
Interactive Computer Graphics: Lecture 3

Clipping

Some slides adopted from 

F. Durand and B. Cutler, MIT
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Clipping 

• Eliminate portions of 

objects outside the 

viewing frustum

• View frustum

– boundaries of the image 

plane projected in 3D

– a near & far clipping plane

• User may define 

additional clipping planes

top far

left

bottom
right

near
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Why clipping ?

• Avoid degeneracy

– e.g. don’t draw objects 

behind the camera

• Improve efficiency

– e.g. do not process objects 

which are not visible

top far

left

bottom
right

near
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When to clip?

• Before perspective transform 
in 3D space
– use the equation of 6 planes

– natural, not too degenerate

• In homogeneous coordinates after 
perspective transform (clip space)
– before perspective divide 

(4D space, weird w values)

– canonical, independent of camera

– simplest to implement

• In the transformed 3D screen space 
after perspective division
– problem: objects in the plane of the camera
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The concept of a halfspace

x

y
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The concept of a halfspace

x

y Infinite line:

f(x, y) = 0

e.g. x – y + 1 = 0
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The concept of a halfspace

x

y

Halfspace

Halfspace

Infinite line:

f(x, y) = 0

e.g. x – y + 1 = 0
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The concept of a halfspace

x

y

Halfspace

f(x, y) > 0

Halfspace

f(x, y) < 0

Infinite line:

f(x, y) = 0

e.g. x – y + 1 = 0
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The concept of a halfspace in 3D

Plane equation  f (x, y, z) = 0

or Ax + By + Cz + D = 0

For all points in this halfspace

f (x, y, z) < 0

For all points in this halfspace

f (x, y, z) > 0
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Reminder: Homogeneous Coordinates

• Link plane equation Ax + By + Cz + D = 0

with vector H = (A, B, C, D)T in 

homogeneous coordinates

• Each point (x, y, z, w) has an infinite 

number of equivalent homogenous 

coordinates: 

(sx, sy, sz, sw) , s ≠ 0

• Relates to infinite number of equivalent  

plane equations:

P0P

H = (A, B, C, D)T

sAx + sBy+ sCz+ sD = 0 ®H =

sA

sB

sC

sD
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Point-to-Plane Distance

• Scale H so that (A, B, C) becomes 

normalized, i.e. that

A2 + B2 + C2 = 1 

• Then distance is easily calculated

d = H • p = HT p

n.b. dot product is in homogeneous  

coordinates

• d is a signed distance:

positive = "inside" 

negative = "outside"

P’

P0

P

d
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C
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Which side of the plane is a point on?

(Recall the planes in the frustum)

•If d = H • p  0

Pass through 

•If d = H • p < 0

Clip (or cull or reject) 

Don’t really need to normalize A,B,C

We only test the sign of H•p

P’
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Clipping with respect to View Frustum

• Test point p against each of the 6 planes

– Normals oriented towards the interior

– Each has its own H

• If H • p < 0 for any H then clip p (‘cull’/‘reject’)

P
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= 

=

= 

=

= 
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What are the View Frustum Planes?

Hnear

Hfar

Hbottom

Htop

Hleft

Hright

(   0         0          1      –near )T

(   0         0         –1        far  )T

(   0       near –bottom 0  )T

(   0      –near top 0  )T

(–near 0         left 0  )T

(near 0       –right 0  )T

P

(right ´
far

near
,  top´

far

near
,  far)

left,  bottom,  near( )

Eye at O

looking along z+

right,  top,  near( )
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Example derivation

P
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Line-Plane Intersection

• Sometimes we need to clip lines and line segments!

• Explicit (Parametric) Line Equation

L(m ) = p0 + m ( p1 – p0 )

or 

L(m ) = m p1 + (1 – m) p0

• How do we intersect? 

– Insert explicit equation of line into implicit equation of plane 

– use the normal vector

P0

P
P1



Graphics Lecture 3: Slide 18

Line-Plane Intersection: Example method

To compute intersection line joining p0 , p1 and plane:

1.For any vector v lying in the plane n • v = 0

2.Let the intersection point be m p1 + (1-m) p0

3.Choose v to be any point on the plane.

4.A vector in the plane is given by mp1 + (1-m)p0 - v

5.So n • (mp1 + (1-m)p0 - v) = 0

6.We can solve this for m and hence find the point of 

intersection
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Segment Clipping

• If H • p > 0 and H • q < 0

• If H • p < 0 and H • q > 0

• If H • p > 0 and H • q > 0

• If H • p < 0 and H • q < 0

p

q
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Segment Clipping

p

q

n

• If H • p > 0 and H • q < 0

- clip q to plane

• If H • p < 0 and H • q > 0

• If H • p > 0 and H • q > 0

• If H • p < 0 and H • q < 0
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Segment Clipping

p

q

n

• If H • p > 0 and H • q < 0

- clip q to plane

• If H • p < 0 and H • q > 0

- clip p to plane

• If H • p > 0 and H • q > 0

• If H • p < 0 and H • q < 0
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Segment Clipping

p

q

n

• If H • p > 0 and H • q < 0

- clip q to plane

• If H • p < 0 and H • q > 0

- clip p to plane

• If H • p > 0 and H • q > 0

- pass through

• If H • p < 0 and H • q < 0
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Segment Clipping

p

q

n

• If H • p > 0 and H • q < 0

- clip q to plane

• If H • p < 0 and H • q > 0

- clip p to plane

• If H • p > 0 and H • q > 0

- pass through

• If H • p < 0 and H • q < 0

- clipped out
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Clipping against the frustum

For each frustum plane H

– If H•p > 0 and H•q < 0,  clip q

– If H•p < 0 and H•q > 0,  clip p

– If H•p > 0 and H•q > 0, pass through 

– If H•p < 0 and H•q < 0, clipped out

Result is a single 

segment.  
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Clipping and containment

• Clipping can be carried out against any object

– Not just a viewing frustum

• Clipping against an arbitrary object

• Need a test for containment

– i.e. is a point inside or outside the object

• Can develop containment test for

– Convex objects: Common problem, e.g. convex polyhedra

– Concave objects: Harder than convex case
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Convex objects: Two Definitions

1. A line joining any two points on the boundary lies 

inside the object.

2. The object is the intersection of planar halfspaces. 
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Testing if an object is convex

Illustration of definition 2
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Testing if an object is convex: Algorithm

convex = true

for each face of the object {

find plane equation of face: F(x,y,z) = 0

choose object point (xi,yi,zi) not on the face

for all other points of the object {

if (sign(F(xj,yj,zj)) != sign(F(xi,yi,zi)))

then convex = false

}

}

Works due to definition 2, all points of the 

object must lie entirely to one side of each face
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Test containment within a convex object:

Algorithm

let the test point be (xt,yt,zt)

contained = true

for each face of the convex object {

find plane equation of face: F(x,y,z) = 0

choose an object point (xi,yi,zi) not on the face

if (sign( F(xt,yt,zt) ) != sign( F(xi,yi,zi) ))

then contained = false

}
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Vector formulation

• The same test can be expressed in vector form.

• This avoids the need to calculate the Cartesian equation 

of the plane, if, in our model we store the normal vector n

for each face of our object.
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Vector test for containment
P is on the ‘inside’ of 

the face if: 

θ is acute

cos θ > 0 

n•(P-A) > 0

Because

n•(P-A) = |n| |P-A| cos θ
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Normal vector to a face

• The vector formulation does not require us to find the 

plane equation of a face, but it does require us to find a 

normal vector to the plane; 

• Same thing really since for plane 

Ax + By + Cz + D = 0 

• A normal vector is 

   

n =

A

B

C
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Finding a normal vector

• The normal vector can be found from the cross product 

of two vectors on the plane, say two edge vectors
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But which normal vector points inwards?
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Checking normal direction (convex object)

Is n an inner normal?
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Problem Break

• A face of a convex object lies in the plane 

3x + 5y + 7z + 1 = 0  

and a vertex v is (-1, -1, 1). A normal vector is therefore

n = (3,5,7)T

• Problems:

1. If another vertex of the object is w = (1, 1, 1)

determine whether n is an inner or outer surface 

normal.

2. Determine whether the point p = (1, 0, -1) is on the 

inside or the outside of the face.
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Solution to Q2

Method 2:

The inner surface normal is n = (3, 5, 7)

for the test point        p = (1, 0, -1)                             

and face vertex     v = (-1, -1, 1)

p - v = (2, 1, -2)

n • (p - v) = -3

Thus the angle to the normal is > 90 

So the point p is on the outside



Graphics Lecture 3: Slide 40

Concave Objects

• Containment and clipping can also be carried out with 

concave objects.

• Most algorithms are based on the ray containment test.
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The Ray test in two dimensions

Find all intersections between the ray and the polygon edges.

If the number of intersections is odd the point is contained

Test Point

Polygon

Ray
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Calculating intersections with rays

• Rays have equivalent equations to lines, but go in only 

one direction. For test point T a ray is defined as

R = T + m d ,   m > 0

• We choose a simple to compute direction e.g.

or

d =
1

0
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Valid Intersections

Line segment

P = V2 + n (V1 - V2)

Ray

P = T + m d   , d = (1,0)T

Intersection

T + m d = V2 + n (V1 - V2)

Solve for n and m

Valid intersection if

m > 0 , 0 ≤ n < 1

V1

V2
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A ray is projected in any direction.

If the number of intersections with the

object is odd, then the test  point is inside

Test

point

Extending the ray test to 3D
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3D Ray test

• There are two stages:

1. Compute the intersection of the ray with the plane of each 

face.

2. If the intersection is in the positive part of the ray (m>0) check 

whether the intersection point is contained in the face (i.e. not 

just in the planar extension of the face).
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The plane of a face

• Unfortunately the plane of a face does not in general line 

up with the Cartesian axes, so the second part is not a 

two dimensional problem. 

• However, containment is invariant under  orthographic 

projection, so it can be simply reduced to two 

dimensions.
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Clipping to concave volumes

• Find every intersection of the line 

to be clipped with the volume

• This divides the line into one or 

more segments.

• Test a point on the first segment 

for containment

• Adjacent segments will be 

alternately inside and out.
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Splitting a volume into convex parts

• Split concave volume 

into convex parts

• Can apply tests for 

convex objects to each 

of the parts

• Consider each face 

If all the object vertices lie on one

side of the plane of of a face, we

proceed to the next face
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If the plane of a face cuts the object:

New Face

Split Face
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Split the Object
 

New Face 

Split Face Repeat on all concave sub parts 


