversarial Networks for
Compressed Sensing (GANCS) Automates MRI

Morteza Mardani1, Enhao Gong1, Joseph Y. Cheng1,2, Shreyas Vasanawala2,
Lei Xing1,3, John M. Pauly1 ∗

Abstract
Magnetic resonance imaging (MRI) suffers from aliasing artifacts when it is highly
undersampled for real-time imaging. Conventional compressed sensing (CS) MRI
analytics are not however cognizant of the image diagnostic quality, and substan-
tially trade-off accuracy for speed in real-time imaging. To cope with these chal-
lenges we put forth a novel CS framework that permeates benefits from generative
adversarial networks (GAN) to modeling a manifold of MR images from historical
patients. Extensive evaluations on a large MRI dataset of pediatric patients by
expert radiologists corroborate that GANCS retrieves images with improved quality
and finer details relative to conventional CS and pixel-wise schemes. It also offers
around 100 times faster inference than existing CS-MRI schemes.

1 Context and Motivation
Owing to its superb soft tissue contrast, (real-time) MRI visualization is of paramount importance for
diagnostic and therapeutic guidance in next generation imaging platforms. MRI scans are however
quite slow, taking several minutes to acquire clinically acceptable images, possibly deteriorated by
motion especially for pediatric patients. As a result, the acquisition typically undergoes significant
undersampling leading to a seriously ill-posed linear inverse problems for image reconstruction [1, 2].
The scanner collects the k-space data y = Φx + v with Φ ∈ CM×N capturing the Fourier transform
and the coil maps where M � N , v accounts for modeling noise, and x is the image of interest.

In order to retrieve x from y, conventional CS uses sparsity regularization in a proper transform
domain such as Wavelet (WV) [1]. It however demands running several iterations of non-smooth
optimization algorithms for convergence, and need manual hyper-parameter tunning to optimize the
performance, which hinders real-time MRI. With the abundance of historical scans X := {xk}Kk=1,
and the corresponding (possibly) noisy observations Y := {yk}Kk=1 we are motivated to pursue a
deep learning based approach. Suppose the unknown and complex-valued image x lies in a low-
dimensional manifoldM. No information is known about the manifold besides the training samples
X and Y . Given a new observation y, the goal is then to recover x.

Previous work. Recent attempts exist that automate medical image reconstruction by leveraging
historical data; see e.g., [3–8]. By training a neural network to map out aliased images to the gold-
standard ones, they gain speed up, but they suffer from blurring artifacts and possible hallucinations.
This is mainly due to i) adopting pixel-wise costs that are oblivious to high-frequency texture details,
which is crucial for drawing diagnostic decisions; and ii) lack of data consistency. GANs [9–11] are
very powerful in modeling manifold of natural images that are perceptually appealing; see e.g., [12–
16]. For natural image super-resolution, GANs retrieve realistic images under 4× upscaling [14, 15].

2 Method
The inverse imaging solution amounts to finding a solution at the intersection of data-consistent
images and the plausible high-quality image manifold. To effectively learn the manifold from training
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Figure 1: Representative coronal (1st row) and axial (3rd row) images for a test patient retrieved by
fully-sampled (1st), GANCS (η = 0.75, λ = 0.25) (2nd), GANCS (η = 1.0, λ = 0.0) (3th), CS-WV
(4th), zero-filling (input) (5th) for 5x undersampling.

Table 1: Average SNR (dB), SSIM, inference time (sec), and ROS comparison of various schemes.

scheme ZF CS-WV GANCS (η = 1, λ = 0) GANCS (η = 0.75, λ = 0.25)
SNR 13.66 18.22 21.4 18.03
SSIM 0.64 0.8 0.84 0.76

inference time 10−3 12.28 0.03 0.03
overall quality 2 4.1 4.7 5

sharpness 2 3.5 4.1 5

samples, one needs to ensure c1) trained manifold contains plausible images; and c2) points on the
manifold are data consistent, namely y ≈ Φx, ∀x ∈ M? To address c1) we adopt GANs that are
very powerful in estimating a prior distribution of sharp images that are visually plausible [9]. A
tandem network of generator (G) and discriminator (D) nets is considered, with an initial estimate x̃
as the input for G (this estimate can be simply obtained as the least-norm solution Φ†y). The G net
then projects x̃ ontoM to remove the aliasing artifacts, and subsequently G’s output, say x̌, passes
through D net to score 1 if x̌ ∈ X , and 0 otherwise. As per c2, G’s output, i.e., x̌, may be inconsistent
with the data y. Thus, x̌ is projected onto the feasible set y = Φx through the affine projection
x̂ = Φ†y + (I−Φ†Φ)x̌. This resembles a single iteration of projection onto intersection of convex
sets (POCS) [17]. Allowing more iterations amounts to training for multiple copies of the G net, and
it turns out to considerably improve the performance as will be reported in an extended version of
this work.

One issue with GANs however is that it introduces high frequency noise that can hallucinate the
images. To discard this noise we adopt a mixture of least-squares (LS) GAN [18] and pixel-wise `1
cost, weighted by λ and η, respectively, to train the generator [19]. A residual net with 5 residual
blocks and skip connections is adopted for G, and D is a 8-layer CNN for LS classification.

3 Results
T1-weighted contrast-enhanced abdominal image volumes are acquired for 350 pediatric patients.
With 330 training (50K slices) and 20 test patients (2K slices), the network is trained to map 5-fold
undersampled (zero-filled) images (with artifacts) to fully sampled ones. For a random test patient,
representative slices from axial and coronal orientations, retrieved by various methods, are shown
in Fig. 1. Note, CS-WV is optimized for the best performance using the FISTA algorithm with
BART toolbox [20]. It is apparent that GANCS (η = 0.75, λ = 0.25) better reveals the details of
liver vessels with more realistic texture and contrast, while other schemes blurred out the images.
More quantitative results such as the average SNR (dB), SSIM, inference time (sec), and radiologists
opinion score (ROS), ranged from 0 (poor) to 5 (excellent), about quality and sharpness is also listed
in Table I. Notice particularly 100 times speed up, and ROS improvement relative to CS-WV. Details
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of this study will be reported in an extended version of this work, and in our ongoing research we are
validating the performance with more radiologists and a better diagnostic quality assessment strategy.
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