
Interactive Computer Graphics: Lecture 3

Clipping

Some slides adopted from

F. Durand and B. Cutler, MIT

Graphics Lecture 3: Slide 3

Clipping

• Eliminate portions of

objects outside the

viewing frustum

• View frustum

– boundaries of the image

plane projected in 3D

– a near & far clipping plane

• User may define

additional clipping planes

top far

left

bottom
right

near

Graphics Lecture 3: Slide 4

Why clipping ?

• Avoid degeneracy

– e.g. don’t draw objects

behind the camera

• Improve efficiency

– e.g. do not process objects

which are not visible

top far

left

bottom
right

near

Graphics Lecture 3: Slide 5

When to clip?

• Before perspective transform
in 3D space
– use the equation of 6 planes

– natural, not too degenerate

• In homogeneous coordinates after
perspective transform (clip space)
– before perspective divide

(4D space, weird w values)

– canonical, independent of camera

– simplest to implement

• In the transformed 3D screen space
after perspective division
– problem: objects in the plane of the camera

Graphics Lecture 3: Slide 6

The concept of a halfspace

x

y

Graphics Lecture 3: Slide 7

The concept of a halfspace

x

y Infinite line:

f(x, y) = 0

e.g. x – y + 1 = 0

Graphics Lecture 3: Slide 8

The concept of a halfspace

x

y

Halfspace

Halfspace

Infinite line:

f(x, y) = 0

e.g. x – y + 1 = 0

Graphics Lecture 3: Slide 9

The concept of a halfspace

x

y

Halfspace

f(x, y) > 0

Halfspace

f(x, y) < 0

Infinite line:

f(x, y) = 0

e.g. x – y + 1 = 0

Graphics Lecture 3: Slide 10

The concept of a halfspace in 3D

Plane equation f (x, y, z) = 0

or Ax + By + Cz + D = 0

For all points in this halfspace

f (x, y, z) < 0

For all points in this halfspace

f (x, y, z) > 0

Graphics Lecture 3: Slide 11

Reminder: Homogeneous Coordinates

• Link plane equation Ax + By + Cz + D = 0

with vector H = (A, B, C, D)T in

homogeneous coordinates

• Each point (x, y, z, w) has an infinite

number of equivalent homogenous

coordinates:

(sx, sy, sz, sw) , s ≠ 0

• Relates to infinite number of equivalent

plane equations:

P0P

H = (A, B, C, D)T

sAx + sBy+ sCz+ sD = 0 ®H =

sA

sB

sC

sD

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

Graphics Lecture 3: Slide 12

Point-to-Plane Distance

• Scale H so that (A, B, C) becomes

normalized, i.e. that

A2 + B2 + C2 = 1

• Then distance is easily calculated

d = H • p = HT p

n.b. dot product is in homogeneous

coordinates

• d is a signed distance:

positive = "inside"

negative = "outside"

P’

P0

P

d

H =

A

B

C

D

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

Graphics Lecture 3: Slide 13

Which side of the plane is a point on?

(Recall the planes in the frustum)

•If d = H • p 0

Pass through

•If d = H • p < 0

Clip (or cull or reject)

Don’t really need to normalize A,B,C

We only test the sign of H•p

P’

P0

P

d

H =

A

B

C

D

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

Graphics Lecture 3: Slide 14

Clipping with respect to View Frustum

• Test point p against each of the 6 planes

– Normals oriented towards the interior

– Each has its own H

• If H • p < 0 for any H then clip p (‘cull’/‘reject’)

P

Graphics Lecture 3: Slide 15

=

=

=

=

=

=

What are the View Frustum Planes?

Hnear

Hfar

Hbottom

Htop

Hleft

Hright

(0 0 1 –near)T

(0 0 –1 far)T

(0 near –bottom 0)T

(0 –near top 0)T

(–near 0 left 0)T

(near 0 –right 0)T

P

(right ´
far

near
, top´

far

near
, far)

left, bottom, near()

Eye at O

looking along z+

right, top, near()

Graphics Lecture 3: Slide 16

Example derivation

P

Graphics Lecture 3: Slide 17

Line-Plane Intersection

• Sometimes we need to clip lines and line segments!

• Explicit (Parametric) Line Equation

L(m) = p0 + m (p1 – p0)

or

L(m) = m p1 + (1 – m) p0

• How do we intersect?

– Insert explicit equation of line into implicit equation of plane

– use the normal vector

P0

P
P1

Graphics Lecture 3: Slide 18

Line-Plane Intersection: Example method

To compute intersection line joining p0 , p1 and plane:

1.For any vector v lying in the plane n • v = 0

2.Let the intersection point be m p1 + (1-m) p0

3.Choose v to be any point on the plane.

4.A vector in the plane is given by mp1 + (1-m)p0 - v

5.So n • (mp1 + (1-m)p0 - v) = 0

6.We can solve this for m and hence find the point of

intersection

Graphics Lecture 3: Slide 19

Segment Clipping

• If H • p > 0 and H • q < 0

• If H • p < 0 and H • q > 0

• If H • p > 0 and H • q > 0

• If H • p < 0 and H • q < 0

p

q

Graphics Lecture 3: Slide 20

Segment Clipping

p

q

n

• If H • p > 0 and H • q < 0

- clip q to plane

• If H • p < 0 and H • q > 0

• If H • p > 0 and H • q > 0

• If H • p < 0 and H • q < 0

Graphics Lecture 3: Slide 21

Segment Clipping

p

q

n

• If H • p > 0 and H • q < 0

- clip q to plane

• If H • p < 0 and H • q > 0

- clip p to plane

• If H • p > 0 and H • q > 0

• If H • p < 0 and H • q < 0

Graphics Lecture 3: Slide 22

Segment Clipping

p

q

n

• If H • p > 0 and H • q < 0

- clip q to plane

• If H • p < 0 and H • q > 0

- clip p to plane

• If H • p > 0 and H • q > 0

- pass through

• If H • p < 0 and H • q < 0

Graphics Lecture 3: Slide 23

Segment Clipping

p

q

n

• If H • p > 0 and H • q < 0

- clip q to plane

• If H • p < 0 and H • q > 0

- clip p to plane

• If H • p > 0 and H • q > 0

- pass through

• If H • p < 0 and H • q < 0

- clipped out

Graphics Lecture 3: Slide 24

Clipping against the frustum

For each frustum plane H

– If H•p > 0 and H•q < 0, clip q

– If H•p < 0 and H•q > 0, clip p

– If H•p > 0 and H•q > 0, pass through

– If H•p < 0 and H•q < 0, clipped out

Result is a single

segment.

Graphics Lecture 3: Slide 25

Clipping and containment

• Clipping can be carried out against any object

– Not just a viewing frustum

• Clipping against an arbitrary object

• Need a test for containment

– i.e. is a point inside or outside the object

• Can develop containment test for

– Convex objects: Common problem, e.g. convex polyhedra

– Concave objects: Harder than convex case

Graphics Lecture 3: Slide 26

Convex objects: Two Definitions

1. A line joining any two points on the boundary lies

inside the object.

2. The object is the intersection of planar halfspaces.

Graphics Lecture 3: Slide 27

Testing if an object is convex

Illustration of definition 2

Graphics Lecture 3: Slide 28

Testing if an object is convex: Algorithm

convex = true

for each face of the object {

find plane equation of face: F(x,y,z) = 0

choose object point (xi,yi,zi) not on the face

for all other points of the object {

if (sign(F(xj,yj,zj)) != sign(F(xi,yi,zi)))

then convex = false

}

}

Works due to definition 2, all points of the

object must lie entirely to one side of each face

Graphics Lecture 3: Slide 29

Test containment within a convex object:

Algorithm

let the test point be (xt,yt,zt)

contained = true

for each face of the convex object {

find plane equation of face: F(x,y,z) = 0

choose an object point (xi,yi,zi) not on the face

if (sign(F(xt,yt,zt)) != sign(F(xi,yi,zi)))

then contained = false

}

Graphics Lecture 3: Slide 30

Vector formulation

• The same test can be expressed in vector form.

• This avoids the need to calculate the Cartesian equation

of the plane, if, in our model we store the normal vector n

for each face of our object.

Graphics Lecture 3: Slide 31

Vector test for containment
P is on the ‘inside’ of

the face if:

θ is acute

cos θ > 0

n•(P-A) > 0

Because

n•(P-A) = |n| |P-A| cos θ

Graphics Lecture 3: Slide 32

Normal vector to a face

• The vector formulation does not require us to find the

plane equation of a face, but it does require us to find a

normal vector to the plane;

• Same thing really since for plane

Ax + By + Cz + D = 0

• A normal vector is

n =

A

B

C

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

Graphics Lecture 3: Slide 33

Finding a normal vector

• The normal vector can be found from the cross product

of two vectors on the plane, say two edge vectors

Graphics Lecture 3: Slide 34

But which normal vector points inwards?

Graphics Lecture 3: Slide 35

Checking normal direction (convex object)

Is n an inner normal?

Graphics Lecture 3: Slide 36

Problem Break

• A face of a convex object lies in the plane

3x + 5y + 7z + 1 = 0

and a vertex v is (-1, -1, 1). A normal vector is therefore

n = (3,5,7)T

• Problems:

1. If another vertex of the object is w = (1, 1, 1)

determine whether n is an inner or outer surface

normal.

2. Determine whether the point p = (1, 0, -1) is on the

inside or the outside of the face.

Graphics Lecture 3: Slide 39

Solution to Q2

Method 2:

The inner surface normal is n = (3, 5, 7)

for the test point p = (1, 0, -1)

and face vertex v = (-1, -1, 1)

p - v = (2, 1, -2)

n • (p - v) = -3

Thus the angle to the normal is > 90

So the point p is on the outside

Graphics Lecture 3: Slide 40

Concave Objects

• Containment and clipping can also be carried out with

concave objects.

• Most algorithms are based on the ray containment test.

Graphics Lecture 3: Slide 41

The Ray test in two dimensions

Find all intersections between the ray and the polygon edges.

If the number of intersections is odd the point is contained

Test Point

Polygon

Ray

Graphics Lecture 3: Slide 42

Calculating intersections with rays

• Rays have equivalent equations to lines, but go in only

one direction. For test point T a ray is defined as

R = T + m d , m > 0

• We choose a simple to compute direction e.g.

or

d =
1

0

æ

è
ç

ö

ø
÷

d =

1

0

0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

Graphics Lecture 3: Slide 43

Valid Intersections

Line segment

P = V2 + n (V1 - V2)

Ray

P = T + m d , d = (1,0)T

Intersection

T + m d = V2 + n (V1 - V2)

Solve for n and m

Valid intersection if

m > 0 , 0 ≤ n < 1

V1

V2

Graphics Lecture 3: Slide 44

A ray is projected in any direction.

If the number of intersections with the

object is odd, then the test point is inside

Test

point

Extending the ray test to 3D

Graphics Lecture 3: Slide 45

3D Ray test

• There are two stages:

1. Compute the intersection of the ray with the plane of each

face.

2. If the intersection is in the positive part of the ray (m>0) check

whether the intersection point is contained in the face (i.e. not

just in the planar extension of the face).

Graphics Lecture 3: Slide 46

The plane of a face

• Unfortunately the plane of a face does not in general line

up with the Cartesian axes, so the second part is not a

two dimensional problem.

• However, containment is invariant under orthographic

projection, so it can be simply reduced to two

dimensions.

Graphics Lecture 3: Slide 47

Clipping to concave volumes

• Find every intersection of the line

to be clipped with the volume

• This divides the line into one or

more segments.

• Test a point on the first segment

for containment

• Adjacent segments will be

alternately inside and out.

Graphics Lecture 3: Slide 48

Splitting a volume into convex parts

• Split concave volume

into convex parts

• Can apply tests for

convex objects to each

of the parts

• Consider each face

If all the object vertices lie on one

side of the plane of of a face, we

proceed to the next face

Graphics Lecture 3: Slide 49

If the plane of a face cuts the object:

New Face

Split Face

Graphics Lecture 3: Slide 50

Split the Object

New Face

Split Face Repeat on all concave sub parts

