
Interactive Computer Graphics
Coursework – Task 2

December 13, 2020

1



Task 2: Projections and Transformations

In Computer Graphics transformations and projections are defined through
matrix operations as discussed during the lecture. In this exercise you will
learn how to use these matrices. For this task you may want to use wireframe
mode for better visibility.

A 3D point P is represented in homogeneous coordinates by a 4-dimensional
vector

p =


x
y
z
1

 (1)

A full 4× 4 transformation matrix in homogeneous coordinates can be sepa-
rated into individual parts steering trVianslation T , rotation R, and the affine
parameters scaling Asc, reflection Are, and shearing Ash (A = AscAreAsh).
The full transformation can be defined as

p′ = T ·R · A · p. (2)

Translation T can be defined as

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 . (3)

Rotation R can be defined as

R = Rx ·Ry ·Rz =
1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1




cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 .

(4)

Scaling Asc can be defined as

Asc =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 , (5)

2



where sx, sy, sz are real values defining a scale factor along each axis.
Reflection through a specific plane Are can be achieved by inverting com-

ponents of the diagonal, e.g., a reflection through the xy plane would look
like this:

Are =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 . (6)

Shear effects can be achieved through manipulating the rotation param-
eters in a non-orthogonal way:

Ash =


1 a b 0
c 1 d 0
e f 1 0
0 0 0 1

 . (7)

a, b, c, d, e, f changes each coordinate as a linear combination of all three.
A combined transformation matrix can be used as ModelMatrix to ma-

nipulate a 3D object in 3D space or to define the position of the camera plane
as ViewMatrix.

The projection on the camera plane is defined through the Projection-
Matrix. In case of orthographic projection this matrix simply removed the
z-coordinate and looks like

Are =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 . (8)

For perspective transformation we can add the focal length of the camera
and use

Are =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/f 0

 (9)

as ProjectionMatrix. Note that the framework will provide the matrices as
used by OpenGL and pre-multiply internal scaling (for a nice viewing frustum
of the teapot) and enforces a viewing direction along the negative z-axis by
putting negative values at locations (4,3) and (3,3).

3



In http://shaderlabweb.doc.ic.ac.uk/ you can framework provides
and interface to all of these matrices. The matrices can be found in the
Uniforms tab. mMatrix is the model matrix and does not need to be attached
to anything since we are in full control of this in our case. The default model
matrix centers the teapot at the origin. vMatrix is the view matrix and
is attached to the according matrix in the host program. pMatrix is the
projection matrix and attached to the view’s projection matrix.

Your task is to

• rotate the object 45◦ around axis (0.5, 0.5, 0.75).

• scale the object by 50%.

• translate the object to (0, 5, 0) followed by a 30◦ rotation around (0, 0, 1)
(z-axis).

• reflect the object through a plane defined by its normal vector (0.7071, 0.7071, 0).

• shear the object along the x-axis to a general parallelepiped so that the
top left edge of the cube is translated to (1, 0, 0).

• change to orthographic projection.

• use perspective projection with focal length f = 20mm. The height
and width of your field of view are shown on the perspective matrix
widget.

Generate a separate screen shot for each of these tasks. Reset your ma-
trices to default between the tasks.

HAVE A LOT OF FUN!!

4


