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Abstract

Through training on unlabeled data, anomaly detection has the potential to impact
computer-aided diagnosis by outlining suspicious regions. Previous work on deep-
learning-based anomaly detection has primarily focused on the reconstruction
error. We argue instead, that pixel-wise anomaly ratings derived from a Variational
Autoencoder based score approximation yield a theoretically better grounded and
more faithful estimate. In our experiments, Variational Autoencoder gradient-based
rating outperforms other approaches on unsupervised pixel-wise tumor detection
on the BraTS-2017 dataset with a ROC-AUC of 0.94.

1 Introduction

In recent years several deep-learning-based methods have reported reaching comparable performance
to trained medical physicians [11, 17]. One weakness of those approaches is that they still require a
lot of annotated data for each condition to be trained on. Due to the time-intensive work of annotating
medical images and the combinatorial number of cases for different modalities, image qualities,
hardware devices, and different conditions, it is still infeasible to train an algorithm for each of the
existing combinations. Anomaly detection can, while not determining the condition, highlight and
identify suspicious regions for a closer inspection by a trained physician. By assigning each pixel
an anomaly rating, it allows for an easy trade-off of specificity and sensitivity. While this may not
be able to outperform supervised algorithms, it offers a way to make use of unlabeled data and aid
physicians during the diagnosis.

Previous unsupervised anomaly detection approaches in the medical field were primarily based on
a reconstruction error. Leemput et al. [19] use a statistical model to reconstruct the input tissue-
wise, quantifying the discrepancies between the actual image and the model prediction to identify
anomalies. Liu et al. [10] decompose the model into low-rank components which representing the
normal parts of the image, and high-frequency parts which representing anatomical and pathological
variations and are thus able to delineate suspicious areas. More recently multiple deep learning
Autoencoder (AE) based methods have been proposed, all considering the reconstruction error. Chen
et al. [4, 5] propose to use an adversarial latent loss in addition to a Variational Autoencoder (VAE)
and compare it to different AE-based approaches. Baur et al. [3] use a VAE with an adversarial loss
on the reconstruction to get a more realistic reconstruction. Pawlowski et al. [13] compare different
AEs for CT based pixel-wise segmentation.

All those approaches use the reconstruction error to identify suspicious regions, based on the idea
that models can not truthfully reproduce anomalies not seen during training. Despite showing good
results, there are no formal guarantees for that assumption. In the next section we will describe how
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to use the score, defined as the derivative of the log-density with respect to the input ∂ log p(x)
∂x [6], as

an alternative anomaly rating.

2 Methods

Alain et al. [1] have shown that for AE-based models with a denoising criterion the reconstruction
error approximates the score. It can be anticipated that most AE- and reconstruction-based models
work due to an approximation of the score. Consequently and based on the following assumptions,
we hypothesize that the score can give a good approximation for an abnormality rating:

• The score gives the directions towards the normal data samples, which for medical data is
the data sample with abnormal anatomies and pathologies transformed into healthy parts,

• The magnitude of the score indicates how abnormal the pixel is.

In this work, we describe a way to directly estimate the score using VAEs, one of the best performing
density-estimation models for images [5, 9]. The objective of VAEs is to learn a generative model of
the data by maximizing the evidence lower bound (ELBO) for the given training data. The ELBO is
defined as:

log p(x) ≥ −DKL(q(z|x)||p(z)) + Eq(z|x)[log p(x|z)], (1)

Where q(z|x) is the inference model, p(z) is the prior for the latent variables, DKL is the Kullback-
Leibler divergence, and p(x|z) is the generative model. Thus after training the VAE and maximizing
the ELBO, an estimate of the log probability log p(x) of a data sample x can be calculated by
evaluating the rhs of Eq. 1 for the data sample x. The approximate score can consequently be
calculated by taking the derivative of the ELBO with respect to the data sample:

∂ log p(x)

∂x
≈

∂(−DKL(q(z|x)||p(z)) + Eq(z|x)[log p(x|z)])
∂x

, (2)

Furthermore, the ELBO is fully differentiable [8, 14], when training a VAE using Gaussian distribu-
tions for p(z) and p(x|z), a parameterization by neural networks, the reparameterization trick, and
MC sampling to approximate the expectation. This allows training of the VAE and the evaluation of
Eq. 2 using the backpropagation algorithm.

We note that the above-mentioned assumptions can be violated in practice, especially in cases far away
from the healthy sample data distribution. However, in the next section, we will present empirical
evidence that our model can outperform reconstruction-based methods on an anomaly detection tasks
and describe its benefits.

3 Experiments & Results

To learn the healthy data distribution we trained the VAE model on 1092 T2 MRI images of Human
Connectome Project (HCP) dataset [18], with minor data augmentations, such as multiplicative color
augmentations, random mirroring, and rotations. We evaluate the anomaly detection in the context of
finding and outlining tumors on the BraTS-2107 dataset [2, 12]. Therefore we calculate a pixel-wise
rating and then report the ROC-AUC. Both datasets were normalized and slice-wise resampled to a
resolution of 64x64 pixels. As encoder and decoder for the AE-based models, we used a 5-layer fully
convolutional neural network with LeakyReLUs and a latent size of 1024. To backpropagate onto
the image and approximate the score, we used the Smoothgrad algorithm [16]. Due to checkerboard
artifacts caused by the convolutions, we apply Gaussian smoothing to the gradients. The model was
trained for 60 epochs with a batchsize of 64 and Adam as the optimizer with a learning rate of 0.0002.

To evaluate the benefits of the score, we compare the model to a Denoising Autoencoder (DAE) [20]
with the same architecture using the reconstruction error. Furthermore, we compare the score with the
reconstruction error of the VAE, the smoothed reconstruction error, and the sampling deviations by
determining the standard deviation of multiple MC samples. We further inspect the score, dividing it
into the reconstruction-loss gradient and KL-loss gradient to get insights into the benefits of including
the KL-term into the anomaly detection. The results can be seen in Fig. 1a (and Appendix Table 1),
samples and the corresponding pixel-wise ratings for samples are presented in Fig. 1b (and Appendix
Fig. 3 & 4).
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(a)

(b)

Figure 1: (a) Comparison of the pixel-wise tumor detection ROC-AUC on the BraTS-2017 dataset.
(b) Samples from the dataset with the different pixel-wise rating schemes, showing the original
sample (I), the annotation (II), the reconstruction error (III), the smoothed reconstruction error (IV),
the sampling variances (V), the reconstruction-loss gradient (VI), the KL-loss gradient (VII), and the
ELBO gradient which approximates the score (VIII).

The reconstruction error performs similarly for the VAE and the DAE, which was also reported
in [5, 13]. Smoothing leads to slightly improved results, presumably by removing high-frequency
detections, and performs on par with the usage of the sampling variances. The approximated score
using the ELBO gradient (KL-loss + reconstruction-loss) performs best with a pixel-wise ROC-AUC
of 0.94 (see Appendix Fig. 2) . It is interesting to see, that the addition of the reconstruction-loss
to the KL-loss shows little benefit over the KL-loss gradient. Furthermore, the reconstruction-loss
gradient performs worse than the KL-loss gradient but outperforms the reconstruction error.

In Fig. 1a, the reconstruction-loss gradient focuses on parts of poor reconstruction, and the combi-
nation of the KL-loss with the reconstruction-loss shows only marginal benefits over the KL-loss
gradient. This might be an indication that for this model the KL-loss focuses primarily on the distance
to the data distribution, while the reconstruction focuses more on the actual reconstruction task.

3.1 Discussion & Conclusion

We have presented a way to estimate the score using VAE gradients to detect anomalies on the
BraTS-2017 tumor segmentation dataset. The results show competitive unsupervised segmentation
performance, slightly outperforming the previously best reported ROC-AUC of 0.92 [4, 5]. The
relative influence of the reconstruction loss can depend on the regularization of the latent variables.
Using fewer latent variables or putting more importance on the KL-loss could, while potentially
causing inferior overall performance, lead to a more competitive performance of the reconstruction
error.

To the best of our knowledge, we are the first to use the gradients of a VAE, which approximate the
score, to identify anomalies in images. The results suggest that the approximated score, including
the often ignored KL-loss, can give a boost on the pixel-wise anomaly detection performance.
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Furthermore, we want to stress the point that including the KL-loss for a pixel-wise anomaly
detection and the score of a model can lead to an improvement in VAE-based methods for pixel-wise
anomaly ratings.

This method should also be directly applicable to other state-of-the-art density estimation techniques,
such as Grow [7] or Pixel-CNN++ [15], and it would be an interesting next step to see how different
models perform.
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4 Appendix

4.1 Quantitative Results

ROC-AUC
DAE 0.808± 0.009
Reconstruction Error 0.817± 0.003
Smoothed Reconstruction Error 0.843± 0.008
Sampling Variance 0.855± 0.013
Reconstruction-Loss Gradient 0.894± 0.020
KL-Loss Gradient 0.939± 0.007
ELBO Gradient 0.939± 0.008

Table 1: Pixel-wise ROC-AUC values of the compared approaches (see Fig. 1).

Figure 2: Pixel-wise Reciver Operator Curve (ROC) and Precision Recall (PR) Curve on the test
set for the VAE ELBO-gradient with regard to the anomaly labels (all annotations are considered
anomalies).
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4.2 Qualitative Results

Figure 3: More samples as presented in Fig. 1, showing the original sample (I), the annotation
(II), the reconstruction error (III), the smoothed reconstruction error (IV), the sampling variances
(V), the reconstruction-loss gradient (VI), the KL-loss gradient (VII), and the ELBO gradient which
approximates the score (VIII).
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Figure 4: More samples as presented in Fig. 1, showing the original sample (I), the annotation
(II), the reconstruction error (III), the smoothed reconstruction error (IV), the sampling variances
(V), the reconstruction-loss gradient (VI), the KL-loss gradient (VII), and the ELBO gradient which
approximates the score (VIII).
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