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Abstract

Recent deep learning methods for the medical imaging domain have reached state-
of-the-art results on several tasks. Those models, however, when trained to reduce
the empirical risk on a single domain, fail to generalize to other domains. This is a
very common scenario in medical imaging due to the variability of image quality
across hospitals and anatomical structures, even for the same imaging modality. In
this work, we extend the method of unsupervised domain adaptation using self-
ensembling to segmentation tasks and evaluate it on a realistic small data regime
using a publicly available MRI dataset. We show evidence that self-ensembling
can improve the generalization of the models even when using a small amount of
unlabeled data.

1 Introduction

In the past few years, the research community has witnessed the fast developmental pace of deep
learning [5] methods for data analysis, establishing an important scientific milestone. Deep neural
networks are a paradigm shift from traditional machine learning approaches. While the latter rely on
hand-crafted feature engineering, deep neural networks are capable of automatically learning robust
hierarchical features, in what is known as representation learning.

Due to its popularity and excellent results in many domains, deep learning attracted a lot of attention
from the medical imaging community [6]. However, there are still several challenges that need
to be properly addressed. For instance, one of the most well-known problems is the high sample
complexity, or how much data deep learning requires to accurately learn and perform well on unseen
images, which is linked to the concepts of model complexity and generalization, an active research
topic in learning theory [7]. The large amount of required data to train deep neural networks can be
partially mitigated with techniques such as transfer learning [12, 13]. However, transfer learning is
problematic in medical imaging because large datasets are usually required to models take benefit
from the inductive transfer process.
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Yet, another challenge when deploying deep learning models for medical imaging analysis – and
perhaps one of the most difficult to solve – is the so-called data distribution shift: the variability
inherent to the different imaging protocols (sequence parameters, sites, vendors, scanner model) can
result in significantly different data distributions. A concrete example can be found in magnetic
resonance imaging (MRI), where the same machine vendor using the same protocol for the same
subject can produce different voxel intensities (e.g., variability could be caused by slightly different
positioning in the scanner, subject motion and/or different protocol).

Empirical risk minimization (ERM) is the statistical learning principle behind many machine learning
methods, and it offers good learning guarantees and bounds if its assumptions hold, such as the fact
that the train and test datasets come from the same domain. However, this assumption is usually
broken on real scenarios. Although this distributional shift is very common in medical imaging,
the problem is surprisingly ignored during the design of many different challenges in the field. It
is very common to have the same domain data (same machine, protocol, etc.) on both training
and test sets. However, this validation scenario does not represent the reality and in many cases
produce over-optimistic evaluation results. The name given to learning a classifier model or any
other predictor with a shift between the training and the target/test distributions is known as “domain
adaptation” (DA). In this work, we expand a previously-developed method [1] for DA and apply it
for a segmentation task, which is the most addressed task in medical imaging [6].

The original contribution of this paper is the extension of the unsupervised domain adaptation method
using self-ensembling for the semantic segmentation task. To the best of our knowledge, this is the
first time this method is used for semantic segmentation. We perform an extensive evaluation and
ablation experiments on a realistic small data regime dataset from the MRI domain.

2 Related Work

In Ganin et al. [2], the authors used adversarial training to devise a method that enforces the network
to learn domain-invariant features. This work was later extended to segmentation tasks by Kamnitsas
et al. [3] in the medical imaging domain. Recently, state-of-the-art techniques for semi-supervised
learning using temporal ensembling were introduced by Laine and Aila [4] and extended to Mean
Teachers [11]. Mean Teachers were then adapted to segmentation tasks in the medical imaging
domain [8]. In French et al. [1] they extended the temporal ensembling method for domain adaptation
on classification tasks. In this work we extend the work done by French et al. [1] to segmentation
tasks and evaluate it on a realistic small data regime from the medical imaging domain.

3 Method

Our method is based on the work by French et al. [1] using the Mean Teacher [11] variant. An
overview of our method is described in Figure 1. We extended the method for segmentation tasks by
using the Dice loss for the segmentation task and the mean squared error (MSE) loss for consistency
between student and teacher models.

One of the main challenges of adapting the method for segmentation tasks is the misalignment that is
caused by data augmentation on the prediction of both student and teacher models. To overcome this
issue we employed the same delayed approach described in Perone and Cohen-Adad [8] to align the
predictions from student and teacher before the consistency phase. This was possible because the
back-propagation happens only for the student model, so there are no differentiability requirements
on any operation between the teacher prediction and the consistency loss computation.

Our technique is robust enough to work with any model architecture because it decouples the domain
adaptation component from the model choice. Due to this flexibility, we used one of the most
common model architectures for medical imaging, the U-Net [10], which was kept the same both for
traditional supervised baseline and for the unsupervised domain adaptation scenario.
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Figure 1: Overview of the proposed
method. The green panel represents the tra-
ditional supervision signal. (1) The source
domain input data is augmented by the
g(x;φ) transformation and feed into the
student. (2) The teacher parameters are up-
dated with an exponential moving average
(EMA) from the student weights. (3) The
traditional segmentation loss. (4) The in-
put unlabeled data from the target domain
is transformed with g(x;φ′) before the stu-
dent’s forward pass (note different param-
eters φ′). (5) The teacher predictions are
augmented by the g(x;φ′) transformation.
(6) The consistency loss. This consistency
enforces the consistency between student
and teacher predictions.
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4 Experiments

4.1 Dataset

We used the Spinal Cord Gray Matter (SCGM) challenge dataset [9]. The SCGM is a multi-center,
multi-vendor and publicly-available1 MRI data collection that is comprised of 80 healthy subjects
with 20 subjects from each center. Due to the fact that the SCGM dataset contains data from all 4
centers both in training as well as in the test, we used a non-standard split of the data in order to
evaluate our technique on a domain adaptation scenario where the domain present in the test set did
not contain contamination from the training data domain. Therefore, we used data from Centers 1
and 2 as the training set, Center 3 as the validation set and Center 4 as the test set.

4.2 Results and conclusions

Table 1 shows results for the unsupervised domain adaptation technique and the traditional supervised
technique, with a clear improvement for the domain adaptation technique.

Given that the improvement can also be due to the introduction of the exponential moving average
(EMA) alone (by averaging and smoothing the SGD trajectory), to demonstrate that the improvement
is specific to the added unlabeled data and not only from the EMA, we performed an ablation
experiment by leaving the EMA active and setting the consistency weight to zero. That way we were
able to evaluate the impact of the EMA without taking into consideration the unlabeled data. Results
of this experiment are described in Table 2, confirming that EMA alone is not enough to explain the
improvements found using unlabeled data.

Evaluation Adaptation Dice mIoU Recall Precision Specificity Hausdorff

Center 3
Baseline 82.81 ± 0.33 71.05 ± 0.36 90.61 ± 0.63 77.09 ± 0.34 99.86 ± 0.0 2.14 ± 0.02
Center 3 84.72 ± 0.18 73.67 ± 0.28 87.43 ± 1.90 83.17 ± 1.62 99.91 ± 0.01 2.01 ± 0.03
Center 4 84.45 ± 0.14 73.30 ± 0.19 87.13 ± 1.77 82.92 ± 1.76 99.91 ± 0.01 2.02 ± 0.03

Center 4
Baseline 69.41 ± 0.27 53.89 ± 0.31 97.22 ± 0.11 54.95 ± 0.35 99.70 ± 0.00 2.50 ± 0.01
Center 3 73.27 ± 1.29 58.50 ± 1.57 94.92 ± 1.48 60.93 ± 2.51 99.77 ± 0.03 2.36 ± 0.06
Center 4 74.67 ± 1.03 60.22 ± 1.24 93.33 ± 1.96 63.62 ± 2.42 99.80 ± 0.02 2.29 ± 0.05

Table 1: Evaluation results on validation (Center 3) and test (Center 4) sets. The evaluation and
adaptation columns represent, respectively, the centers where testing and adaptation data were
collected. The numerical results show the mean and standard deviation over 10 independent runs.
Highlighted values represent the best performance metric at each center. All experiments were trained
in both centers 1 and 2 simultaneously. mIoU represents the mean Intersection over Union. Other
metrics are self-explanatory.

1The dataset is available at http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=CHALLENGE
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Evaluation Version Dice mIoU Recall Precision Specificity Hausdorff

Center 3 Baseline 83.06 71.36 90.98 77.24 99.86 2.13
EMA 83.09 71.40 90.97 77.30 99.86 2.13

Center 4 Baseline 69.41 53.90 97.20 54.98 99.70 2.48
EMA 69.50 54.00 97.19 55.09 99.71 2.48

Table 2: Results of the ablation experiment where the baseline model was trained and compared
against its exponential moving average (EMA) model. All experiments were trained in both center 1
and 2 simultaneously. Center 3 is the validation set and Center 4 is the test set.
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