
Interactive Computer Graphics
Coursework – Task 6 (*assessed)

December 1, 2021

1



Task 6: GPU ray tracing

Task 6a: Simple GPU ray tracing *

In this exercise you will implement a very simple ray tracer. Since the render
to texture shader as used in Task 5 provides already a rather static camera
setup for rendering a screen aligned textured quad, you can use this camera
also to virtually shoot rays into a scene. However, since efficient ray tracing
usually requires space partitioning for polyhedral geometry, we simplify the
test scene in this exercise to objects that can be described mathematically:
planes and spheres. You can define them by adding struts for these objects
to your R2T fragment shader

struct Sphere

{

vec3 centre;

float radius;

vec3 colour;

};

struct Plane

{

vec3 point;

vec3 normal;

vec3 colour;

};

and in the main() function of the R2T fragment shader you should simply
hard code them with

sphere[0].centre = vec3(-2.0, 1.5, -3.5);

sphere[0].radius = 1.5;

sphere[0].colour = vec3(0.8,0.8,0.8);

sphere[1].centre = vec3(-0.5, 0.0, -2.0);

sphere[1].radius = 0.6;

sphere[1].colour = vec3(0.3,0.8,0.3);

sphere[2].centre = vec3(1.0, 0.7, -2.2);

2



sphere[2].radius = 0.8;

sphere[2].colour = vec3(0.3,0.8,0.8);

sphere[3].centre = vec3(0.7, -0.3, -1.2);

sphere[3].radius = 0.2;

sphere[3].colour = vec3(0.8,0.8,0.3);

sphere[4].centre = vec3(-0.7, -0.3, -1.2);

sphere[4].radius = 0.2;

sphere[4].colour = vec3(0.8,0.3,0.3);

sphere[5].centre = vec3(0.2, -0.2, -1.2);

sphere[5].radius = 0.3;

sphere[5].colour = vec3(0.8,0.3,0.8);

plane.point = vec3(0,-0.5, 0);

plane.normal = vec3(0, 1.0, 0);

plane.colour = vec3(1, 1, 1);

//scene definition end

Note that you will ignore the per-polygon shaders in this exercise and
that they will become useless in the pipeline. You can therefore deactivate
them.

The first step to build a working raytracing pipeline is to adjust your R2T
vertex shader to produce a fixes aspect ratio so that every fragment in the
R2T fragment shader will correspond to a pixel where you can start a ray.
The aspect ratio is defined by the viewing directions at the vertices of the
render quad. An example vertex shader to achieve this may look like this:

attribute vec4 vertex_worldSpace;

uniform float canvasWidth;

uniform float canvasHeight;

uniform vec3 cameraPosition;

uniform mat3 cameraRotation;

uniform bool isOrthographicProjection;

uniform float orthographicFOV;

uniform float perspectiveFOV;

3



varying vec3 origin;

varying vec3 dir;

void main() {

float aspectRatio = canvasWidth/canvasHeight;

vec3 origin_camSpace, dir_camSpace;

if (isOrthographicProjection) {

origin_camSpace = vec3(vertex_worldSpace.x*orthographicFOV*aspectRatio,

vertex_worldSpace.y*orthographicFOV,

0);

dir_camSpace = vec3(0, 0, -1);

}

else { // perspective projection

origin_camSpace = vec3(0);

dir_camSpace = vec3(vertex_worldSpace.x*aspectRatio,

vertex_worldSpace.y,

-1.0/tan(radians(perspectiveFOV)));

}

origin = cameraPosition + cameraRotation*origin_camSpace;

dir = normalize(cameraRotation*dir_camSpace);

gl_Position = vertex_worldSpace;

}

Note that this vertex shader passed ray origin and direction as varying

variables to the fragment shader, which will correspond to correctly interpo-
lated ray origins and ray directions in world space in the fragment shader.

Your task is to implement the ray tracing algorithms in the R2T Frag-
ment Shader. Therefore, you will need to follow every ray until it reaches a
maximum ray tracing depth. This value could be for example 42. For this
you will need to implement the base ray tracing loop as a for loop in the
main function. You may want to define structs to describe intersections and
rays and additional functions to intersect a ray with a sphere and plane and
a function to handle shadow computation.

For simple ray tracing you may test every ray for an intersection with

4



every object in the scene until the ray does not hit any of the objects or until
it reaches the maximum ray-trace depth. Objects can be defined by using
a mathematical definition of spheres and a plane as shown above. For the
submission you should use these.

You should also compute shadows by using additional shadow rays.
You can do this calculation in a separate function. When computing shadow
rays, you should slightly move the ray origin outwards of the object along
the surface normal or alter the ray direction slightly using a pseudo random
number generator (Note, there is not proper real number generator in glsl,
you must use pseudo-random functions, which you can find on the internet
with for example the ray origin as seed) .

The plane intersection should additionally vary the ray hit color, so that
a checkerboard pattern results.

When your ray tracer is ready you should be able to produce an image
similar to Figure 2.

Figure 1: Example result from simple geometric ray tracing. Camera at (0,
-24, 170), light source at (6, 4, 3).

You should also implement mouse based scene interaction as you have
been using it throughout the exercises. You can do this with uniform ma-
trices attached to the model-view and projection matrices. These matrices
will change when you use the mouse interaction scheme from as used in the
framework. You may use them to either manipulate the initial ray direction
or to alter the object’s position. Think about the smarter option and make

5



the right choice!

If you implemented the above described simple ray-tracer with shadow-
rays and mouse based interaction successfully you will gain 75% of the max-
imum points for this task. The remaining 25% can be achieved by extending
this exercise with your own ray-tracing extensions. For example you could
implement transparent and refracting objects, light scattering effects, caus-
tics, soft shadows, and many more. It is up to you which extension you
choose!

Task 6b: Example extension: Soft Shadows and fog *

This is only one possible option for an extension. You may choose any
extension you like. Soft shadows are used to simulate global illumination.
A simple approximation can be achieved by sending several, slightly tilted
rays instead of a single ray to the light source. This is an open ended task
and you can implement as many path tracing features as you like. Be aware
of the limitations of the used hardware. Processing many rays may quickly
exhaust your GPU, which might lead to a crash of the rendering system and
your browser.

Figure ?? shows an example for soft shadows and fog.

Figure 2: Example result for soft shadows and fog as implemented by hh4017
in 2019/2020

6



Submission

Please submit the basic ray tracer as described in Task 6a as task6-1 on CATe
without activated extensions and any extension you might have implemented
as task6-2. Please also submit a file for task6-2, e.g. same as task6-1, if you
decided not to implement and extension, otherwise the system will flag you
as late and cap your mark. Please document in task 6b what effect you
implemented at the top of the R2T fragment shader.

There is one slot to submit a png image. Please upload the best screen
shot from your ray tracer (as hi-res as possible, 6b if implemented otherwise
from 6a). Submissions will be ranked, the top three will be named and will
likely get a prize.

HAVE A LOT OF FUN!!

7


