
Interactive Computer Graphics: Lecture 2

Transformations for animation
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The most useful operations:

Previously defined transformation matrices 

• Translation

• Scaling
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Rotations about x, y and z axes. 
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Rotations about x, y and z axes. 

We now consider more 

complex transformations 

which are combinations 

of translations, scalings 

and rotations 
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Flying sequences 

• In generating animated flying sequences, we require the 

viewpoint to move around the scene. 

• This implies a change of origin 

• Let 

– the required viewpoint be C = (Cx,Cy,Cz)

– the required view direction be d = 
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Recall the canonical form for perspective projection

We look along the z-axis and the the y-axis is ‘up’ 
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Transformation of viewpoint

Coordinate system for definition       Coordinate system for viewing
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Flying Sequences

• The required transformation is in three parts:

1. Translation of the origin

2. Rotate about y-axis

3. Rotate about x-axis 

• The two rotations are to line up the z-axis with the view 

direction 
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1. Translation of the Origin 
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2. Rotate about y until d is in the y-z plane 
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3. Rotate about x until d points along the z-axis
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Combining the matrices 

• A single matrix that transforms the scene can be 
obtained from the matrices A, B and C by multiplication 

T = CBA

• And for every point P of the scene, we calculate 

Pt = T P

• The view is now in ‘canonical’ form and we can apply the 

standard perspective or orthographic projection. 
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Verticals

• So far we have not looked at verticals 

• Usually, the y direction is treated as vertical, and by 

doing the Ry transformation first, things work out correctly 

• However it is possible to invert the vertical 
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Transformations and verticals 
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Rotation about a general line 

• Special effects, such as rotating a scene about a general 

line can be achieved by multiple transformations 

• The transformation is formed by: 

– Making the line of rotation one of the Cartesian axes

– Doing the rotation (about the chosen axis)

– Restoring the line to its original place
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Rotation about a general line 

• The first part is achieved using the same matrices that we derived 

for the flying sequences 

CBA 

• This rotates the general line so it is aligned with the z-axis.

• We then carry out the rotation about the z-axis then follow this by the 

inversion of the initial matrices.

• So the full matrix T of the combined transformation is

T = A−1B−1C−1RzCBA 
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Other effects 

• Similar effects can be created using this approach 

• e.g. to make an object shrink (and stay in place) 

1. Move the object to the origin

2. Apply a scaling matrix

3. Move the object back to where it was 
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Projection by matrix multiplication 

• Usually projection and drawing of a scene comes after 

the transformation(s)

• It is therefore convenient to combine the projection with 

the other parts of the transformation 

• So it is useful to have matrices for the projection 

operation 
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Orthographic projection matrix 

• For (canonical) orthographic projection, we simply drop 

the z-coordinate: 
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Perspective projection matrix 

• Perspective projection of homogenous coordinates can 

also be done by matrix multiplication:
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Perspective projection matrix: Normalisation 

• Remember we can normalise homogeneous coordinates, 

so 

which is the same as

• as required. 
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Projection matrices are singular 

• Notice that both projection matrices are singular (i.e.

‘non-invertible’, zero-determinant, …)

• This is because a projection transformation cannot be 

inverted. 

• Given a 2D image, we cannot in general reconstruct the 

original 3D scene. 
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Homogenous coordinates as vectors 

• We now take a second look at homogeneous 

coordinates, and their relation to vectors. 

• In the previous lecture we described the fourth ordinate 

as a scale factor. 

Homogeneous        Cartesian 
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Homogenous coordinates and vectors

• Homogenous coordinates fall into two types:

1.Position vectors

– Those with non-zero final ordinate (s > 0).

– Can be normalised into Cartesian form.

2.Direction vectors

– Those with zero in the final ordinate. 

– Have direction and magnitude.
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Adding direction vectors 

• If we add two direction vectors we obtain a direction 

vector 

• This is the normal vector addition rule. 
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Adding position and direction vectors 

• If we add a direction vector to a position vector, we 

obtain a position vector: 

Nice result. 

Ties in with definition of straight 

line in Cartesian space which 

uses a point and a direction 
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Adding two position vectors 

• If we add two position vectors, we obtain their mid-point 

• This is reasonable since adding two position vectors has 

no real meaning in vector geometry 
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The structure of a transformation matrix 

• The bottom row is always 0 0 0 1 

• The columns of a transformation matrix comprise three 

direction vectors and one position vector 

Matrix Direction 

vectors

Position 

vectors



Characteristics of transformation matrices 

• Direction vector: Zero, in the last ordinate ⇒ not affected by the 

translation. 

• Position vector: 1 in the last ordinate ⇒ all vectors will have the 

same displacement. 

• If we do not shear the object the three vectors q, r and s will remain 

orthogonal, ie: 
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What do the individual columns mean? 

• To see this, consider the effect of the transformation in 

simple cases. 

• For example take the unit direction vectors along the 

Cartesian axes 

– e.g. along the x-axis, i = (1, 0, 0, 0)T
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What do the individual columns mean? 

• The other axis transformations: 

Similarly, we find the following transformations of unit 

vectors j and k
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What do the individual columns mean? 

• Transforming the origin: 

– If we transform the origin, (0, 0, 0, 1)T, we end up with the last 

column of the transformation matrix 
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The meaning of a transformation matrix 

Putting everything together …

The columns are the original axis system after 

transforming to the new coordinate system 
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Effect of a transformation matrix 

Tells us the old axes and origin in the new coordinate system. 
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What we want is the other way round 

• Normally, 

– We are not given the transformation matrix that moves the scene 

to that coordinate system, we need to find it 

– We are given a view direction d and location C

To see how to get the matrix, we introduce the idea of the dot product as a 

projection 
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The dot product as a projection

• The dot product is defined as 

P · u = |P||u| cos θ 

• If u is 

– a unit vector then P · u = |P| cos θ

– along a co-ordinate axis then P · u is the ordinate of P in the 

direction of u 
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Changing axes by projection 

• Extending the idea to three dimensions we can see that 

a change of axes can be expressed as projections using 

the dot product 

For example, call the first 

coordinate of P in the new 

system Px
t

Px
t = (P−C)·u

= P·u−C·u
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Transforming point P

• Given point P in the (x, y, z) axis system, we can calculate 

the corresponding point in the (u, v, w) system as:

• Or, in matrix notation: 
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Verticals revisited …

Unlike the previous analysis we now can control the 

vertical 

i.e. we can assume the v-direction is the vertical and 

constrain it in the software to be upwards 
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Back to flying sequences 

• We now return to the original problem 

– Given a viewpoint point C and a view direction d, we need to find 

the transformation matrix that gives us the canonical view. 

– We do this by first finding the vectors u, v and w. 

We know that d is the direction of the new                                            z-

axis, so we can write immediately 
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Now the horizontal direction 

• We can write u in terms of some vector p in the 

horizontal direction 

• To ensure that p is horizontal we set 

• so that p has no vertical component 
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And the vertical direction 

• Let q be some vector in the vertical direction, we can 

then write v as 

• q must have a positive y component, so we can say that 
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So we have four unknowns 

To solve for these we use the cross product and dot 

product. 

We can write the view direction d, which is along the new z

axis, as 

(We can do this because the magnitude of p is not yet set) 
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Evaluating the cross-product

So we can write vector p completely in terms of d
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Using the dot product 

• Lastly we can use the fact that the vectors p and q are 

orthogonal

• And from the cross product (previous slide) 

• So we have two simple linear equations to solve for q

and write it in terms of the components of d
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The final matrix 

• Once we have expressions for p and q in terms of the 

given vector d, we have 

• We already know C as that is also given. So we can write 

down the matrix 


