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Intro

• https://www.youtube.com/watch?v=wAu8w7n4LHM
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Interactive Computer Graphics

• Please note that this course has been timetabled for 2 

hours per week: 

– Tuesday 9-10, Zoom

– Wednesday 9-10, MS Teams

• However, not all timetabled slots will be used every week 

so please check the timetable on the webpage for 

more information:

http://wp.doc.ic.ac.uk/bkainz/teaching/60005-co317-computer-

graphics/
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Interactive Computer Graphics

• Printouts: 

– Lecture notes & tutorials: 

• Please print your own if you want a hardcopy 

• Lectures:

– All lectures have slides that are available via CATE

– Some lectures (not all) have notes that are available via CATE

– Lectures are pre-recorded, we will have a weekly Q&A session

• Tutorials:

– All tutorials have sample solutions that are available a few days 

after the tutorial.
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Interactive Computer Graphics

• Course overview:

– Syllabus, timetable and news on

http://wp.doc.ic.ac.uk/bkainz/teaching/60005-co317-computer-

graphics/

– See notes on vector algebra revision (link) 

• Course materials and notes: 

– Look at CATE for lecture notes, tutorials & coursework
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Information for non DOC students

• Apply at https://dbc.doc.ic.ac.uk/externalreg/ 

• Your department's endorser will approve/reject your application 

– No access after a few days? Check status of approval and

contact relevant person(s) 

• Key Dates: 

– Exam registration opens end January for 2-3 weeks 

– Exams for DoC 3rd/4th year courses take place at the end of the Term 

in which the course is taught – courses that are co-scheduled on the 

time-table will have their exams co-scheduled 

• If in doubt, read the guidelines available at the link above
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Courseworks

• There will be six practical coursework tasks; three of 

them are assessed:

– Task 1: Framework

– Task 2: Transformations

– Task 3: Illumination (assessed 40%)

– Task 4: Color

– Task 5: Texture & Render to Texture (assessed 10%)

– Task 6: GPU ray tracing (50%)

• All practical courseworks require programming 

experience (very basic C)
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Logistics

• 6 tasks, 3 assessed

– 1-5 One per week

– Task 6: 2 weeks

• Description and framework already available for all 

exercises, but

• Necessary knowledge in each lecture per week

• Submission electronically via CATE!



Effects previous year’s SOLE and COVID-19

• Redesigned the coursework to better match the content of the lectures in 

each week

• Made the framework available to everybody through a browser 

implementation (no computing lab requirement anymore)

• Provide an open-source implementation of a custom OpenGL GLSL IDE

• Reduced the workload to three assessed tasks, revising assessment. Tasks 

1,2,4 are voluntary. Removed one task that was not supported by all 

OpenGL versions

• One exam question will be based on what you learned during the 

coursework!

• Re-implemented the framework for the coursework for a second time: 

– It is now the most advanced teaching framework for computer graphics

• Everybody can use it now from their own laptops without needing to install 

anything: http://shaderlabweb.doc.ic.ac.uk/

• We listened to your SOLE feedback from the last years!

– Please fill in SOLE at the end of this course!

http://shaderlabweb.doc.ic.ac.uk/


CSL and TAs

• Course support leader: 

– Benjamin Hou benjamin.hou11@imperial.ac.uk 

– Samuel Budd

– Hadrien Reynaud

– Miguel Monteiro

mailto:benjamin.hou11@imperial.ac.uk


Labs in 202 & 206

• Week 3: Wednesday 9-10

• Week 4: Wednesday 9-10

• Week 6: Wednesday 9-10 

• Week 8: Wednesday 9-10



framework

• http://shaderlabweb.doc.ic.ac.uk/



starting the framwork

• Open a browser (preferably Chrome) 

• Enter http://shaderlabweb.doc.ic.ac.uk/

http://shaderlabweb.doc.ic.ac.uk/


Tasks

• Task 1: 

Get familiar with the framework



Student solutions



Student solutions



Student solutions
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Questions: 
https://edstem.org/us/courses/14755/discussion/

Have fun!

https://edstem.org/us/courses/14755/discussion/


Interactive Computer Graphics: Lecture 1

3D graphical scenes: 

Projections and Transformations 



Two dimensional graphics

• The lowest level of graphics processing operates directly 

on the pixels in a window provided by the operating 

system. 

• Typical Primitives are: 

SetPixel(int x, int y, int colour); 

DrawLine(int xs, int ys, int xf, int yf); 

• etc. 
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World coordinate systems 

• To achieve device independence when drawing objects 

we can define a world coordinate system. 

• This will define our drawing area in units that are suited 

to the application: 

– meters 

– light years 

– microns 

– etc 
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Example 
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We can give our window ‘World 

Coordinates‘ and draw objects 

using them. 

SetWindow(30, 10, 70, 50) 

DrawLine(40, 3, 90, 30) 

DrawLine(50, 60, 60, 40) 



Normalisation

To make the conversion

we need a process of normalisation

First we must ask the operating system* for the pixel 

addresses of the corners of the area we are using.

Then we can translate our world coordinates to pixel 

coordinates.

*making a ‘system call’ through the API

Graphics Lecture 1:  Slide 23
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device independent 

graphics commands



Normalisation
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Normalisation

• Having defined our world coordinates, and obtained our 

device coordinates we relate the two by simple ratios:

• Rearranging, we get: 

• with a similar expression                                                 

for Yv
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Normalisation

• So we have two equations for calculating pixel 

coordinates (Xv,Yv). 

• We can simplify them to form a simple pair of linear 

equations:

• Here A, B, C and D are constants that define the 

normalisation. A, B, C, D are found from the known 

values of Wxmin, Vxmin, ...

Graphics Lecture 1:  Slide 26



Polygon rendering 

• Many graphics applications use scenes built out of planar 

polyhedra. 

• These are three dimensional objects whose faces are all 

planar polygons (often called faces or facets). 
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Representing planar polygons 

• In order to represent planar polygons in the computer we 

need a mixture of different data:

– Numerical Data

• Actual 3D coordinates of vertices, etc.

– Topological Data

• Details of what is connected to what.
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Projections of wire frame models 

• Wire frame models simply include points and lines. 

• In order to draw a 3D wire frame model we must: 

– First convert the points to a 2D representation.

– Then we can use simple drawing primitives to draw them. 

• The conversion from 3D into 2D is a projection. 
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Projection
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The projector takes a point on the object to 

a point on 2D projection surface. 



Non-linear projections 

• In general it is possible to project onto any surface: 

– Sphere

– Cone

– Etc.

• or to use curved projectors, for example to produce lens 

effects. 

• But we will only consider linear projections onto a flat 

(planar) surface. 

Graphics Lecture 1:  Slide 33



Orthographic projection

• This is the simplest form of projection, and effective in 

many cases. 

• Make simplifying assumptions: 

– The viewpoint is at z = − ∞

– The plane of projection is z = 0 

• So all projectors have the same direction: 
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Orthographic projection onto z = 0
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• Substitute d = (0, 0, -1)T into the projector vector equation:

• Gives Cartesian equations for each component 

• Projection plane is

Calculating an orthographic projection 
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Calculating an orthographic projection (cont.)

• So the projected location on the screen is

• i.e. we simply take the 3D x and y components of the 

vertex! 
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Orthographic projections of a cube 

• Looking at a face, a vertex and a more general view…
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Perspective projection 

• Orthographic projection is fine in cases where we are not 

worried about depth

– e.g. when most objects are at the same distance from the viewer 

• However, for close work - particularly computer games -

it will not do. 

• Instead, we use perspective projection. 
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Canonical form for perspective projection
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Calculating perspective projection 

The perspective projector equation from vertex V is 

because all projectors go through the origin. At the 

projected point we have Pz = f.

Let the value of μ at this point be μp

and

Therefore
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Perspective projections of a cube 

(a) Viewing a face 

(b) Viewing a vertex 

(c) A general view 
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Problem break 

Given that the viewing plane is at z = 5, what point on the 

view plane corresponds to the 3D vertex

when we use the different projections:

1. Perspective 

2. Orthographic 
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Problem break 

Given that the viewing plane is at z = 5, what point on the 

view plane corresponds to the 3D vertex

when we use the different projections:

1. Perspective 

2. Orthographic 
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The need for transformations 

• Graphics scenes are defined in a particular coordinate 

system. 

• We want to draw a graphics scene from any angle

• But to draw a graphics scene, it is a lot easier to have: 

– The viewpoint at the origin

– The z-zaxis as the direction of view

• Hence, we need to be able to transform the coordinates 

of a graphics scene. 
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Transformation of viewpoint 
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Other transformations 

• We also need transformations for other purposes: 

– Animating Objects

e.g. flying titles, rotating, shrinking etc. 

– Multiple Instances

the same object may appear at different places or different 

sizes 

– Reflections and other special effects 
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Matrix transformations of points

To transform points we use matrix multiplications, e.g. to 

make an object at the origin twice as big we could use: 

which, when multiplied out, gives: 
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Translation by matrix multiplication

• Many of our transformations will require translation of the 

points. For example if we want to move all the points two 

units along the x-axis we would require 

• But how can we do this with a matrix? I.e. 
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… can’t be done 



Homogenous coordinates 

• The answer is to use 4D homogenous coordinates.

• They have a 4th ordinate allowing us to use the last 

column for translation 

• which, when multiplied out, gives: 

Graphics Lecture 1:  Slide 50



General homogenous coordinates 

• In most cases the last ordinate will be 1 

• But in general, it is a scale factor. 

Homogeneous             Cartesian 
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Affine transformations 

• Affine transformations are those that preserve parallel 

lines. 

• Most transformations we require are affine, the most 

important being: 

– Scaling

– Rotation

– Translation

• Other more complex transforms can be built from these. 

• An example of a non-affine transformation: 

– Perspective projection (parallels not preserved). 

Graphics Lecture 1:  Slide 52



Translation with a matrix 

• We can apply a general translation by (tx, ty, tz) to the 

points of a scene by using the following matrix 

multiplication 
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Inverting a translation 

• Since we know what a translation matrix physically does, 

we can write down its inversion directly, e.g.

Translation matrix               inverse 

• Can you show that the product of these matrices is the 

identity? 
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Scaling with a matrix 

• Scaling simply multiplies each ordinate by a scaling 

factor. 

• It can be done with the following homogenous matrix: 
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Inverting a scaling 

• To invert a scaling we simply divide the individual 

ordinates by the scale factor. 

Scaling matrix                         inverse 
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Combining transformations 

• Suppose we want to make an object centred at the origin 

twice as big and then move it so that the centre is at (5, 5, 

20). 

• The transformation is a scaling followed by a translation: 
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Combined transformations

• We can multiply out the transformation matrices 

• This gives us a single matrix which we can use to apply 

both transformations to any point 
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Careful: Transformations are not 

commutative

• The order of applying transformations matters: 

• In general 

T  S is not the same as S  T

• Check this for the transformation matrices on the last two 

slides 
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The order of transformations is significant 
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x→  2x

x→  x + 1

The results at the end of each route are different. 



Rotation 

• To define a rotation, we need an axis and an angle.

• The simplest rotations are about the Cartesian axes. 

• For example: 

– Rx Rotate about the x-axis 

– Ry Rotate about the y-axis 

– Rz Rotate about the z-axis 
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Rotation matrices

By θ about each of the axes 
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Example: Derivation of Rz

Graphics Lecture 1:  Slide 63

y

O

θ

φ x

r (r cosφ, r sinφ)

(r cos(φ+θ), r sin(φ+θ))

z-axis goes into page



Rotations have a direction 

• Note the following about the matrix formulations given in 

these notes: 

– We will stick to a left-handed coordinate system 

– Rotation is anti-clockwise when looking along the axis of rotation 

(in the previous slide, the z-axis goes into the page). 

– Rotation is clockwise when looking back towards the origin from 

the positive side of the axis 
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Inverting rotation

•i.e. we can use the following relations to help us find the 

inverse of a rotation: 
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Inverting a rotation 

by angle θ

Rotating through 

angle -θ

cos(-θ) = cos(θ)       and       sin(-θ) = -sin(θ)   



Inverting rotation

• So for example:
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Rotation Inverse


