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Motivation

• Deep learning is popular because it works (often). 
• Big promise: just collect enough data and label it, then you get a magic black-

box predictor that can predict any correlations at the click of a button. (only 
supervised setting really works well) 

• Deep learning and Big data = big money = highly competitive and 
sometimes poisonous working environment.

• Deep learning can be dangerous, e.g. deep fakes, adversarial attacks, 
etc. 
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Fundamental learning system
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Feature extractor Task 
specific

Parameter optimisation

input output

classification, regression, synthesis, … CN
N

*CNN = convolutional neural network



Success stories
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Self driving cars: https://youtu.be/zRnSmw1i_DQ

Conversational AI: https://youtu.be/Xw-zxQSEzqo
https://youtu.be/jH-6-ZIgmKY https://chat.openai.com/

Deep fakes: https://youtu.be/gLoI9hAX9dw

Neural rendering: https://www.matthewtancik.com/nerf

Image colourization: https://youtu.be/mUXpxxyThr8

Image captioning: https://youtu.be/8BFzu9m52sc

Automated diagnosis: http://ratchet.lucidifai.com/

Protein discovery: https://alphafold.ebi.ac.uk/ HBO and Silicon Valley engadget.com

https://youtu.be/zRnSmw1i_DQ
https://youtu.be/Xw-zxQSEzqo
https://youtu.be/jH-6-ZIgmKY
https://chat.openai.com/
https://youtu.be/gLoI9hAX9dw
https://www.matthewtancik.com/nerf
https://youtu.be/mUXpxxyThr8
https://youtu.be/8BFzu9m52sc
http://ratchet.lucidifai.com/
https://alphafold.ebi.ac.uk/
https://www.engadget.com/2017-02-17-silicon-valley-season-four-trailer.html


Why did 
neural 

networks fail 
in image 
analysis?
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Figure: adapted from Fei Fei et al.

Stack a 32x32x3 RGB image into a 3072x1 vector 



Universal Approximator

• Let 𝜑(#) be a non-constant, bounded and monotonically increasing 
function

• For any 𝜖 > 0 and any continuous function defined on a compact 
subset of ℝ! , there exists and integer N, real constants 𝑣"𝑏" ∈ ℝ and 
real vectors 𝑤" ∈ ℝ where 𝑖 = 1,… ,𝑁, such that 

𝐹 𝒙 = 5
"#$

%

𝑣"𝜑(𝒘"
&𝒙 + 𝑏") 𝑤𝑖𝑡ℎ 𝐹 𝒙 − 𝑓 𝒙 < 𝜖
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We can approximate any function with just one hidden layer with a 
sensible actitation function!
In practice 𝜖 very large and curse of dimensionally!
Solution: break up problem in many smaller problems (layers)



The curse of dimensionality
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Curse of dimensionality
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As the number of features or dimensions grows, 
the amount of data we need to generalise accurately grows exponentially!

To approximate a (Lipschitz) continuous function 𝑓: ℝ! → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖"!) samples

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/


Intuition 

• Let’s analyze a Pizza
• And a water melon
• Shrink by 𝛼
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Intuition
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• In 𝑛 dimension the 𝑛-dimensional volume of the interior will be  𝛼! times 
the volume of the original shape.
• The volume of the rind relative to the original volume therefore is
    1 − 𝛼!
• As a function of 𝛼 its rate of growth is

𝑑 1 − 𝛼! = −𝑛𝛼!"#𝑑𝛼
• Beginning with no shrinking (𝛼=1) and noting 𝛼 is decreasing (d𝛼 is 

negative), we find the initial rate of growth of the rind equals 𝑛.
• This shows that the volume of the rind initially grows much faster -- 𝑛 times 

faster -- than the rate at which the object is being shrunk. 
• in higher dimensions, relatively tiny changes in distance translate to much 

larger changes in volume.



Intuition 

• If the salami is uniformly spread out over a high dimensional pizza
• What proportion of the salami is near the boundary?
• i.e. how much should we shrink the pizza to e.g. make it half of its volume, say half length like half-life of 

radioactive elements
• The half-length is 𝛼, solve
  𝛼# = $

% ; 𝛼 = 2"$/# = 𝑒"(()* %)/# ≈ 1 − ()* %
# ≈ 1 − ,..

#

• 2D Pizza: half-length is 1−0.35
• half of the area of a pizza (𝑛=2) lies within (approximately) 35/2 = 18% of its diameter from the boundary.

• 3D Pizza: half-length is 1−0.23
• half the volume lies within 12% of its diameter from its boundary.

• In very large dimensions the half-length is very close to  1
• 𝑛=350 dimensions it is greater than 98%
• Thus, expect half of any 350-dimensional pizza’s salami to lie within 1% of its diameter from its boundary

Deep Learning – Bernhard Kainz



Intuition 

•Without strong clustering, in higher dimensions 𝑛 we can 
expect most Euclidean distances between observations in a 
dataset to be very nearly the same and to be very close to 
the diameter of the region in which they are enclosed. "Very 
close" means on the order of 1/𝑛.
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Intuition

The higher dimensional the feature space the more training samples will be in the corners of the hypercube, 
thus generalisation suffers.

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

𝑉/01232 𝑑 =
𝜋
!
%

Γ 𝑑
2 + 1 2!

∽ 𝑂(𝑐"!)

Wikimedia hypersphere

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
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https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://stats.stackexchange.com/questions/451027/mathematical-demonstration-of-the-distance-concentration-in-high-dimensions

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://stats.stackexchange.com/questions/451027/mathematical-demonstration-of-the-distance-concentration-in-high-dimensions


Intuition

• Unit cube is asymmetric. 
• To remove the asymmetry, roll the interval around into a loop where 

the beginning point 0 meets the end point 1: d-torus in n dimensions
• Plot distribution of normalized 

distance between different samples
in different dimensional space 

• This normalization has centered
the histograms near 0.58

• around any given point on a 
high-dimensional torus 
nearly all other points on the torus 
are nearly the same distance away! 
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Curse of dimensionality
To approximate a (Lipschitz) continuous function 𝑓: ℝ! → ℝ
with 𝜖 accuracy one needs 𝑂(𝜖"!) samples

Input image resolution = 12 Mpixel * 3 channels = 36M elements
With 𝜖 ∼ 0.1, we need 1036000000 samples to approximate this function space
(1078 to 1082 atoms in the known, observable universe)



Invariance and Equivariance
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Invariance and equivariance

• Shift invariance
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Predictor: 



Invariance and equivariance

• Shift invariance
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Predictor: 



Shift invariance
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Shift equivariance
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Invariance vs equivariance
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Output is the same Output is shifted like the input



Inductive bias/assumptions

• First principle: translation invariance
• a shift in the input  should simply lead to a shift in the hidden representation

• second principle: locality
• we believe that we should not have to look very far away from any 

location (i,j) in order to glean relevant information to assess what this area 
contains
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translation invariance and locality – sliding 
window

• Correlation

𝐶",( = 5
)#*

!+$

5
,#*

-+$

?𝐼",( 𝑥, 𝑦 # 𝐾(𝑥, 𝑦)

Deep Learning – Bernhard Kainz

Kernel (template) k

Image I

Subimage <𝐼4,6 = 𝐼[𝑖: 𝑖 + 𝑚, 𝑗: 𝑗 + 𝑛]   

George



translation invariance and locality – sliding 
window

• Correlation
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Kernel (template) k

Image I

Subimage <𝐼4,6 = 𝐼[𝑖: 𝑖 + 𝑚, 𝑗: 𝑗 + 𝑛]   

George



Convolutions
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Fully connected neural networks
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• Each input is connected to each node
• Can represent any kind of (linear) relationship between inputs



n2 parameters, e.g., 36M2 parameters!
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lingo: 
‘intractable’ = 

hard to control or 
deal with

𝑦6 = 𝑤6,$𝑥$ + ⋯+ 𝑤6,#𝑥#

Fully connected neural networks



Each input neuron is connected to a small number k of 
hidden neurons.
Sparse connections: k*n parameters, e.g., 3*36M parameters!
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Early work, e.g., 
Y. LeCun et al., 

did this

𝑦6 = 𝑤6,4"$𝑥4"$ + 𝑤6,4𝑥4 + 𝑤6,47$𝑥47$

Sparsely connected neural networks



Each input neuron is connected to a small number k of hidden neurons 
and weights are shared
Shared weights (position independent): k parameters, e.g. 3 parameters!
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lingo:
‘weight sharing’ 

= a subset of 
weights  are 

identical

𝑦6 = 𝑤"$𝑥4"$ + 𝑤,𝑥4 + 𝑤7$𝑥47$

Weight sharing neural networks



Convolution
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𝑓 ∗ 𝑔 𝑡 = '
!"

"
𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0,∞ → ℝ

𝑓 ⋆ 𝑔 𝑡 = '
!"

"
𝑓 𝜏 𝑔 𝑡 + 𝜏 𝑑𝜏 𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0,∞ → ℝ

Correlation



Convolution discrete version

• Given array 𝑢. and 𝑤., their convolution is a function 𝑠. 

• When either 𝑢. and 𝑤. are not defined, they are assumed to be 0
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𝑠# = 6
$%!"

&"

𝑢$𝑤#!$



wikipedia.org

Why not simply input = output for this feature detector?
Signals in the wild: Features in the wild:
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Network output (continuous):  

𝑓 ∗ 𝑔 𝑡 = K
,

8
𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 𝑓𝑜𝑟 𝑓, 𝑔 ∶ 0, ∞ → ℝ

Some features of convolution are similar 
to cross-correlation: 
for real-valued functions, of a continuous or 
discrete variable, it differs from cross-correlation 
only in that either f(x) or g(x) is reflected about the
y-axis; thus it is a cross-correlation of f(x) and g(−x), 
or f(−x) and g(x).

Watch: 
https://www.youtube.com/watch?v=N-zd-T17uiE
https://www.youtube.com/watch?v=IaSGqQa5O-M

https://en.wikipedia.org/wiki/Cross-correlation
https://www.youtube.com/watch?v=N-zd-T17uiE
https://www.youtube.com/watch?v=IaSGqQa5O-M


Properties of convolutions

• Commutativity, 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓
• Associativity, 𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ
• Distributivity, 𝑓 ∗ 𝑔 + ℎ = 𝑓 ∗ 𝑔 + (𝑔 ∗ ℎ)
• Associativity with scalar multiplication, 𝑎(𝑓 ∗ 𝑔) = 𝑎𝑓 ∗ 𝑔
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Why Convolutions for pattern-matching?

• Historical Reasons: The operation in CNNs resembles the discrete 2D convolution operation, even though it's 
technically cross-correlation. The term "convolution" in CNNs has stuck due to historical reasons and 
convention. Computational advantages for large kernels with FFT. Mathematical advantages for probability 
distributions.

• Flipped Kernels: In some contexts, before applying the convolution operation, the kernel is flipped both 
horizontally and vertically. Once flipped, applying cross-correlation will be equivalent to applying convolution 
with the original kernel. However, in CNNs, the kernels are learned, so it doesn't matter if they are flipped 
or not; the network will learn the appropriate values during training.

• Regardless of whether true convolution (with kernel flipping) or cross-correlation is used, the result of 
training will be the same. The network will adjust its weights based on the feedback from the loss during 
backpropagation. Thus, for the purpose of training neural networks, the distinction between the two 
becomes largely irrelevant.

• Implementation: In deep learning frameworks like TensorFlow or PyTorch, the operation performed in the 
convolutional layers is actually cross-correlation. However, they still use the term "convolution" due to 
convention.

Deep Learning – Bernhard Kainz



Deep Learning – Bernhard Kainz

Examples of 2D image filters

Remember: in CNNs all learned 
through backpropagation, 
dependant on the task!



CNN building blocks

• Convolutional Layer
• Pooling Layer
• Fully Connected Layer
• Flatten Layer
• Dropout
• Batch Normalization
• Activation Function
• Loss Function
• Optimizer
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Input Tensor conventional NNs
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Instead of stacking a [X,Y,Z] RGB image into a X*Y*Z x 1 vector for a conventional NN categorising in C classes

• we have priors about the data!
First principle: translation invariance

a shift in the input  should simply lead to a shift in the hidden representation
second principle: locality

we believe that we should not have to look very far away from any location (i,j) in order to glean relevant 
information to assess what this area contains

input

1

X*Y*Z

𝑊9

C x X*Y*Z weights

activation

C

1

𝒘4
:𝒙 one scalar



Kernel
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We keep locality as a [X,Y,Z] ∗ [I,J,K] convolution

X height

Y width

Z depth

Kernel/filter

I height

J width
K depth

∗



Convolution
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In practice: dot product between the kernel and each image patch 

X height

Y width

Z depth

scalar



Convolution
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In practice: dot product between the kernel and each image patch 

X height

Y width

Z depth

scalar

Slide over all locations

X-(I-1)

Y-(J-1)

1

dot product



Input Tensor
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If you need to keep X and Y dimensions, use zero padding

X + I/2 height

Y + J/2 width

Z depth

scalar

Slide over all locations

X

Y

1

zeros

Activation map



Feature extraction

Deep Learning – Bernhard Kainz

Convolutional layers can learn as many kernels as you like (of the same dimension)

X height

Y width

Z depth

Slide over all locations

X-(I-1)

Y-(J-1)

1

Each learned through backprop

Activation maps



CNN
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CNN = sequence of convolutional layers interleaved with activation functions  

X height

Y width

Z depth

Conv. +
 activation

Conv. +
 activation

Conv. +
 activation

A height

B width
C depth

D height

E width

F depth



Parameters
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CNN = sequence of convolutional layers interleaved with activation functions  

X height

Y width

Z depth

Conv. +
 activation

Conv. +
 activation

Conv. +
 activation

A height

B width
C depth

D height

E width

F depth

Each filter: I*J*K + 1 (bias) parameters to learn

 



1x1 Convolution – reduce depth/NN across depth
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Learn to aggregate many channels into one

X height

Y width

Z depth

scalar

Slide over all locations

X

Y

1

1
1

Z depth

dot product
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e.g. m=n=32, d=3
32x28x3x5x3+1 + 
28x28x3x5x3+1 =

75602 ops 

vs. 5x5
28x28x3x5x5x3+1=

176401 ops
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1 6 7 8

3 5 2 0
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6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4
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3 5 2 0
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6 1 2 4

1 6 7 8

3 5 2 0

1 2 3 4

6 8

5 4
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Equivariance in CNNs
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Equivariance in CNNs
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Approximate invariance in CNNs with pooling
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Approximate invariance in CNNs with pooling
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Not the full story…

• But striding ignores the Nyquist sampling 
theorem and aliases 
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Nyquist sampling 
theorem = sample 

at least twice as fast 
to keep all 

information

R. Zhang.
Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.



frequencies in images

• https://www.youtube.com/watch?v=js4bLBYtJwY

• https://medium.com/@shashimalsenarath.17/frequency-in-images-
computer-vision-d179b8c0f723
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https://www.youtube.com/watch?v=js4bLBYtJwY
https://medium.com/@shashimalsenarath.17/frequency-in-images-computer-vision-d179b8c0f723
https://medium.com/@shashimalsenarath.17/frequency-in-images-computer-vision-d179b8c0f723


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

0

1

max

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
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https://www.youtube.com/watch?v=eZa56DqXTHg

https://www.youtube.com/watch?v=eZa56DqXTHg


Simple example

• Max-pooling breaks shift equivariance
• Partial solution: use what you learned about anti-aliasing in Computer 

Vision: blur and then down sample 
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https://www.youtube.com/watch?v=eZa56DqXTHg

R. Zhang.
Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.

https://www.youtube.com/watch?v=eZa56DqXTHg


Beyond shifts: group equivariance
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Rotation invariant CNNs

Deep Learning – Bernhard Kainz
https://www.youtube.com/watch?v=qoWAFBYOtoU

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance

https://www.youtube.com/watch?v=qoWAFBYOtoU


Rotation invariant CNNs
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https://www.youtube.com/watch?v=qoWAFBYOtoU

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance

https://www.youtube.com/watch?v=qoWAFBYOtoU


Approximate deformation invariance
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Approximate deformation invariance
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Flattening

• Example
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X height

Y width

Z depth

Conv. +
 activation

Conv. +
 activation

Conv. +
 activation

A height

B width
C depth

D height

E width

F depth

…

1x1 conv.
[Nx1]

[Cx1]



What CNNs learn?
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What CNNs learn?
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What CNNs learn?
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Most of this initially proposed in 1980 and the 1990s
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Lacks backprop Adds backprop

No GPUs, no success for larger problems…

Success in 2012!



what do we learn from that?

• a) feature selection is important to build good representations. As we will 
see, the key of deep learning is to learn this feature selection instead of 
doing it manually. 
• b) finding the right amount of features is key. Too few or too many will have 

a severe impact on the generalization abilities of your predictor model. Too 
few is easy too understand but too many requires an intuition about 
sample sparsity in high-dimensional spaces.
• c) the more features we choose as input the sparser our training samples 

will be distributed in the feature space. This means that decision 
boundaries become really tight around the used training samples because 
they all live close to each other at the boundaries of the space and our 
model will overfit the training data. 
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what do we learn from that?

• a) weight sharing reduces the number of parameters from n^2 in a 
multi-layer perception to a small number, for example 3 as in our 
experiment or 3 by 3 image filter kernels or similar

• b) these filter kernels can be learned through back propagation 
exactly in the same way as you would train a multi-layer perception. 
Each layer may have many filter-kernels, so it will produce many 
filtered versions of the input with different filter functions.

• c) for real-valued functions, of a continuous or discrete variable, 
convolution differs from cross-correlation only in that 
either f(x) or g(x) is reflected about the y-axis; so it is a cross-
correlation of f(x) and g(−x), or f(−x) and g(x).
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what do we learn from that?

• a) convolutions can massively reduce the computational complexity of 
neural networks but the real power of CNNs is revealed when priors are 
implemented and for example spatial structure is preserved. This is also 
one of the reasons why CNNs have been so successful in Computer Vision
• b) CNNs are pipeline of learnable filters interleaved with nonlinear 

activation functions producing d-dimensional feature maps at every stage. 
Training works like a common neural network: initialise randomly, present 
exampled from the training database, update the filter weights through 
backpropagation by propagating the error back through the network. 
• c) convolution and pooling can be used to reduce the dimensionality of the 

input data until it forms a small enough representation space for either 
traditional machine learning methods for classification or regression or to 
steer other networks to for example generate a semantic interpretation like 
a mask of a particular object in the input. 
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