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Abstract

We propose a novel method for compressed sensing recovery of medical images
using untrained deep generative models. Our method is based on the recently pro-
posed Deep Image Prior (DIP), wherein the convolutional weights of the network
are optimized to match the observed measurements. We extend this approach to
solve any differentiable inverse problem. Our algorithm requires approximately 4
- 6x fewer measurements compared to classical compressed sensing approaches
such as Lasso. More recent approaches based on pre-trained generative models
are severely limited, as they can reconstruct only simple signals and also require
vast amounts of training data. Our approach circumvents these limitations by using
an untrained network. As such, we can apply our method to medical imaging
problems for which signals are complex and data acquisition is expensive.

1 Introduction

We consider the well-studied compressed sensing problem of recovering an unknown signal * € R"
by observing a set of noisy measurements y € R™ of the form

y=Ax" +n.
Here A € R"™*" is a known measurement matrix, typically generated with random independent
Gaussian entries. Since the number of measurements m is smaller than the dimension n of the

unknown vector z*, this is an under-determined system of noisy linear equations and hence ill-posed.
There are many solutions, and some structure must be assumed on z* to have any hope of recovery.

Pioneering research [8, 5, 6] established that if z* is assumed to be sparse in a known basis, a small
number of measurements will be provably sufficient to recover the unknown vector in polynomial
time using methods such as Lasso [28, 31]. While sparsity in a known basis has proven successful,
more complex models with additional structure have been recently proposed such as model-based
compressive sensing [3] and manifold models [15, 14, 9]. Recently Bora et al. [4] showed that
deep generative models [11, 19, 25] can be used as excellent priors for images and were able to
reconstruct images with up to 10x fewer measurements compared to Lasso for a given reconstruction
error. Compressed sensing using deep generative models was further improved in very recent
work [30, 12, 18, 27, 10, 2, 13, 21].

Inspired by these impressive benefits of deep generative models, we chose to investigate the appli-
cation of such methods for medical imaging, a canonical application of compressive sensing. A
significant problem, however, is that all these previous methods require the existence of pre-trained
models. While generative models for medical images exist [22, 26, 33], they are still far from perfect.
Instead of addressing this important problem in generative models, we use the Deep Image Prior
(DIP) method proposed by Ulyanov et al. [32].
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Figure 1: Comparison of our algorithm (CS-DIP) vs. baselines on RGB retinopathy medical images.
We show a full 512x512 image (first row) and a 128x128 cropped portion of the same image (second
row) to demonstrate finer details. For each row we show the original image (first column), our
reconstruction (second column), and baseline reconstructions by Lasso in both the DCT basis and
DB4 wavelet basis (third, fourth columns). Values in lower right of reconstructed images denote
PSNR (dB). We recommend viewing in color.

Our Contributions: In this paper we propose DIP for compressed sensing (CS-DIP). Our basic
method is simple: we initialize a DCGAN generator with random weights and optimize them using
gradient descent to make the network produce an output which agrees with the observed measurements
as much as possible.

Our results show that we require approximately 4 - 6 x fewer measurements to obtain similar recon-
struction error compared to Lasso. This benefit is not as significant as the 8 - 10x obtained by Bora et
al. [4], but we have the advantage of not requiring a pre-trained generative model. We can therefore
apply our method to various medical imaging datasets without depending on a high quality generative
model.

2 Methods

Let z* € R™ be the signal that we are trying to reconstruct, A € R™*™ be the measurement
matrix, and 7 € R™ be independent noise. Given the measurement matrix A and the observations
y = Az* 4 n, we wish to reconstruct an Z that is close to z*. A generative model is a deterministic
function G(z;w): R¥ — R™ which takes as input a seed z € R* and a set of parameters (or
“weights”) w € R?, producing an output G(z;w) € R™. In this paper we apply a DCGAN [25]
model and restrict the signals to be images.

Our approach is to find a set of weights for the convolutional network such that the measurement
matrix applied to the network output, i.e. AG(z;w), matches the measurements y we are given. Hence
we initialize an untrained network G(z; w) with some fixed z and solve the following optimization
problem:
w* = argmin ||y — AG(z;w)|*.
w

This problem is non-convex, as G(z; w) is a complex feed-forward neural network. Still we can use
gradient-based optimizers for any model and measurement process that is differentiable. Ulyanov et
al. observed that convolutional networks such as DCGAN are biased toward smooth, natural images;
hence the network structure alone provides a good prior for reconstructing images in problems such
as inpainting and denoising [32]. Our finding is that this applies to general linear measurement
processes. We restrict our solution to lie in the span of a convolutional network; if a sufficient number
of measurements m is given, we obtain an output such that 2* ~ G(z; w*).

Note that this method uses an untrained generative model and optimizes over the network weights w.
In contrast previous methods such as that of Bora et al. [4] use a trained model and optimize in the
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Figure 2: In Figure 2a we show reconstruction results on Chest X-rays for m = 2000 measurements
(out of n = 65536 pixels). We show original images (top row), reconstructions by our algorithm
(second row), and baseline reconstructions by Lasso in both the DCT basis and DB4 wavelet basis
(bottom two rows). In Figure 2b we compare the performance of our algorithm with baselines,
plotting per-pixel reconstruction error (MSE) vs. number of measurements, where vertical bars
indicate 95% confidence intervals.

latent z-space, solving z* = argmin, ||y — AG(z;w)||?. We instead initialize a random z and keep
this fixed throughout the optimization process.

3 Experiments and Results

As is standard in compressed sensing, the measurement matrices A € R™*" are created by sampling
Gaussian LLD. random variables for cach matrix entry, such that A; ; ~ N'(0, 2. Recall m is the
number of measurements, and n is the number of pixels in the ground truth image. To quantitatively

evaluate the performance of our algorithm, we use per-pixel mean-squared error (MSE) between the

S a2 . .
reconstruction £ and true image z*, i.e. et we compare against Lasso in the DCT [1] and

DB4 basis [7]. For further details on details on datasets and optimizers used, please see Appendix 5.1.
Also included in the appendix are additional experiments on the MNIST dataset [20].

3.1 Results - Chest X-Rays

In Figure 2b we plot the reconstruction error with varying number of measurements m of n =
65536. On this dataset we also significantly outperform Lasso, which requires roughly 4x more
measurements to achieve the same error. Figure 2a demonstrates reconstructions using our algorithm
compared to Lasso. We observe that our algorithm produces reasonable reconstructions with as few
as m = 2000 measurements, while Lasso’s output is quite blurry. The reconstructed images for
m = 1000, 4000, 8000 are in the appendix (Fig. 5, 6, 7).

3.2 Results - Retinopathy

In Figure 1 we show reconstructions using our algorithm (CS-DIP) and Lasso. We see that our
algorithm can reconstruct fine details in the retina scans, such as blood vessels and bright spots.
Meanwhile for the same number of measurements, Lasso fails to produce a comprehensible image.

4 Conclusion

We demonstrate how to perform compressed sensing on medical images using untrained, randomly
initialized convolutional neural networks. Our approach requires 4 - 6x fewer measurements com-
pared to classical Lasso methods. Compared to more recent methods with generative models, ours
is unique in that we don’t require the network to be pre-trained. Thus our method can reconstruct
complex signals without training data and can hence be applied to medical imaging.
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