
Interactive Computer Graphics
Coursework – Task 1

December 13, 2020

1



Important

• The Computer Graphics coursework MUST be submitted electronically
via CATE. For the deadlines and the required files for the assessed
tasks see CATE. The files you need to submit are described later in
this document.

• This document includes the specification for coursework exercises. Some
tasks are instructional, not assessed but highly recommended to fully
understand the course content. Others solidify key concepts and are as-
sessed. You should solve one task per week, usually after the according
content has been covered in the lecture.

• Before starting the assignments please make sure you have read the
description of the programming environment and data formats below.

• after the COVID-19 pandemic, which forced us all to work from home,
we invested a lot of time to make our Graphics coursework environment
available for everybody on their own laptop. Previously you had to go
to the DoC computing lab to do your submission and to program your
tasks. Since 2020 you can do it in the browser.

• the coursework framework is available here:
http://shaderlabweb.doc.ic.ac.uk/

• Save your solution as *.json file using ’File’ → ’Save State’and submit
the json via CATe.

Make sure that you give yourself enough time to do the coursework by
starting it well in advance of the deadlines. If you have questions about the
coursework or need any clarifications then you should come to the tutorials
or consult the Piazza pages of this course!

This coursework exercise is a practical programming exercise, which should
be done using the Web version of the Open Graphics Library (WebGL)1 2

and the OpenGL Shading Language (GLSL)3 4. To keep the overhead as low
as possible, we provide a comprehensive framework to manage basic I/O,
shader editing and compilation functionalities.

1http://www.opengl.org/wiki/Getting_Started
2http://www.opengl.org/sdk/docs/man/
3http://www.opengl.org/documentation/glsl/
4http://www.lighthouse3d.com/opengl/glsl/

2



Task 1: Explore the framework

This course provides a framework written in WebGL, JavaScript and Node.js.
It provides a convenient interface to all shader programs required in this exer-
cise. The framework’s shader and rendering hierarchy is shown in Figure 1. In
the beginning of the coursework all of these shaders are simple pass-through
shaders. The resulting scene has no illumination or other more sophisticated
Computer Graphics effects. You will develop simple rendering engines using
the provided shader framework during this coursework.

Figure 1: In this framework, the polygons stored in a display list are first
shaded in object space using a vertex and fragment shader. The result is
rendered to a 2D texture of exactly the same size as the camera plane (=
the render window.). This texture is passed through an additional vertex
and fragment shader to achieve image based effects. R2T means “render to
tecture”.

The framework provides a direct interface to the used matrices (see Task 2),
uniform variables, which define the interface between the host program and
the shader and texture samplers that allow to access texture images stored
in graphics memory (more about this later in Task 6). The values for these

3



interface variables are mapped to fields in the provided Uniforms tab of the
GUI.

The framework also provides a Log widget which shows the result of the
shader compilation and linker stages (’Compile & Link’ with the according
button in the Editor widget ).

Furthermore, user-defined uniform variables are parsed and made avail-
able for manipulation in the Log tab.

To use this mechanism, define a uniform <type> <name>; in a shader
and hit compile. A new variable will be available in the Log. Computer
Graphics uses special transformation matrices that describe the scene. If
you define a uniform mat4 name; you can use the attach to selector to
update this matrix either with the ViewMatrix or the ProjectionMatrix. The
ModelMatrix is in our case an idetity matrix, thus the ModelViewMatrix is
equal to the ViewMatrix.

To communicate between shaders you can use varying <type> <name>;

qualifiers.

Since the initial shaders are pure pass through shader using a hard-coded
constant color for shading, the scene has not much appeal yet. The default
model is a teapot but we cannot see its true shape yet because of missing
illumination. The check the geometry besides the lack of a proper lighting
model the framework provides a Wireframe mode in the Model tab. (Model
→ show wireframe)

Your tasks are:

• Write some rubbish in either the Fragment or the Vertex shader and
hit Compile and Link. Check the Log widget to see what the GLSL
compiler thinks about your syntax. Revert your changes and compile
again.

• Find the used constant default hard-coded RGBA color value (pure
’red’ per default) and change it to pure green.

• define a uniform vec4 variable and use this through the GUI to define
the color of the object.

• change to Wireframe mode, get an overview over the scene and explain
what you are seeing in this render mode.

4



• In Wireframe mode, choose in the Model tab, Face culling → Front.
Explain what is happening if you switch between Front and Back (if
you for example turn around the object wit activated and deactivated
Front Face Culling).

HAVE A LOT OF FUN!!

5


