
Interactive Computer Graphics
Coursework – Task 5 (*assessed)

December 13, 2020

1



Task 5a: Texture*

Given that an object has defined uv texture coordinates, the texturing of an
object can be done automatically in hardware. Simple texture coordinates
can be generated automatically by WebGL using spherical, cubical, cylin-
drical, etc. mapping. However, uv texture coordinates for more complex
objects are usually generated by an artist, e.g., for computer games using
specialised tools.

Your task is to apply your own texture to the test object. You
can use the texture management capabilities of the framework and
define a 2D texture sampler sampler2D object as uniform variable
in the per-polygon fragment shader. The required texture can then be
downloaded from CATE and loaded in the framework under the Uniforms
tab.

Note that gl_FragColor expects a vec2. To access the pixel position
in the texture use the WebGL function texture2D(...). You should get
something equivalent to Figure 1a.

Now apply Phong illumination from Task 3 to the result of the texture
lookup. The result should look like Figure 1b. Adjust the values in the
uniform tab to position the light.

(a) texture and ambient only (b) texture and Phong

Figure 1: Textured and Phong shaded teapot.

2



Task 5b: Bump mapping*

Bump mapping can be used to reduce geometric complexity while creating
the impression of highly tessellated surfaces. The idea of bump mapping is
simply to use another lookup texture which encodes surface normals instead
of RGB colour values. The normals are still encoded as RGB values but can
be interpreted during the illumination step as surface normals and replace
the ones interpolated from the vertex shader. The provided texture encodes
RGB −→ XYZ in range [0;1]. You will need to convert them to range [-1;1].

Your task is to add a second texture sampler in the Fragment
Shader and to use one of the provided normal maps as additional
input texture. Use the sampled normals in the Phong illumination
model. The result should look like Figure 2c. Figure 2 shows also the used
texture and normal map.

(a) texture (b) normal map (c) Bump mapping

Figure 2: Bump mapping textures and result.

3



Task 5c: Render to Texture*

For this task you will use the render-to-texture (R2T) 2D fragment shader
instead of the base fragment shader. These shaders are applied to a screen-
aligned quad that is rendered in front of the camera. The quad is textured
with the scene you have been working with so far and serves as an interme-
diate representation to allow image-based operations.

The framework renders the scene first into a so called framebuffer. A
framebuffer is basically a texture image similar to the one that you used in
the previous exercise. However, this object has the additional capability to
capture the output of your render window. This function is currently one
of the most important ones in applied Computer Graphics because many
different image processing algorithms can be applied to this 2D texture image
as post processing steps.

The render-to-texture 2D fragment shader and render-to-texture 2D ver-
tex shader are available in the editor and act in their plain version as pass-
through shader for the screen-aligned textured quad.

Your task is to extend the render-to-texture 2D fragment shader,
so that it produces a simple blur effect.

Simple blur can be achieved by sampling the available texture in the
direction towards the image center. In this example we work with normalized
texture coordinates which means, for WebGL, that every position within
the input texture is encoded within [0.0 1.0]. Therefore the image center is
located at c = (0.5, 0.5) and the vector to the image center from any position
p can be calculated by ~p = c − p. By accumulating color values from the
input texture tex parallel to the normalized ~p you can define a blurred color
value for the current pixel according to it’s distance d to the current pixel
position p:

rgbblur =
1

n

n∑
i=0

(tex(p + ~p ∗ di)), (1)

where d can be limited to a maximum range dmax and sampled within this
range by fixed distances si. Therefore,

di = si ∗ dmax. (2)

You should use the following n = 12 factors si to determine your samples
within dmax:

4



float s[12];

s[0] = -0.10568; s[1] = -0.07568; s[2] = -0.042158;

s[3] = -0.02458; s[4] = -0.01987456; s[5] = -0.0112458;

s[6] = 0.0112458; s[7] = 0.01987456; s[8] = 0.02458;

s[9] = 0.042158; s[10] = 0.07568; s[11] = 0.10568;

When defining dmax = 0.3 and, the resulting scene should look similar to
Figure 3.

Figure 3: Very simple radial blur effect at identity view matrix with camera
z-location at -34.

HAVE A LOT OF FUN!!

5


