
EUROGRAPHICS 2017/ J. J. Bourdin and A. Shesh Education Paper

Accessible GLSL Shader Programming

Antoine Toisoul1, Daniel Rueckert1 and Bernhard Kainz1

1Department of Computing, Imperial College London, UK

Abstract

Teaching fundamental principles of Computer Graphics requires a thoroughly prepared lecture alongside practical training.
Modern graphics programming rarely provides a straightforward application programming interface (API) and the available
APIs pose high entry barriers to students. Shader-based programming of standard graphics pipelines is often inaccessible
through complex setup procedures and convoluted programming environments. In this paper we discuss an undergraduate
entry level lecture with its according lab exercises. We present a programming framework that makes interactive graphics
programming accessible while allowing to design individual tasks as instructive exercises to solidify the content of individual
lecture units. The discussed teaching framework provides a well defined programmable graphics pipeline with geometry shading
stages and image-based post processing functionality based on framebuffer objects. It is open-source and available online.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and Information
Science Education-Computer Science Education—D.2.3 [Software Engineering]: Coding Tools and Techniques—

1. Introduction

Teaching the principles of Computer Graphics beyond traditional
classroom based lectures is especially challenging because of high
entry barriers formed by high-level graphics Application Program-
ming Interfaces (APIs) and specific hardware requirements.

Practical lab exercises and small tasks related to taught content
are essential to solidify knowledge and to practice new skills. Es-
pecially on undergraduate level, limited knowledge of program-
ming environments and programming languages make it almost
impossible to design a lab exercise that fit the needs of every stu-
dent while including state-of-the-art technologies. Therefore, Com-
puter Graphics related courses are very often at a late stage and
only sparsely covered in undergraduate curricula and advanced pro-
gramming models are usually only available to postgraduate stu-
dents. Furthermore, despite great interest amongst high-school stu-
dents in Computer Graphics rooted in the popularity of computer
games, there are almost no tools available that would allow an ac-
curate but simple way for experimentation with graphics APIs.

Only recently, tools like the Raspberry Pi [Gay14] and languages
like python [van95] made general purpose programming accessible
to the masses. Game-engines like Unity [Sta13] are currently mak-
ing Computer Graphics programming and game design accessible
in a similar way. However, while general purpose programming in-
terfaces often lack advanced real-time graphics capabilities without
the use of high-level graphics API libraries, full scale game-design
tools usually include a lot of additional features like physics and
artistic tools, which require again a high learning effort.

In this paper we present ShaderLabFramework as an easy to use
OpenGL 4 framework with an IDE-like interface to program and
compile GLSL shaders. This framework is used during our Com-
puter Graphics course at the Department of Computing, Imperial
College London, UK, for lab sessions and individual coursework
exercises to teach students how to code GLSL shaders and apply
the theory from the lectures. The framework is open-source and
available online.

2. Related Work

A few frameworks are available to teach the basics of Computer
Graphics.

GlMan [Bai] is a software that loads a scene description and ren-
ders it using specified shaders. It can be used for teaching purposes
to help students understand GLSL shaders. ShaderMaker [Kra08]
is a cross platform open-source framework written in C++ using
the Qt library [Dig] and designed to teach students the basics of
Computer Graphics. It allows to edit and compile shaders directly
from its interface and visualize the result in an OpenGL window.
The user interface also contains many widgets to modify the cam-
era characteristics as well as the scene description. ShaderMaker
was written in 2007, hence it does not support OpenGL 4 as well as
the last Qt features that help writing code specifically for 3D ren-
derings. ShaderLabFramework’s GLSL shader editor is inspired by
the one that has been implemented in ShaderMaker.

Unity [uni17] is a popular game engine that can be used to write
shaders and visualise renderings easily. The shaders are written in

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Antoine Toisoul, Daniel Rueckert & Bernhard Kainz / Accessible GLSL Shader Programming

the ShaderLab language which is specific to unity. Our course is a
general graphics course. As a result our framework uses OpenGL
and teaches students GLSL to avoid being specific to a given game
engine.

Lambers [Lam16] proposed a simple framework that can be used
in virtual reality courses. It helps students to practice VR without
the requirement of writing a specific graphics application or know-
ing high level libraries. With such a framework students can focus
on the course instead of spending time on software related prob-
lems. In this paper we propose a framework with a similar purpose
i.e help students learning the key concepts of Computer Graphics.

Also related is the work of Fink et al. [FWW13] who developed
a Java 3D renderer to help students understand shaders and how to
implement them in Java. Their framework is designed for an intro-
ductory course on Computer Graphics and does not teach OpenGL
API and GLSL.

The Exploratories project [RRP00] contains a set of free java ap-
plets to help teaching graphics. These include lighting and shading,
color theory and texture mapping. Although very useful to help ex-
plaining concepts in lectures these applets are not designed to teach
students how to write modern OpenGL shaders.

Shadertoy [JQ13] is a tool to write pixel shaders (i.e a fragment
shader applied on full screen quad) in a simple web interface. The
result can be visualized in a browser with WebGL. Shadertoy has
a community and can be used for learning purposes. However it is
restricted to pixel shaders and rendering an arbitrary geometry with
a regular rendering pipeline is not possible.

3. Course Syllabus

For our third year undergraduate Computer Graphics course we aim
to provide a comprehensive lecture and a tailored lab framework in-
between full scale game-design tools and low level graphics API.
The course is usually attended by 120–150 students and runs for
eight weeks. We base our lab exercise on one of the most common
two-pass shader pipelines as shown in Figure 1.

During the lecture we connect this pipeline with the theory be-
hind polyhedral rendering, illumination, image-based effects, and
image generation methods like Ray tracing. Our detailed lecture
syllabus is listed in the following. Each item is one lecture unit.

1. Projections and Transformations (week 1)
2. Transformations for Animation (week 1)
3. Clipping (week 1)
4. Graphics Pipeline and APIs (week 2)
5. Illumination, Shading (week 2)
6. Graphics APIs and Shading languages (week 2)
7. Colour (week 3)
8. Texture Mapping (week 3)
9. Rasterization, Visibility & Anti-aliasing (week 3)

10. Ray tracing (week 4)
11. Ray tracing (week 5)
12. Spline curves (week 5)
13. Spline surfaces (week 6)
14. Warping and Morphing (week 6)
15. Special effects (week 7)

16. Animation and Kinematics (week 7)
17. Radiosity (week 7)
18. Revision (week 8)

The Lab exercise is aligned with the content of the lecture. It
covers the most essential topics, which are listed in the following.

1. Getting familiar with the course framework (week 1)
2. Transformations (week 2)
3. Illumination and Shading (week 3)
4. Geometry generation and processing (week 4)
5. Colour (week 5)
6. Texture & Render to Texture (week 6)
7. Simple GPU ray tracing (week 7-8)

While tasks 1, 2, and 5 are voluntary exercises, tasks 3, 4, 6, and
7 are assessed and contribute to the final mark of the student.

4. Simplified Shader Pipeline Programming

The core of the discussed Computer Graphics course is its compre-
hensive lab exercise. We have designed and implemented an inte-
grated development environment (IDE) for a programmable shad-
ing pipeline with a fixed two shading pass layout. This design al-
lows to cover most concepts that have been discussed during the
lecture. Figure 1 provides an overview over the selected shading
passes and Figure 2 shows an overview over our current Shader-
LabFramework.

4.1. ShaderLabFramework architecture

The framework is implemented in C++ using the Qt library [Dig]
and OpenGL 4 [Wol11]. It is divided in two parts: the shader editor
and the rendering window. These two interfaces communicate with
the Qt signal and slots system in order to update the renderings
accordingly to the user modifications.

The rendering window contains an OpenGL widget and a set of
tabs to modify the scene and camera descriptions. In these tabs the
user can choose an object, change its properties such as the material
it is made of (e.g ambient, diffuse and specular colours), load and
apply textures and modify the camera properties (e.g field of view).
The model, view and projection matrices can also be modified in
the matrix tab and each modification can be directly visualized in
the OpenGL widget. The wireframe and backface culling modes
can also be enabled or disabled through the interface. Finally, the
rendering window has a tab to display OpenGL information such
as the GPU used and the GLSL compilation errors.

The shader editor can be used to code, compile, load and save the
shaders that are applied in the rendering pipeline. It has a feature
to directly save the entire two pass rendering pipeline to a XML
file that can later be loaded. For the coursework students are asked
to save and submit their XML file corresponding to each task. The
XML format is very useful as it saves a lot of time for submis-
sion and marking. Indeed markers can easily load them, visualize
the rendering and go through the code all within ShaderLabFrame-
work.

Implementation wise the code is divided two parts : one for the
user interface and one for the description of the 3D scene and the

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Antoine Toisoul, Daniel Rueckert & Bernhard Kainz / Accessible GLSL Shader Programming

Figure 1: The provided two-pass render pipeline architecture.

render
display list

polygon vertex,
geometry and fragment
shader

framebuffer object,
render-to-texture 2D texture

render-to-texture 2D texture
vertex and fragment shader

Figure 2: In this framework, from inside out in the figure, the poly-
gons stored in a display list are first shaded in object space using
a vertex, geometry and fragment shader. The result is rendered to a
2D texture of exactly the same size as the camera plane (= the ren-
der window.). This texture is passed through an additional vertex
and fragment shader to achieve image based effects.

OpenGL classes. The 3D scene is divided in several classes called
: Scene, Object, Material, Mesh, Light, Camera and Texture. These
are self explanatory which helps the students to understand how the
framework is made. In the user interface part we created a class in-
herited from QGLWidget with the main rendering loop. This class
directly communicates with the user interface to change the 3D ren-
dering depending on the user inputs.

The framework for all exercises is available on our unified
lab infrastructure, running a customized Ubuntu operating sys-
tem as shown in Figure 3, on github: https://github.com/
bkainz/ShaderLabFramework and our departmental gitlab
system. Thus the framework can either be directly executed on any
lab machine or compiled using CMake on student’s individual com-
puters.

(a) CG lab 1 (b) CG lab 2

Figure 3: The students can work on 250 similar lab machines in
two Computer Graphics labs, all equipped with Nvidia Graphics
cards and identical operating systems, or on their own laptop.

4.2. Task description

For each lab week the students are given a task tailored to the cur-
rent week’s lecture. After individual completion, the whole pipeline
and all included shaders have to be saved as a XML file and sub-
mitted through our electronic submission system. Assessed tasks
are marked within one week by the lecturers and the lab helpers.
Feedback is given in the form of short statements about the pro-
vided solution. A sample solution is provided to the students two
weeks after the submission deadline. The individual tasks are de-
scribed in the following.

4.2.1. Task 1: The Framework

The framework provides a direct interface to the necessary matri-
ces, uniform variables, which define the interface between the host
program and the shader, and texture samplers that allow to access
texture images stored in graphics memory. The values for these in-
terface variables are mapped to fields in the provided widgets of the
GUI.

Besides a Log widget which shows the result of the shader com-
pilation and linker stages (’Compile and Link’ with the according
button in the Editor widget or use F5) we also parse user defined
uniform variables and make them availabe for manipulation in
the User uniforms tab. To simplify the usage of OpenGL 4, which
requires to handle all matrices as uniform variables, we have pre-
defined a number of special uniform variables (e.g. ModelView
matrix, Projection Matrix,etc.) that are not accessible through the
User uniforms tab. These variables can be manipulated in the Ma-
trices and Material tabs.

Since the initial shaders are pure pass through shader that re-
place the incoming colour with a hard-coded constant color, the
scene has not much appeal as shown in Figure 4(a). The rendered
model can be selected in the Scene Tab and the default model is

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

https://github.com/bkainz/ShaderLabFramework
https://github.com/bkainz/ShaderLabFramework

Antoine Toisoul, Daniel Rueckert & Bernhard Kainz / Accessible GLSL Shader Programming

a Utah Teapot. However, its 3D shape cannot be perceived well at
this stage because of missing illumination. To check the geometry
besides the lack of a proper lighting model the framework provides
a Wireframe mode in the Scene widget (Scene Tab→ Enable
wireframe)

The student’s tasks are:

• to write some random text in either the Fragment or the Vertex
shader and to hit Compile and Link. Then the student is asked
to check the Log widget to see the GLSL compiler output. The
changes need to be undone for error-free compilation.
• to find the used default (hard-coded) RGBA color value (pure

’red’ per default) and change it to pure green.
• to define a uniform vec4 variable and to use this through the

GUI to define the color of the object.
• to change to Wireframe mode, to get an overview over the

scene and explain what they are seeing in this render mode.
• in Wireframe mode, to click the checkbox for
Back Face Culling and to explain what is happening
(if the object is for example turned around with activated and
deactivated Back Face Culling).

4.2.2. Task 2: Projections and Transformations

In Computer Graphics transformations and projections are defined
through matrix operations as discussed during the lecture. In this
exercise the student will learn how to use these matrices. For this
task the student is asked to use wireframe mode for better percep-
tion.

A 3D point p is represented in homogeneous coordinates by a
4-dimensional vector p = (x,y,z,1)T. A full 4× 4 transformation
matrix in homogeneous coordinates can be separated into individ-
ual parts steering translation T , rotation R, and the affine parameters
scaling Asc, reflection Are, and shearing Ash (A = AscAreAsh). The
full transformation can be defined as p′ = T ·R ·A · p, where T is
a 4× 4 translation matrix, R a 4× 4 rotation matrix, and A a 4× 4
affine matrix.

A combined transformation matrix can be used as ModelMatrix
to manipulate a 3D object in 3D space or to define the position of
the camera plane as ViewMatrix.

The projection on the camera plane is defined through a Projec-
tionMatrix P. In case of orthographic projection this matrix simply
removes the z-coordinate and looks like :

P =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 . (1)

For perspective transformation we can add the focal length of the
camera and use :

P =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/ f 0

 (2)

as ProjectionMatrix.

The framework provides an interface to all of these matrices. For

simplicity the student is asked to select a box model as object. The
student’s task is to :

• rotate the object by 45◦ about the axis (0.5,0.5,0.75),
• scale the object by 50%,
• translate the object to (0,5,0) followed by a 30◦ rotation about

the axis (0,0,1),
• reflect the object through a plane defined by its normal vector

(0.7071,0.7071,0),
• shear the object along the x-axis to a general parallelepiped so

that the top left edge of the cube is translated to (1,0,0),
• change to orthographic projection,
• use perspective projection with focal length f = 20mm. The

height and width of the current field of view are shown on the
perspective matrix widget.

4.2.3. Task 3: Illumination and Shading

In this exercise the students will learn how to use vertex and frag-
ment shaders for vertex-wise and pixel-wise scene illumination. We
use the per-polygon vertex and fragment shaders for this task. The
framework presents to the student an unshaded Utah Teapot model
per default as shown in Figure 4a. At the end of this task the student
will be able to program different illumination models as shown in
Figure 4.

(a) Default (b) Gouraud (c) Phong

(d) Toon (e) Bl.-Pho.

Figure 4: (a) shows the default scene of the framework: a teapot
model with no illumination and shading. (b-e) shows four different
illumination models that are the results of Exercise 3.

4.2.3.1. Task 3a: Per Vertex Gouraud shading For this exer-
cise the students will need to edit the per-polygon vertex shader.
This shader performs operations on scene vertices in object space.
It is already provided by the editor. Students are asked to imple-
ment Gouraud shading as discussed during the lecture. Gouraud
shading is an interpolation scheme for the illumination based on
the viewer’s, the vertex’ and the light position within the scene.

In the per-polygon vertex shader we define a basic interface to
the other shaders to pass on specific information about the currently
processed vertex (texture coordinates, normal vector, colour).

The function main() defines a simple pass-trough vertex
shader. This means, that this shader does exactly the same as what

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Antoine Toisoul, Daniel Rueckert & Bernhard Kainz / Accessible GLSL Shader Programming

would be done during the static rendering pipeline, except that it
replaces the incoming color with a constant value :

VertexOut.texCoord = texCoord;
VertexOut.color = normalize(vec4(1,0,0,0));
VertexOut.normal = normal-
ize(normalMatrix * normal);
gl_Position = projMat * modelViewMat * position;

gl_Position is the only output that is expected to be set
by the GLSL compiler. Everything else can be freely defined.
modelViewMat is the ModelView matrix and projMat is the
projection matrix. These are updated by the main program using
uniform variables. Please note that previous versions of OpenGL
and GLSL had intrinsic variables for values like the ModelView
and Projection matrix. Modern OpenGL is freely programmable
and defines the use of the intrinsics as deprecated. We provide a
definition for a simple light source as well as material properties
with diffuse, ambient, specular and shininess terms.

The student’s task for this exercise is to redefine
VertexOut.color so that it forwards color values ac-
cording to the Gouraud illumination model. The student may use
the provided Utah Teapot model for testing. (Scene Widget→ Test
Model→ Utah Teapot). An example output for this task is shown
in Figure 4b.

The students are explicitly told that they only need to define one
color per vertex. The interpolation between these vertices is done
by the rendering pipeline.

4.2.3.2. Task 3b: Per Pixel Phong shading In this part the stu-
dents will implement Phong shading as discussed during the lec-
ture. Phong shading is an interpolation scheme for the illumination
based on interpolated normal vectors for each fragment instead of
interpolated colors as done for the previous task 4.2.3.1. The shad-
ing effect depends on the viewer’s, the fragment’s and the light po-
sition. In contrast to Exercise 4.2.3.1, this exercise operates directly
on fragments and needs therefore the extension of the per-polygon
fragment shader.

The same interface definitions can be used as provided in Exer-
cise 4.2.3.1. The students are instructed that the fragment shader
gets an input fragment instead of an input vertex. The task is to
redefine colorOut the forward colour values according to the
Phong illumination model. The result is shown in Figure 4c. The
students are asked to argue about the reasons for the quality differ-
ences between Figure 4b and Figure 4c.

4.2.3.3. Task 3c: Per Pixel Toon shading In this part the students
will implement Toon shading. Toon shading is a simple lighting
scheme, which allows to achieve effects similar to hand drawn car-
toons. This exercise operates directly on fragments and needs there-
fore the extension of the per-polygon fragment shader. The students
may use preprocessor definitions as common in C-like languages or
uniform variables to switch between the shading types.

A toon shader can be defined per fragment through I f =
l
||l|| ·

n
||n|| and Equation 3.

I =

(0.8,0.8,0.8,1.0), if I f > 0.98
(0.8,0.4,0.4,1.0), if I f > 0.5 and I f <= 0.98
(0.6,0.2,0.2,1.0), if I f > 0.25 and I f <= 0.5
(0.1,0.1,0.1,1.0), if else

(3)

l defines the vector from the light source and n the normal
vector at the current fragment. The student’s task is to redefine
colorOut, so that it encodes illumination according to the Toon
shading model. The final result is shown in Figure 4d.

The students are further asked to implement this task first using
the provided light source position. The specular reflection will stay
constant relative to the position of the light source. Then, they can
try to replace the static light source with a head light, i.e., set the
light source position equal to the position of the camera in camera
coordinate space.

4.2.3.4. Task 3d: Blinn-Phong shading Phong shading is not
the most efficient way to approximate per-fragment illumination.
Blinn-Phong (Bl.-Pho. in Figure 4e is a more efficient modification
of Phong shading using the halfway-vector. The student’s task is
to redefine colorOut according to the Blinn-Phong illumination
model as discussed during the lecture. The result looks similar to
Figure 4e.

4.2.4. Task 4: Geometry generation and processing

4.2.4.1. Task 4a: Mesh subdivision During this exercise the stu-
dents will learn how to generate primitives within a geometry
shader. To this point, we have covered how to use a vertex shader
and a fragment shader. In this task, the lab participants will modify
the per-polygon geometry shader. To activate this shader in the ren-
dering pipeline it is required to tick the include box beneath the ge-
ometry shader tab and rebuild the shader program. While it is pos-
sible to manipulate the position of incoming vertices in the vertex
shader, a geometry shader is additionally able to emit new prim-
itives (i.e., vertices) into the pipeline and to transform them into
different types. The students are asked to implement a very simple
mesh subdivision algorithm as it is outlined in Figure 5a.

For this task, the students are instructed to use Wireframe mode
to see the result of the computation. (Scene→ Enable wireframe)
To define the desired number of levels for the primitive subdivision
a uniform variable is used. An example of the output (without
subdivision) is shown in Figure 5b.

The students are required to implement the subdivision us-
ing barycentric coordinates within a nested for-loop and to use
the functions EmitVertex() to generate a new vertex and
EndPrimitive() to close the new triangle. It is also possible to
define new functions, e.g., for producing a new vertex in barycen-
tric coordinates similar to a simple C program. It is also required
to interpolate the new vertex’s normal vector. A pass-trough shader
is already implemented in the per-polygon default geometry shader
and provided by the editor.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Antoine Toisoul, Daniel Rueckert & Bernhard Kainz / Accessible GLSL Shader Programming

(a) triangle subdivision strategy

(b) Level 0 (c) Level 1

(d) Level 2 (e) animation

Figure 5: (a) Subdivision strategy for a single triangle. (b-e) Ex-
ample results for task 4: Different levels of triangle subdivision and
vertex animation in (e).

Results for the subdivision are shown for one level in Figure 5c
and for two levels in Figure 5d. Note that the number of possible
additional primitives that can be emitted by a geometry shader is
limited and hardware-dependent. Therefore, it is recommended to
limit the number of levels to two or three.

4.2.4.2. Task 4b: Vertex animation Optionally the students may
implement vertex animation at the geometry shader stage. There-
fore it is possible to choose any time-dependent displacement of the
resulting vertex in direction of it’s normal vector. To help with this
task, we provide a uniform variable time in the geometry shader,
which is set by the host program to the current time since start of
the shader program. We also provide a pseudo random number gen-
eration functions initialized by, e.g., the vertex xy position, similar
to:

float rnd(vec2 x)
{
int n = int(x.x * 40.0 + x.y * 6400.0);
n = (n « 13) ^ n;
return 1.0 - float((n * (n * n * 15731 + 789221)
+ 1376312589) & 0x7fffffff) / 1073741824.0;
}

A single frame of the animation may look like shown in Fig-
ure 5e. The students can implement any animation they like, for
example, a melting teapot.

4.2.5. Task 5: Colour

Colour space conversion is an important tool in any modern Com-
puter Graphics applications. The RGB colour space has the disad-

vantages that it is device specific, it is not useful for human descrip-
tion of colour (e.g., we do not describe color as RGB percentages)
and it is highly redundant and correlated (e.g., all channels hold
luminance information, which reduces coding efficiency). In Com-
puter Graphics it is often required to separate colour from intensity
information. This is difficult using the RGB model but straightfor-
ward when using an alternative color space like HSV. This space
separates hue, saturation, and value, which makes it easier to clas-
sify colours irrespective of, e.g., local illumination conditions or to
generate an adaptive target colour according to a changing projec-
tion surface.

The students’ task is to build a HSV to RGB converter as dis-
cussed during the lecture. It is possible to do this in the per-polygon
fragment shader and by defining a uniform variable as input HSV
value. The students are also asked to visualise the RGB colour
space by using the currently rendered object’s vertex position as
output colour in the vertex shader (e.g., RGB colour space when
rendering a cube model.). However, the cube for example is cen-
tered at the origin, hence the students are instructed to translate
the position values with vec4(0.5,0.5,0.5,0) to get non-
negative positions. Furthermore, we ask the students to argue about
why it is difficult to visualise the HSV colour space using the cube
model and if it possible to find a different geometry that would be
more suitable to sample the HSV space.

4.2.6. Task 6: Texture and render to texture

4.2.6.1. Task 6a: Texture Given that an object has defined uv
texture coordinates, the texturing of an object can be done auto-
matically in hardware. Simple texture coordinates can be generated
automatically by OpenGL using spherical, cubical, cylindrical, etc.
mapping. However, uv texture coordinates for more complex ob-
jects are usually generated by an artist, e.g., for computer games
using specialised tools.

The students’ task is to apply their own texture to the test ob-
jects. It is possible to use the texture management capabilities of the
framework and define a 2D texture sampler sampler2D object as
uniform variable in the fragment shader. The required textures
can then be set in the User uniforms tab. Furthermore we ask the
students to apply Phong illumination from Task 3 to the result of
the texture lookup. The result is shown in Figure 6b.

4.2.6.2. Task 6b: Bump mapping Bump mapping can be used
to reduce geometric complexity by generating the impression of
highly tessellated surfaces. The idea of bump mapping is simply to
use another lookup texture which encodes surface normals instead
of RGB colour values. The normals are still encoded as RGB val-
ues but can be interpreted during the illumination step as surface
normals instead of the real, from the vertex shader coming, inter-
polated normals. The task is to use a second texture sampler in the
per-polygon fragment shader and to use one of the provided nor-
mal maps as additional input texture. The sampled normals are also
required for the Phong illumination model. The result looks like
shown in Figure 6e. Figures 6c and 6d show also the used texture
and normal map.

4.2.6.3. Task 6c: Render to Texture This task leads the stu-
dent from simple object texturing to using textures as framebuffer,

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Antoine Toisoul, Daniel Rueckert & Bernhard Kainz / Accessible GLSL Shader Programming

(a) texture only (b) texture and Phong

(c) texture (d) normal map (e) Bump mapping

Figure 6: Textured (a) and Phong shaded (b) teapot from task 6a.
(c) result from task 6b. Textures obtained from [3D].

which is essential for image-based post processing. The students
are instructed to use the render-to-texture 2D fragment shader in-
stead of the per-polygon shaders. These shaders are applied to a
screen aligned quad that is rendered in front of the camera. The
quad is textured with the scene and serves as an intermediate repre-
sentation to allow image-based operations. The framework renders
the scene first into a framebuffer. A framebuffer is basically a tex-
ture image similar to the one used in the previous exercise. How-
ever, this object has the additional capability to capture the output
of the render window. This function is currently one of the most
important functions in applied Computer Graphics because many
different image processing algorithms can be applied to this 2D tex-
ture image as post processing step. Furthermore, fragment gather-
ing and scattering operations are enabled through such a two-pass
rendering setup.

The render-to-texture 2D fragment shader and render-to-texture
2D vertex shader are available in the editor and act in their plain
version as pass-through shader for the screen-aligned textured
quad. The students’ task is to extend the render-to-texture 2D frag-
ment shader, so that it produces a simple blur effect.

Simple radial blur can be achieved by sampling the available tex-
ture in the direction towards the image center. In this example, we
work with normalized texture coordinates, which means for GLSL,
that every position within the input texture is encoded within
[0.0;1.0]. Therefore the image centre is located at c = (0.5,0.5) and
the vector to the image centre from any position p can be calculated
by ~p = c− p. By accumulating colour values from the input texture
tex parallel to the normalized ~p, one can define a blurred color value
for the current pixel according to it’s distance d to the current pixel
position p :

rgbblur =
1
n

n

∑
i=0

(tex(p+~p∗di)), (4)

where d can be limited to a maximum range dmax and sampled
within this range by fixed distances si. Therefore, di = si ∗ dmax.
We ask the students to use predefined n = 12 factors si to de-

termine the samples within dmax. For dmax = 1.0 and si = (-
0.10568, -0.07568, -0.042158, -0.02458, -0.01987456, -0.0112458,
0.0112458, 0.01987456, 0.02458, 0.042158, 0.07568, 0.10568) the
resulting scene looks similar to Figure 7.

Figure 7: Simple radial blur effect from task 6c.

4.2.7. Task 7a: GPU ray tracing

In this exercise the students implement a very simple ray tracer.
Since the render to texture shader as used in Task 6 provides al-
ready a static camera setup for rendering a screen aligned textured
quad, one can use this camera also to virtually shoot rays into a
scene. However, since efficient ray tracing usually requires space
partitioning for polyhedral geometry, we simplify the test scene in
this exercise to objects that are easy to describe analytically: planes
and spheres. Note that the student can deactivate the initial three
per-polygon shaders of the pipeline, since their calculations will
not affect the output. For this task we provide an example scene
and basic shader setup, which can be downloaded. In this example,
the render-to-texture 2D (R2T) vertex shader already defines posi-
tions and rays in camera direction for a 16:10 aspect ratio and the
R2T Fragment Shader defines a simple scene. Without any imple-
mentation the render window will show a statically black render
window.

The students’ task is to implement the ray tracing algorithms
in the R2T Fragment Shader. Since recursions are not allowed in
GLSL, one needs to follow every ray until it reaches a maximum
ray tracing depth or until it leaves the scene. For simple ray tracing,
one may test every ray for an intersection with every object in the
scene until the ray does not hit any of the objects or until it reaches
the maximum ray-trace depth. We also ask the students to compute
shadows by using additional shadow rays. One can do this calcula-
tion in a separate computeShadow(in Intersection in-
tersect) function. When computing shadow rays, we advise
the students to slightly move the ray origin outwards of the object
along the surface normal or alter the ray direction slightly using the
pseudo random number generator in a provided rnd() function to
avoid numerical problems. The plane intersection should addition-
ally vary the ray hit color, so that a checkerboard pattern results.
A correct ray tracing implementation is able to produce an image
similar to Figure 8.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Antoine Toisoul, Daniel Rueckert & Bernhard Kainz / Accessible GLSL Shader Programming

Figure 8: Example result from simple geometric ray tracing from
task 7.

The students also need to implement mouse based scene inter-
action as they have been using it throughout the exercises. One
can do this with the provided uniform matrices projMat and
modelViewMat.

A fully correct implementation of the above described ray trac-
ing algorithm will yield 75% of the maximum points for this task.
The remaining 25% can be achieved by extending this exercise with
their own ray-tracing extensions. For example one could implement
transparent and refracting objects, light scattering effects, caustics,
soft shadows, etc.. It is up to the students which extension they
choose.

4.2.8. Task 7b: Simple Monte-Carlo Path tracing

Monte-Carlo Path tracing is used to simulate global illumination.
The algorithm aims to integrate over all the illuminance arriving to
a single point on the surface of an object. A simple approximation
of the algorithm can be achieved by sending several, slightly tilted
rays instead of a single ray into the scene and to split them into
more than one secondary ray following a random direction at each
intersection point. This is an open ended task and the students can
implement as many path tracing features as they like.

Figure 9 shows an example for Monte-Carlo Path tracing with
different numbers of secondary path rays.

(a) 5 path rays (b) 15 path ray (c) 50 path rays

Figure 9: Example result from Monte-Carlo ray tracing with a dif-
ferent number of Monte-Carlo rays.

5. Discussion & Conclusions

We have discussed an introductory Computer Graphics course
and focused on a comprehensive lab exercise for undergradu-
ate students. The provided coursework framework is open source
and can be downloaded from github.com: https://github.
com/bkainz/ShaderLabFramework. Our Computer Graph-
ics course aspires to make high level graphics programming as ac-
cessible as possible for students with little to no previous knowl-
edge about graphics APIs and limited programming knowledge.
The discussed ShaderLabFramework IDE is able to hide complex-
ity of modern graphics libraries and motivates students with an ap-
pealing and interactive development environment.

In future work we will evaluate the impact of using the presented
teaching framework in class based on the achieved exam results
and with our institution’s central Student Online Evaluation tool
(SOLE), which is a survey system collecting student opinions about
every course.

References
[3D] 3D WAYFINDER: Normal maps in 3d

wayfinder in webgl. http://3dwayfinder.com/
bumps-and-dents-in-3d-with-normal-maps/. Accessed:
18-12-2016. 7

[Bai] BAILEY M.: Glman. http://web.engr.oregonstate.
edu/~mjb/glman/. Accessed: 26-02-2017. 1

[Dig] DIGIA: Qt | cross-platform software development for embedded
and desktop. https://www.qt.io/. Accessed: 18-12-2016. 1, 2

[FWW13] FINK H., WEBER T., WIMMER M.: Teaching a modern
graphics pipeline using a shader-based software renderer. Computers
& Graphics 37, 1–2 (Feb. 2013), 12–20. 2

[Gay14] GAY W.: Mastering the Raspberry Pi, 1st ed. Apress, Berkely,
CA, USA, 2014. 1

[JQ13] JEREMIAS P., QUILEZ I. N.: Shadertoy: Live coding for reactive
shaders. In ACM SIGGRAPH’13 Computer Animation Festival (2013),
ACM. 2

[Kra08] KRAMER M.: Shader Maker – a cross-platform GLSL edi-
tor. http://cgvr.cs.uni-bremen.de/teaching/shader_
maker/, 2007-2008. 1

[Lam16] LAMBERS M.: Lowering the Entry Barrier for Students Pro-
gramming Virtual Reality Applications. In EG 2016 - Education Papers
(2016), EG Association. 2

[RRP00] RAAB J., RASALA R., PROULX V. K.: Pedagogical power
tools for teaching java. SIGCSE Bull. 32, 3 (2000), 156–159. 2

[Sta13] STAGNER A. R.: Unity Multiplayer Games. Packt Publishing,
2013. 1

[uni17] UNITY3D.COM: Unity - Game Engine, 2017. 1

[van95] VAN ROSSUM G.: Python tutorial. Report CS-R9526, Apr. 1995.
1

[Wol11] WOLFF D.: OpenGL 4.0 Shading Language Cookbook. Packt
Publishing, 2011. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

https://github.com/bkainz/ShaderLabFramework
https://github.com/bkainz/ShaderLabFramework
http://3dwayfinder.com/bumps-and-dents-in-3d-with-normal-maps/
http://3dwayfinder.com/bumps-and-dents-in-3d-with-normal-maps/
http://web.engr.oregonstate.edu/~mjb/glman/
http://web.engr.oregonstate.edu/~mjb/glman/
https://www.qt.io/
http://cgvr.cs.uni-bremen.de/teaching/shader_maker/
http://cgvr.cs.uni-bremen.de/teaching/shader_maker/

