Deep Learning

Bernhard Kainz

Motivation

- Deep learning is popular because it works (often).
- Big promise: just collect enough data and label it, then you get a magic blackbox predictor that can predict any correlations at the click of a button. (only supervised setting really works well)
- Deep learning and Big data = big money = highly competitive and sometimes poisonous working environment.
- Deep learning can be dangerous, e.g. deep fakes, adversarial attacks, etc.

Fundamental learning system

* CNN = convolutional neural network

Success stories

Self driving cars: https://youtu.be/zRnSmw1i_DQ
Conversational AI: https://youtu.be/Xw-zxQSEzqo https://youtu.be/jH-6-ZIgmKY https://chat.openai.com/

Deep fakes: https://youtu.be/gLol9hAX9dw
Neural rendering: https://www.matthewtancik.com/nerf
Image colourization: https://youtu.be/mUXpxxyThr8
Image captioning: https://youtu.be/8BFzu9m52sc
Automated diagnosis: http://ratchet.lucidifai.com/

Protein discovery: https://alphafold.ebi.ac.uk/

Why did neural networks fail in image analysis?

Stack a $32 \times 32 \times 3$ RGB image into a 3072×1 vector

Figure: adapted from Fei Fei et al.

Universal Approximator

- Let $\varphi(\cdot)$ be a non-constant, bounded and monotonically increasing function
- For any $\epsilon>0$ and any continuous function defined on a compact subset of \mathbb{R}^{m}, there exists and integer N , real constants $v_{i} b_{i} \in \mathbb{R}$ and real vectors $w_{i} \in \mathbb{R}$ where $i=1, \ldots, N$, such that

$$
F(\boldsymbol{x})=\sum_{i=1}^{N} v_{i} \varphi\left(\boldsymbol{w}_{i}^{T} \boldsymbol{x}+b_{i}\right) \text { with }|F(\boldsymbol{x})-f(\boldsymbol{x})|<\epsilon
$$

We can approximate any function with just one hidden layer with a sensible actitation function!
In practice ϵ very large and curse of dimensionally!
Solution: break up problem in many smaller problems (layers)

The curse of dimensionality

Curse of dimensionality

As the number of features or dimensions grows,
the amount of data we need to generalise accurately grows exponentially!
To approximate a (Lipschitz) continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with ϵ accuracy one needs $O\left(\epsilon^{-d}\right)$ samples

Intuition

- Let's analyze a Pizza
- And a water melon
- Shrink by α

Intuition

- In n dimension the n-dimensional volume of the interior will be α^{n} times the volume of the original shape.
- The volume of the rind relative to the original volume therefore is

$$
1-\alpha^{n}
$$

- As a function of α its rate of growth is

$$
d\left(1-\alpha^{n}\right)=-n \alpha^{n-1} d \alpha
$$

- Beginning with no shrinking ($\alpha=1$) and noting α is decreasing ($\mathrm{d} \alpha$ is negative), we find the initial rate of growth of the rind equals n.
- This shows that the volume of the rind initially grows much faster -- n times faster -- than the rate at which the object is being shrunk.
- in higher dimensions, relatively tiny changes in distance translate to much larger changes in volume.

Intuition

- If the salami is uniformly spread out over a high dimensional pizza

- What proportion of the salami is near the boundary?
- i.e. how much should we shrink the pizza to e.g. make it half of its volume, say half length like half-life of radioactive elements
- The half-length is α, solve

$$
\alpha^{n}=\frac{1}{2} ; \alpha=2^{-1 / n}=e^{-(\log 2) / n} \approx 1-\frac{\log 2}{n} \approx 1-\frac{0.7}{n}
$$

- 2D Pizza: half-length is $1-0.35$
- half of the area of a pizza ($n=2$) lies within (approximately) 35/2 = 18\% of its diameter from the boundary.
- 3D Pizza: half-length is $1-0.23$
- half the volume lies within 12% of its diameter from its boundary.
- In very large dimensions the half-length is very close to 1
- $n=350$ dimensions it is greater than 98%
- Thus, expect half of any 350-dimensional pizza's salami to lie within 1% of its diameter from its boundary

Intuition

- Without strong clustering, in higher dimensions n we can expect most Euclidean distances between observations in a dataset to be very nearly the same and to be very close to the diameter of the region in which they are enclosed. "Very close" means on the order of $1 / n$.

Intuition

$$
V_{\text {sphere }}(d)=\frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}+1\right) 2^{d}} \sim O\left(c^{-d}\right)
$$

The higher dimensional the feature space the more training samples will be in the corners of the hypercube, thus generalisation suffers.

https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://stats.stackexchange.com/questions/451027/mathematical-demonstration-of-the-distance-concentration-in-high-dimensions

Intuition

- Unit cube is asymmetric.
- To remove the asymmetry, roll the interval around into a loop where the beginning point 0 meets the end point 1: d-torus in n dimensions
- Plot distribution of normalized distance between different samples in different dimensional space
- This normalization has centered the histograms near 0.58
- around any given point on a high-dimensional torus nearly all other points on the torus are nearly the same distance away!

Curse of dimensionality

To approximate a (Lipschitz) continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with ϵ accuracy one needs $O\left(\epsilon^{-d}\right)$ samples

Input image resolution $=12 \mathrm{Mpixel} * 3$ channels $=36 \mathrm{M}$ elements
With $\epsilon \sim 0.1$, we need $10^{36000000}$ samples to approximate this function space
(10^{78} to 10^{82} atoms in the known, observable universe)

Invariance and Equivariance

Invariance and equivariance

- Shift invariance

Predictor: 'cat'
Deep Learning - Bernhard Kainz

Invariance and equivariance

- Shift invariance

Predictor: 'cat'
Deep Learning - Bernhard Kainz

Shift invariance

- 'Cat detector' $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$

Shift equivariance

- 'Cat segmentor' $\mathbf{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$
- Shift operator $S_{v}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ shifting the image by vector v

Invariance vs equivariance

Invariance
Equivariance

Output is the same
Output is shifted like the input

Inductive bias/assumptions

- First principle: translation invariance
- a shift in the input should simply lead to a shift in the hidden representation
- second principle: locality
- we believe that we should not have to look very far away from any location (i, j) in order to glean relevant information to assess what this area contains

translation invariance and locality - sliding window

$$
\text { Subimage } \hat{I}_{i, j}=I[i: i+m, j: j+n]
$$

- Correlation

$$
C_{i, j}=\sum_{x=0}^{m-1} \sum_{y=0}^{n-1} \hat{I}_{i, j}(x, y) \cdot K(x, y)
$$

George

translation invariance and locality - sliding window

$C_{i, j}=\sum_{x=0}^{m-1} \sum_{y=0}^{n-1} \hat{I}_{i, j}(x, y) \cdot K(x, y)$

Kernel (template) k

George

Deep Learning - Bernhard Kainz

Convolutions

Fully connected neural networks

- Each input is connected to each node
- Can represent any kind of (linear) relationship between inputs

Deep Learning - Bernhard Kainz

Fully connected neural networks

[^0]
Sparsely connected neural networks

$y_{j}=w_{j, i-1} x_{i-1}+w_{j, i} x_{i}+w_{j, i+1} x_{i+1}$

Each input neuron is connected to a small number k of hidden neurons.
Sparse connections: k *n parameters, e.g., 3*36M parameters!

Weight sharing neural networks

$$
y_{j}=w_{-1} x_{i-1}+w_{0} x_{i}+w_{+1} x_{i+1}
$$

Each input neuron is connected to a small number k of hidden neurons and weights are shared
Shared weights (position independent): k parameters, e.g. 3 parameters!

Convolution

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau \text { for } f, g:[0, \infty) \rightarrow \mathbb{R}
$$

Correlation

$$
(f \star g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t+\tau) d \tau \text { for } f, g:[0, \infty) \rightarrow \mathbb{R}
$$

Convolution discrete version

- Given array u_{t} and w_{t}, their convolution is a function s_{t}

$$
s_{t}=\sum_{a=-\infty}^{+\infty} u_{a} w_{t-a}
$$

- When either u_{t} and w_{t} are not defined, they are assumed to be 0

wikipedia.org

Network output (continuous):

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau \text { for } f, g:[0, \infty) \rightarrow \mathbb{R}
$$

Some features of convolution are similar to cross-correlation:
for real-valued functions, of a continuous or discrete variable, it differs from cross-correlation only in that either $f(x)$ or $g(x)$ is reflected about the y-axis; thus it is a cross-correlation of $f(x)$ and $g(-x)$, or $f(-x)$ and $g(x)$.

Why not simply input = output for this feature detector? Signals in the wild:

Features in the wild:

Deep Learning - Bernhard Kainz

Watch:

https://www.youtube.com/watch?v=N-zd-T17uiE
https://www.youtube.com/watch?v=laSGqQa5O-M

Properties of convolutions

- Commutativity, $f * g=g * f$
- Associativity, $f *(g * h)=(f * g) * h$
- Distributivity, $f *(g+h)=(f * g)+(g * h)$
- Associativity with scalar multiplication, $a(f * g)=(a f) * g$

Why Convolutions for pattern-matching?

- Historical Reasons: The operation in CNNs resembles the discrete 2D convolution operation, even though it's technically cross-correlation. The term "convolution" in CNNs has stuck due to historical reasons and convention. Computational advantages for large kernels with FFT. Mathematical advantages for probability distributions.
- Flipped Kernels: In some contexts, before applying the convolution operation, the kernel is flipped both horizontally and vertically. Once flipped, applying cross-correlation will be equivalent to applying convolution with the original kernel. However, in CNNs, the kernels are learned, so it doesn't matter if they are flipped or not; the network will learn the appropriate values during training.
- Regardless of whether true convolution (with kernel flipping) or cross-correlation is used, the result of training will be the same. The network will adjust its weights based on the feedback from the loss during backpropagation. Thus, for the purpose of training neural networks, the distinction between the two becomes largely irrelevant.
- Implementation: In deep learning frameworks like TensorFlow or PyTorch, the operation performed in the convolutional layers is actually cross-correlation. However, they still use the term "convolution" due to convention.

Examples of 2D image filters

CNN building blocks

- Convolutional Layer
- Pooling Layer
- Fully Connected Layer
- Flatten Layer
- Dropout
- Batch Normalization
- Activation Function
- Loss Function
- Optimizer

Input Tensor conventional NNs

Instead of stacking a $[X, Y, Z]$ RGB image into a $X^{*} Y^{*} Z \times 1$ vector for a conventional NN categorising in C classes

- we have priors about the data!

First principle: translation invariance
a shift in the input should simply lead to a shift in the hidden representation
second principle: locality
we believe that we should not have to look very far away from any location (i, j) in order to glean relevant information to assess what this area contains

Kernel

We keep locality as a $[X, Y, Z] *[I, J, K]$ convolution

Convolution

In practice: dot product between the kernel and each image patch

Convolution

In practice: dot product between the kernel and each image patch

Input Tensor

If you need to keep X and Y dimensions, use zero padding

Feature extraction

Convolutional layers can learn as many kernels as you like (of the same dimension)

CNN

CNN = sequence of convolutional layers interleaved with activation functions

Parameters

CNN = sequence of convolutional layers interleaved with activation functions

Each filter: I*J*K + 1 (bias) parameters to learn

1x1 Convolution - reduce depth/NN across depth

Learn to aggregate many channels into one

Padding and strides

$7 x 7$ input
3×3 filter
stride 1
no padding

$7 x 7$ input
3×3 filter
stride 2
no padding

Padding and strides

$7 x 7$ input
3×3 filter
stride 1
no padding

$7 x 7$ input 3×3 filter stride 2
no padding

Padding and strides

$7 x 7$ input
3×3 filter
stride 1
no padding

$7 x 7$ input 3×3 filter stride 2
no padding

Padding and strides

$7 x 7$ input
3×3 filter
stride 1
no padding

7×7 input 3×3 filter stride 2
no padding

3×3 output

Padding and strides

Computational complexity

Factorized convolution

d $3 \times 3 \times d$

Separable convolution

e.g. $m=n=32, d=3$ $32 \times 28 \times 3 \times 5 \times 3+1+$ $28 \times 28 \times 3 \times 5 \times 3+1=$ 75602 ops
vs. 5×5
$28 \times 28 \times 3 \times 5 \times 5 \times 3+1=$ 176401 ops

Pooling

- Permutation-invariant aggregation+downsampling (typically max or avg)
- Reduces resolution

6	1	2	4
1	6	7	8
3	5	2	0
1	2	3	4

- Hierarchical features
- Contributes to approximate shift/deformation invariance

Pooling

- Permutation-invariant aggregation+downsampling (typically max or avg)
- Reduces resolution

6	1	2	4
1	6	7	8
3	5	2	0
1	2	3	4

- Hierarchical features
- Contributes to approximate shift/deformation invariance

Pooling

- Permutation-invariant aggregation+downsampling (typically max or avg)
- Reduces resolution

6	1	2	4
1	6	7	8
3	5	2	0
1	2	3	4

- Hierarchical features
- Contributes to approximate shift/deformation invariance

Pooling

- Permutation-invariant aggregation+downsampling (typically max or avg)
- Reduces resolution

6	1	2	4
1	6	7	8
3	5	2	0
1	2	3	4

- Hierarchical features
- Contributes to approximate shift/deformation invariance

Pooling

- Permutation-invariant aggregation+downsampling (typically max or avg)
- Reduces resolution

6	1	2	4
1	6	7	8
3	5	2	0
1	2	3	4

\section*{| 6 | 8 |
| :--- | :--- |
| 5 | 4 |}

- Hierarchical features
- Contributes to approximate shift/deformation invariance

Pooling

- Applied to each channel separately

Equivariance in CNNs

Output of convolutional layer (shift equivariant)

Equivariance in CNNs

Output of convolutional layer (shift equivariant)

Approximate invariance in CNNs with pooling

Output of convolutional layer+max pooling (~shift invariant)

Approximate invariance in CNNs with pooling

Output of convolutional layer+max pooling (~shift invariant)

Not the full story...

- But striding ignores the Nyquist sampling theorem and aliases
75.5
86.0

Baseline Anti-aliased

R. Zhang.

Making Convolutional Networks Shift-Invariant Again.
In ICML, 2019.
Deep Learning - Bernhard Kainz

frequencies in images

- https://www.youtube.com/watch?v=js4bLBYtJwY
- https://medium.com/@shashimalsenarath. computer-vision-d179b8c0f723

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance
https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance

https://www.youtube.com/watch?v=eZa56DqXTHg

Simple example

- Max-pooling breaks shift equivariance
- Partial solution: use what you learned about anti-aliasing in Computer Vision: blur and then down sample
R. Zhang.

Making Convolutional Networks Shift-Invariant Again. In ICML, 2019.
https://www.youtube.com/watch?v=eZa56DqXTHg

Beyond shifts: group equivariance

Equivariance

Rotation invariant CNNs

Existing CNNs: Translation Equivariance

Rotation invariant CNNs

Daniel Worrall et al.: Harmonic Networks: Deep Translation and Rotation Equivariance
https://www.youtube.com/watch?v=qoWAFBYOtoU

Approximate deformation invariance

Input x

Output $f(\mathbf{x})=1$

Shifted input $S_{v} \mathbf{x}$

Output $f\left(D_{\boldsymbol{\tau}} \mathbf{x}\right)=1$

- 'Digit 3 detector' $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Warp operator $D_{\boldsymbol{\tau}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ warping the image by field $\boldsymbol{\tau}$ Deformation invariance: $f(\mathbf{x}) \approx f\left(D_{\tau} \mathbf{x}\right)$

Approximate deformation invariance

- 'Digit 3 detector' $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Warp operator $D_{\tau}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ warping the image by field $\boldsymbol{\tau}$

$$
\left\|f(\mathbf{x})-f\left(D_{\tau} \mathbf{x}\right)\right\| \approx\|\nabla \boldsymbol{\tau}\|
$$

Flattening

- Example

What CNNs learn?

What CNNs learn?

What CNNs learn?

Deep Learning - Bernhard Kainz

What CNNs learn？

4	（2）	4	36	8	30，
（4）	8	8	S	3	\％
閣	18	威等	9	8	los
（3）	9	（e）	8．	（c）	（6）
（2）	（2）		（2）	Q	（8）
Layer 5			（9）	8	（8）

Deep Learning－Bernhard Kainz

Neocognitron

Neocognitron: A Self-organizing Neural Network Model for a
Mechanism of Pattern Recognition Unaffected by Shift in Position

Lacks backprop

Gradient-Based Learning Applied to Document Recognition

LeCun etal. 1998

Adds backprop

Success in 2012!

No GPUs, no success for larger problems...

what do we learn from that?

- a) feature selection is important to build good representations. As we will see, the key of deep learning is to learn this feature selection instead of doing it manually.
-b) finding the right amount of features is key. Too few or too many will have a severe impact on the generalization abilities of your predictor model. Too few is easy too understand but too many requires an intuition about sample sparsity in high-dimensional spaces.
- c) the more features we choose as input the sparser our training samples will be distributed in the feature space. This means that decision boundaries become really tight around the used training samples because they all live close to each other at the boundaries of the space and our model will overfit the training data.

what do we learn from that?

- a) weight sharing reduces the number of parameters from $\mathrm{n}^{\wedge} 2$ in a multi-layer perception to a small number, for example 3 as in our experiment or 3 by 3 image filter kernels or similar
-b) these filter kernels can be learned through back propagation exactly in the same way as you would train a multi-layer perception. Each layer may have many filter-kernels, so it will produce many filtered versions of the input with different filter functions.
-c) for real-valued functions, of a continuous or discrete variable, convolution differs from cross-correlation only in that either $f(x)$ or $g(x)$ is reflected about the y-axis; so it is a crosscorrelation of $f(x)$ and $g(-x)$, or $f(-x)$ and $g(x)$.

what do we learn from that?

- a) convolutions can massively reduce the computational complexity of neural networks but the real power of CNNs is revealed when priors are implemented and for example spatial structure is preserved. This is also one of the reasons why CNNs have been so successful in Computer Vision
-b) CNNs are pipeline of learnable filters interleaved with nonlinear activation functions producing d-dimensional feature maps at every stage. Training works like a common neural network: initialise randomly, present exampled from the training database, update the filter weights through backpropagation by propagating the error back through the network.
- c) convolution and pooling can be used to reduce the dimensionality of the input data until it forms a small enough representation space for either traditional machine learning methods for classification or regression or to steer other networks to for example generate a semantic interpretation like a mask of a particular object in the input.

[^0]: n^{2} parameters, e.g., $36 \mathrm{M}^{2}$ parameters!

