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Abstract

An efficient strategy for semi- and weakly-supervised segmentation is to impose
constraints or regularization priors on target regions. Recent efforts have focused on
incorporating such constraints in the training of convolution neural networks (CNN),
however this has so far been done within a continuous optimization framework. Yet,
various segmentation constraints and regularization can be modeled and optimized
more efficiently in a discrete formulation. This paper proposes a method, based
on the alternating direction method of multipliers (ADMM) algorithm, to train a
CNN with discrete constraints and regularization priors. This method is applied
to the segmentation of medical images with weak annotations, where both size
constraints and boundary length regularization are enforced. Experiments on a
benchmark cardiac segmentation dataset show our method to yield a performance
near to full supervision.

1 Introduction

Higher-level (or weak) annotations, such as image-level tags [1, 2, 3, 4], bounding boxes [5, 6] and
scribbles [3, 7], can generally be obtained more efficiently than pixel-wise annotations. This type
of weak supervision has therefore been intensively investigated for segmentation. Another valuable
strategy in a semi-supervised or weakly-supervised setting is to use prior knowledge to guide the
segmentation of unlabeled or weakly-labeled images during training [4, 3]. This is particularly
useful for medical segmentation problems, where information about the target region is often known
beforehand.

In [4], Pathak et al. use a latent distribution and KL-divergence to constrain the output of a segmenta-
tion network. The proposed method allows decoupling the optimization of the network parameters
with stochastic gradient descent (SGD) and updating the latent distribution under constraints. They
employ their method in a semi-supervised setting to impose size constraints and image level tags (i.e.,
force the presence or absence of given labels) on the regions of unlabeled images. More recently,
Kervadec et al. [3] proposed an L2-norm penalty to guide the segmentation of weakly-labeled images
toward the satisfaction of similar constraints. Results show their method to provide better accuracy
and stability than the one of Pathak et al., when few pixels of an image are labeled.

While these works have reduced the performance gap between CNNs trained with fully-annotated
images and those trained in a semi-supervised or weakly-supervised setting, they have explored
constrained optimization from a continuous perspective. However, many constraints, including region
size, are better expressed discretely. Hence, limiting the sum of pixel probabilities over an image does
not guarantee that, after thresholding these probabilities to obtain labels, size constraints will be met.
Similarly, regularization priors for segmentation, such as boundary length [8], star-shapeness [9] and
compactness [10], are usually discrete and optimizing them in a continuous framework is hindered by
local minima. Lastly, solving sub-problems in a discrete manner, instead of using gradient descent,
benefits from globally-optimal algorithms which can significantly improve the current solution in a
single update step.

The contribution of this work is twofold. 1) We present a first method to train a CNN with discrete
constraints and regularization priors. The proposed method uses an efficient strategy, based on
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the alternating direction method of multipliers (ADMM) algorithm, to separate the optimization
of network parameters with SGD from optimizing discretely-constrained segmentation labels. We
show that updating these discrete labels can be carried out to optimality, in polynomial time. 2) We
apply the proposed method for the segmentation of medical images with weak annotations. While
previous works have considered either size constraints [3, 4] or boundary length regularization [11]
for segmentation, our method combines these two priors in a single efficient model. Experiments
on a benchmark cardiac segmentation dataset show our method to yield a performance near to full
supervision.

2 The proposed method

We focus on the following weakly-supervised segmentation problem. Given a training dataset
D = {(Xi,Ωi, Y i)}|D|i=1 where Xi is an image, Ωi is the subset of labeled pixels, and Y i the
corresponding labels, we want to learn a segmentation model parameterized by θ, such that S(Xi, θ)
gives the label probabilities at each pixel. For simplicity, we suppose a two-class segmentation
problem and, using Si = S(Xi, θ) as short-hand notation, denote as Sip ∈ [0, 1] the foreground
probability predicted for a pixel p.

To learn parameters θ in this setting, we impose three constraints on the network output: 1) it
should respect labeled pixel in Ωi, 2) it should minimize a regularization term Lreg, and 3) it should
satisfy global segmentation constraints Cj , j = 1, . . . ,M . We formulate this task as the following
optimization problem:

argmin
θ

∑
i∈D
Llab(Si, Y i) + λLreg(Si), s.t. Cj(Si) ≤ 0, ∀i ∈ D, j = 1, . . . ,M, (1)

where λ controls the trade-off between between label satisfaction and regularization. Following [3],
partial cross-entropy is used for the former:

Llab(Si, Y i) = −
∑
p∈Ωi

Y ip logSip + (1− Y ip ) log (1− Sip). (2)

While any regularization prior can be used, for this work, we considered the boundary length (i.e.,
Potts model) [8]: Lreg(Si) =

∑
(p,q)∈EW

i
p,q · |Sip − Siq|, where E is the set of neighbor pixels, and

W i
p,q = exp (− 1

2σ2 (Xi
p −Xi

q)
2) measures the similarity of pixel intensity or color. As in [3] and

[4], we impose global size constraints on the segmentation: Amin ≤
∑
p Sp ≤ Amax.

Because the regularization prior and size constraints are discrete, the formulation in Eq. (1) cannot
be optimized directly. To alleviate this problem, we use the following ADMM-based approach. We
introduce two binary segmentation vectors Ŷ i and Ỹ i, which serve as ancillary variables for the
regularization prior and size constraints, respectively, and constrain the network output Si to be equal
to these vectors. Using an augmented Lagrangian formulation, Eq. (1) becomes

argmax
Ûi,Ũi

argmin
θ,Ŷ i,Ỹ i

∑
i∈D
Llab(Si, Y i) + λLreg(Ŷ i) +

µ̂

2
‖Si − Ŷ i + Û i‖22 +

µ̃

2
‖Si − Ỹ i + Ũ i‖22

s.t. Amin ≤
∑
p

Ỹ ip ≤ Amax, Ŷ
i, Ỹ i ∈ {0, 1}Ni , ∀i ∈ D. (3)

Here, Û i, Ũ i are Lagrange multipliers, and µ̂, µ̃ are the corresponding penalty parameters. Since
network parameters θ and discrete segmentation Ŷ i, Ỹ i are now only coupled via L2 terms, we can
optimize them independently as follows.

To update network parameters, we use a gradient descent technique, with the gradient given by∑
i∈D

∂

∂θ
Llab(Si, Y i) +

(
µ̂(Si − Ŷ i + Û i) + µ̃(Si − Ỹ i + Ũ i)

)∂Si
∂θ

(4)

Using the property that (Ŷ ip )2 = Ŷ ip for binary variables, updating discrete segmentation Ŷ i is
equivalent to

argmin
Ŷ i∈{0,1}Ni

∑
p

( 1
2 − S

i
p − Û ip) Ŷ ip +

λ

µ̂
Lreg(Ŷ i), (5)
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Figure 1: Left: Validation DSC for our proposed method with only image-specific size constraint.
The baselines are [3] with global size constraint and fully-supervised baseline. Middle: Validation
DSC for our proposed method with image-specific size constraint and regularization prior. Right:
DSC versus ε for the above two cases.

for which the global optimum can be obtained in polynomial time using a max-flow algorithm [8].
Likewise, we update Ỹ i by solving

argmax
Ỹ i∈{0,1}Ni

∑
p

(Sip − Ũ ip − 1
2 ) Ỹ ip , s.t. Amin ≤

∑
p

Ỹ ip ≤ Amax, (6)

which corresponds to an equally-weighted knapsack problem [12] with lower and upper bounds on
the total weight. The optimal solution to this problem can be obtained via a simple ranking, setting
Ỹ ip = 1 for pixels with the highest utility Sip − Ũ ip − 1

2 , while respecting the minimum and maximum
size constraints. Finally, we update the Lagrange multipliers as follows: Û i := Û i + (Si − Ŷ i),
Ũ i := Ũ i + (Si − Ỹ i).

3 Experiments and results

Our experiments focus on left ventricular endocardium segmentation from the 2017 ACDC Chal-
lenge1, consisting of 100 cine magnetic resonance (MR) exams. As weak annotations (i.e. Ωi),
we used the same labeled pixels as in [3], which represent only 0.1% of the original ground truth.
To measure the impact of size constraints, we compute size intervals by adding or substracting a
relative percentage ε ∈ {1%, 5%, 10%, 20%, 40%, 60%} of the real foreground size of each image.:
[Amin, Amax] = [TrueSize× (1− ε), TrueSize× (1 + ε)]. For all experiments, we used ENet [13]
as our segmentation architecture and trained the network from scratch using Adam optimizer with a
batch size of 1. The initial learning rate was set to 1×10−3 and decreased by 5% for every 20 epochs.
Tested models were evaluated using Dice similarity coefficient (DSC).

We first verify the improvements brought by introducing the size constraints. Fig. 1 plots the
validation DSC for our method using image-specific size constraints with different ε, or a global
size constraint as in [3]. For this experiment (Fig. 1, left), no regularization prior is used. We also
report the performance of the same model trained with fully-annotated images. Compared to using a
global size constraint, our method can reach a DSC score of 80% with an ε of 40%, corresponding to
an improvement of 10%. For ε = 1%, DSC increases to 85%, demonstrating that an accurate size
estimation can help to improve performance in a weakly-supervised setting.

We then examine in Fig. 1 (middle) the impact of imposing a regularization prior on the segmentation.
As comparison baseline, we consider the weak annotations as foreground seeds and apply a graphcut
algorithm. Using this baseline, we achieve a best DSC score of 79.9%. One can see from Fig. 1
(middle) that the regularization prior boots the DSC score by 3.03%, 3.84%, 3.13%, 3.16%, and
5.14% for ε values of 1%, 10%, 20%, 40% and 60%, respectively. This improvement results from
guiding the network toward actual ground truth regions, in initial training epochs, and then refining
the segmentation boundary toward edges in the images. Moreover, from Fig. 1 (right) we make
the following two observations: 1) a gap of 2.31% is found between our best model and the fully-
supervised baseline, underlining the effectiveness of the proposed method; 2) even when the size
estimation is coarse (ε of 40%), the DSC can still be improved by our method to surpass the graphcut
baseline.

1https://www.creatis.insa-lyon.fr/Challenge/acdc/
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