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We will discuss another crucial aspect of Convolutional Neural Networks: Activation functions 
and loss functions.
These elements are essential as they can significantly impact the performance of your neural 
network model.

First, let's talk about activation functions.
They determine how neurons in the network respond -- or "activate” -- when they receive a set 
of inputs.
Activation functions introduce non-linear properties into the system, allowing the network to 
learn from complex data.
Next, we have the concept of Error or Loss functions.
These functions measure how well your network is doing, quantifying the difference between 
the predicted outputs and the actual ground truth.
Backpropagation uses this error measurement to update the model parameters, aiming to 
minimize this error.
Research in this area has been dynamic and extensive.
While activation functions were a primary focus in the earlier days of neural networks, more 
recent research has shifted towards optimizing loss functions.
This change in focus highlights the ongoing quest to fine-tune every aspect of these complex 
systems for better performance and efficiency.
Apart from tweaking the depth of the network, fine-tuning activation functions and loss 
functions can also yield significant improvements in your model.
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Let's dive into the role of activation functions in neural networks.
Activation functions are mathematical formulas that dictate the output of a neuron given a 
certain input.
In essence, they act as the "gatekeepers" of each node, deciding how much signal should pass 
through to the next layer.
A key point to remember is that activation functions introduce non-linearity into the network.
This non-linearity is crucial because it allows the neural network to learn from complex and 
varied data.
Without non-linear activation functions, your neural network would essentially become a simple 
linear regression model, incapable of learning complex functions.
So, when designing or fine-tuning a neural network, choosing the right activation function can 
significantly impact the model's performance.
Different activation functions, like ReLU, Sigmoid, or Tanh, have their own advantages and 
disadvantages, which we will discuss in subsequent slides.
Remember, the choice of activation function can make or break your network's ability to learn 
effectively.
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First, let's remember the basic functionality of an artificial neuron.
Simply put, a neuron takes multiple inputs, applies weights to them, sums them up, adds 
a bias, and then decides whether to "activate" or not.
This operation is represented by a "weighted sum" equation, which is often denoted by 
Y = sum(weight_i * input_i) + bias.
Now, the resulting value of Y can range anywhere from negative infinity to positive 
infinity.
Given this wide range, how can we determine if a neuron should fire or not?
This is precisely where activation functions come into play.
Activation functions serve as a filter to decide the neuron's output.
A naive approach to activation might be to simply set a threshold: if Y is above a certain 
value, we declare the neuron activated.
However, this naive approach is not differentiable, which means we can't use 
backpropagation to adjust the weights and biases during the learning phase.
Therefore, we need smooth, differentiable activation functions like ReLU, Sigmoid, or 
Tanh, which not only decide the output but also make it possible to train the network 
effectively using gradient-based methods like backpropagation.
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Firstly, let's discuss what we seek to achieve with an activation function. We aim to 
move beyond binary "activated" or "not activated" outputs, and instead seek a more 
nuanced, continuous range of outputs. Linear activation functions offer one such 
solution, by providing activation values that are directly proportional to the input.
In the case of linear activations, the function can be represented simply as Output=c×x, 
where c is a constant. This produces a constant gradient, meaning that during 
backpropagation, the updates applied to weights are constant and independent of the 
change in input, denoted by Δx.
However, linear activation functions have limitations, especially when it comes to 
stacked, or multi-layered, neural networks. If each layer in a multi-layered network 
employs a linear activation function, the output of one layer becomes the input to the 
next, perpetuating linearity throughout the network. Ultimately, no matter how many 
layers you have, the entire network behaves like a single-layer linear model.
This means you could replace all N linear layers with just a single linear layer and achieve 
the same output. It renders the "depth" of the network irrelevant because it doesn't 
allow for the complexity needed to learn from more intricate forms of data. Therefore, 
while linear activation functions may have some use-cases, they aren't typically chosen 
for complex machine learning tasks that require the network to capture more complex, 
non-linear relationships in the data.
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The sigmoid function is one of the earliest and simplest non-linear activation functions 
used in neural networks. Mathematically, it's expressed as  𝑂𝑢𝑡𝑝𝑢𝑡 = !

!"#!"#$%&
This function is non-linear, allowing us to stack layers in a neural network, thereby 
facilitating the learning of more complex representations. Moreover, unlike step 
functions which are binary, the sigmoid function gives a more analog or continuous 
output, ranging from 0 to 1.
The sigmoid function has an S-shaped curve, and its gradient is smooth, which is crucial 
for gradient descent algorithms. One notable characteristic is that between the X values 
of -2 and 2, the curve is especially steep. This implies that small changes in the input 
within this region result in significant shifts in output, facilitating rapid learning during 
the training phase.
However, the sigmoid function is not without its drawbacks. Towards the tails of the 
function, the curve flattens out, and the output values become less sensitive to changes 
in input. This results in a vanishing gradient problem, where gradients become too small 
for the network to learn effectively, leading to slow or stalled training.
So, while sigmoid functions were seminal in the early development of neural networks, 
these limitations have led researchers to explore alternative activation functions that 
can mitigate these issues.
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The tanh function is another non-linear activation function, mathematically 
defined as  𝑂𝑢𝑡𝑝𝑢𝑡 = #'$#!'

#'"#!'

It's essentially a scaled version of the sigmoid function, but ranges from -1 to 1, instead 
of 0 to 1.
Like the sigmoid, the tanh function is also non-linear, meaning we can stack multiple 
layers of neurons using this activation function.
Because its output range is between -1 and 1, there is less concern about activations 
becoming too large and dominating the learning process.
One key benefit of tanh over sigmoid is that its gradient is stronger; that is, the 
derivatives are steeper.
This can make it a better choice for certain problems where faster convergence is 
desired.
Another advantage of tanh is that its outputs are zero-centered, meaning the average 
output is close to zero.
This is beneficial for the learning process of subsequent layers, as it tends to speed up 
convergence by allowing for a balanced distribution of outputs and gradients.
However, like the sigmoid function, tanh also suffers from the vanishing gradient 
problem when you stack many layers, which can slow down learning.
Careful normalization of the inputs is also essential when using tanh to ensure effective 
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learning.
Choosing between sigmoid and tanh will depend on your specific requirements, 
particularly regarding the strength of the gradient and the range of the activation 
function.
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ReLU, or Rectified Linear Unit, is defined as 𝑂𝑢𝑡𝑝𝑢𝑡 = max 0, 𝑥
It's a piecewise linear function that outputs the input directly if it's positive, otherwise, it 
outputs zero.
At first glance, ReLU might seem linear, especially since it is linear over the positive axis.
However, ReLU is inherently non-linear when considered as a whole, particularly due to 
the sharp corner at the origin.
Interestingly, combinations of ReLU functions are also non-linear, enabling us to stack 
layers in neural networks effectively.
This is because ReLU is a universal approximator, meaning that it can represent a wide 
variety of functions when used in a neural network.
An important note about ReLU is that it is unbounded, meaning its range is [0,∞).
While this can be useful for certain types of data, it could also cause the activations to 
explode if not managed properly.
Another significant feature of ReLU is that it tends to produce sparse activations.
In a neural network with many neurons, using activation functions like sigmoid or tanh 
would cause almost all neurons to activate to some degree, leading to dense activations.
ReLU, on the other hand, will often output zero, effectively ignoring some neurons, 
which can make the network more computationally efficient.
However, this sparsity leads to a known issue called the "Dying ReLU" problem.
If a neuron's output is always zero (perhaps due to poor initialization), the gradient for 
that neuron will also be zero.
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As a result, during backpropagation, the weights of that neuron remain unchanged, 
effectively "killing" the neuron.
This can result in a portion of the neural network becoming inactive, thereby limiting its 
capacity to model complex functions.
Despite this drawback, ReLU remains one of the most widely used activation functions 
due to its efficiency and effectiveness in many applications.
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Leaky ReLU is a modified version of the ReLU function, defined as 𝑂𝑢𝑡𝑝𝑢𝑡 =

,
𝑥 𝑓𝑜𝑟 𝑥 ≥ 0
𝑒. 𝑔. 0.01 5 𝑥 𝑓𝑜𝑟 𝑥 < 0 for a small constant, typically 0.01.

It's designed to address the "Dying ReLU" problem.
In the standard ReLU function, the gradient becomes zero for negative inputs, causing 
neurons to "die" during training.
Leaky ReLU attempts to solve this by introducing a small slope for negative values, 
typically 0.01, to ensure the gradient is non-zero.
This small slope allows "dead" neurons to reactivate during the course of training.
In other words, it provides a pathway for gradients to flow, even when the neuron is not 
active.
Like traditional ReLU, Leaky ReLU is computationally efficient.
Simple mathematical operations are involved, making it less computationally expensive 
than tanh and sigmoid, which is an advantage in the design of deep networks.

Leaky ReLU maintains many of the benefits of the original ReLU function, such as 
sparsity and the ability to approximate a wide range of functions.
However, it adds the benefit of mitigating the risk of dead neurons, making it a valuable 
alternative in many contexts.
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PReLU stands for Parametric ReLU, and it's an extension of the Leaky ReLU function. In 
PReLU, the negative slope a becomes a learnable parameter, meaning it's adjusted 
during the training process.
This added flexibility allows PReLU to adapt during training, potentially leading to better 
performance than Leaky ReLU in some scenarios. In PyTorch, when PReLU is invoked 
without arguments, a single learnable parameter a is used across all input channels.
Alternatively, you can specify the number of channels as an input argument, and PyTorch
will use a separate a for each input channel. This per-channel adaptability can provide 
more nuanced behavior during the training process.
An interesting feature of ReLU variants, including PReLU, is scale invariance. That is, if 
you multiply the input by a scalar, the shape of the output remains the same, just scaled.
In the context of CNN architectures, where scale invariance can be valuable, PReLU and 
its variants can be especially useful. By making the negative slope learnable, PReLU adds 
another layer of adaptability, potentially making it a strong choice for certain types of 
neural network architectures.
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The SoftPlus function serves as a smooth and differentiable approximation to the well-
known ReLU function. Because of its smoothness, SoftPlus is easier to differentiate, 
making it potentially advantageous during the optimization process.
SoftPlus is parameterized by a scale factor β, which controls how closely the function 
approximates ReLU. The higher the value of β, the closer SoftPlus mimics ReLU's
behavior.
A notable feature of SoftPlus is that it outputs only positive values. This makes it suitable 
for layers where you specifically require positive activations.
However, SoftPlus isn't perfect; it has numerical stability issues for large input values. To 
handle this, the PyTorch implementation switches to a linear function when the 
condition β×x exceeds a predefined threshold.
One important thing to note is that SoftPlus, like ReLU and its variants, is non-linear 
across its entire domain. This non-linearity is crucial for enabling the neural network to 
capture complex relationships in the data.
SoftPlus is sensitive to the amplitude of the input signal, which means that it's non-
linear regardless of the input size. That's beneficial for models where amplitude 
variation is a significant feature.
SoftPlus offers a smoother, differentiable alternative to ReLU and is particularly useful 
when you want positive activations and better numerical stability.
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The Exponential Linear Unit, or ELU, is a fascinating variation of the ReLU function. It's 
designed to be element-wise, operating on each element of the input independently.
One thing that sets ELU apart is its ability to output negative values. Unlike ReLU, which 
only outputs positive values, ELU can go below zero.
ELU is parameterized by α, which scales the exponential function for negative inputs. 
When x<0, the function becomes α×(ex−1), making it smooth and differentiable across 
the negative domain.
Being able to output negative values allows ELU to push the mean activation closer to 
zero. A zero-centered mean can help the network converge faster, a useful property in 
deep learning models.
Like SoftPlus, ELU is also a soft, smooth version of the ReLU function. It combines the 
benefits of both positive and negative output capabilities, making it more versatile 
depending on the specific application you have in mind.
The choice of the parameter α can be crucial. Different values of α will influence how 
closely ELU mimics ReLU for negative values, affecting the function's smoothness and 
the range of its output.
ELU is a strong candidate for scenarios where you want a balance of smoothness, 
differentiability, and the ability to have a mean activation around zero. It offers a unique 
blend of features that can be tailored to specific applications for potentially better 
performance.
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Let's move on to another variant of the ELU function, known as the CELU, or 
Continuously Differentiable Exponential Linear Units. It was introduced by Jonathan T. 
Barron in 2017, and you can read more about it in the paper linked here: Barron 2017.
Like ELU, CELU is also an element-wise function, making it computationally efficient to 
apply across large tensors. What sets CELU apart is its special emphasis on continuous 
differentiability, denoted as C1 continuity.
The CELU function uses the parameter α, which is similar to the ELU function, but with a 
twist. In CELU, α doesn't just scale the exponential function for negative values, it also 
scales the input x inside the exponential term.
By ensuring that α is not equal to one, the CELU function becomes continuously 
differentiable across its entire domain. C1 continuity is often desirable in optimization 
tasks as it ensures a smooth gradient, facilitating more efficient backpropagation.
Another noteworthy feature is that like ELU, CELU can also produce negative values. This 
enables it to center the mean activation towards zero, which in turn, could speed up the 
convergence of deep learning models.
CELU offers a nuanced balance of features, with continuous differentiability being its 
most distinct characteristic. It builds upon the strengths of ELU, adding more 
mathematical rigor to suit certain applications and optimization scenarios.
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Let's explore another intriguing activation function, the SELU or Scaled Exponential 
Linear Units. SELU comes with pre-defined parameters α and scale, which have been 
meticulously optimized.
Unlike other activation functions, the magic of SELU lies in its ability to perform internal 
normalization. These specific constants -- α and scale -- are solutions to a fixed-point 
equation designed to maintain a mean of 0 and a variance of 1 across layers.
Normalizing activations in a neural network can happen at three levels. The first is input 
normalization, where we scale input features, like grayscale pixel values, into a specific 
range, such as 0 to 1. The second level is batch normalization, a technique specifically 
designed for neural networks to stabilize the learning process.
SELU shines at the third level, which is internal normalization. The design of SELU 
ensures that the mean and variance of the activations are preserved from one layer to 
the next.
To achieve this normalization, the function needs to produce both positive and negative 
outputs, which allows it to shift the mean towards zero. Interestingly, the very 
characteristic that causes vanishing gradients in other activation functions -- gradients 
close to zero -- is actually beneficial in SELU for internal normalization.
And one more thing: SELUs never die. Due to its design, SELU avoids the "dying unit" 
problem that plagues some other activation functions, making it a robust choice for 
certain types of networks.
If you're looking to build deep networks without worrying too much about manual 
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normalization techniques, SELU offers an exciting pathway. It's specifically designed to 
keep the internal statistics of your network stable, which can lead to faster and more 
reliable training.
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Let's dive into another interesting activation function: GELU or Gaussian Error Linear 
Unit.

GELU's output is defined as x multiplied by the cumulative distribution function (CDF) of 
the Gaussian distribution, denoted as Φ(x).

This activation function draws inspiration from the Gaussian distribution, which is a 
fundamental concept in statistics. The cumulative distribution function, Φ(x), gives us 
the probability that a normally distributed random variable takes a value less than or 
equal to x.

By incorporating the Gaussian distribution's CDF, GELU introduces a probabilistic flavor
to the activation process. This feature can have implications for the regularization of 
neural networks, potentially providing a beneficial influence on network training and 
performance.

In essence, GELU adds an interesting twist to activation functions by bringing in concepts 
from probability theory, which can have unique effects on the behaviour of the neural 
network during training and inference.
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Now let's explore the ReLU6 activation function, which is a variation of the standard 
ReLU.
ReLU6's output is defined as the minimum of the maximum between 0 and x and the 
value 6. In simpler terms, if the input x is positive, it passes through unchanged up to a 
maximum value of 6. If x is negative, it's simply truncated to 0.
One interesting aspect of ReLU6 is that it can be seen as a way to saturate the 
activations. Saturating means that the activations are limited to a certain range, which 
can be useful in preventing activations from growing excessively and causing numerical 
instability.
The value 6 in ReLU6's definition might seem somewhat arbitrary, but it's actually a 
parameter that can be adjusted to achieve different levels of saturation. This flexibility 
allows for experimentation with various configurations.
Visually, ReLU6 may remind you of other activation functions like the hard sigmoid or 
the tanh function. This similarity in appearance doesn't necessarily imply identical 
behaviour, but it does offer a familiar visual analogy.
ReLU6 presents an alternative way to introduce saturation to the ReLU activation, 
offering potential benefits in preventing runaway activations while allowing some 
degree of fine-tuning through the parameterization.

19

ReLU6

• 𝑂𝑢𝑡𝑝𝑢𝑡 = min(max 0, 𝑥 , 6)

Deep Learning – Bernhard Kainz



LogSigmoid's output is calculated as the natural logarithm of  x: 𝑂𝑢𝑡𝑝𝑢𝑡 = log( !
!"#!')

This function operates element-wise, meaning it's applied separately to each element of 
the input tensor.
Unlike many other activation functions, LogSigmoid is predominantly used in the context 
of cost functions rather than as a primary activation function in neural network layers.
The main utility of LogSigmoid lies in its role within loss functions. Loss functions are 
crucial components in training neural networks as they quantify the difference between 
predicted values and actual target values. LogSigmoid's characteristics make it 
particularly suitable for certain types of loss functions.
LogSigmoid's appearance in loss functions serves specific purposes that contribute to 
effective training. We'll explore later on how this function operates in the context of loss 
optimization.
While LogSigmoid may not be a common choice for standard activation functions in 
neural network layers, its presence is significant in the realm of loss functions, where it 
contributes to the optimization process during training.
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The Softmin function operates on an n-dimensional input tensor, transforming the 
elements in a specific way. It's formulated as the exponential of the negative of each 
element divided by the sum of the exponentials of all elements in the tensor.
The primary outcome of applying the Softmin function is a rescaling of the n-
dimensional input tensor's elements. This rescaling ensures that the elements of the 
resulting n-dimensional output tensor fall within the range of [0, 1] and collectively sum 
up to 1. Essentially, this function transforms the inputs into a probability-like 
distribution.
Softmin introduces multi-dimensional non-linearities to the neural network. It's a 
transformation from a vector in to a vector out. In the context of neural networks, these 
"energies" or "penalties" can be conceptualized as a way to model various aspects of 
data.
One way to perceive Softmin is as a method to convert a set of numbers into a 
representation that resembles a probability distribution. This characteristic makes it 
valuable in scenarios where you want to assign relative weights or preferences among 
multiple alternatives.
Softmin's role lies in rescaling and transforming input tensors into probability-like 
distributions, contributing to the multi-dimensional non-linearities of neural networks 
and enabling the modelling of various factors in the data.
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Now, let's delve into one of the most common activation functions in deep learning: the Softmax
function. This function plays a vital role in various aspects of neural networks.
The Softmax function is designed to operate on an n-dimensional input tensor. It transforms the 
individual elements of the tensor using the exponential of each element divided by the sum of 
the exponentials of all elements within the tensor.
The primary outcome of applying the Softmax function is the rescaling of the n-dimensional 
input tensor's elements. This transformation ensures that the resulting n-dimensional output 
tensor's elements lie within the range of [0, 1] and, crucially, add up to a sum of 1. This property 
makes the Softmax function particularly useful when working with probability distributions.
The Softmax function's significance lies in its widespread application. One of its primary use 
cases is to convert the raw scores or logits generated by a neural network into meaningful class 
probability scores. These probability scores represent the likelihood of each input belonging to a 
specific class within a multi-class classification scenario.
For instance, when dealing with image classification, the Softmax activation function is 
commonly employed to transform the network's logits into probabilities. These probabilities can 
then be used to make decisions about the most likely class for a given input.
The Softmax activation function is a cornerstone in deep learning, responsible for transforming 
logits into class probabilities. Its ability to rescale and normalize these scores makes it an 
essential tool for various tasks involving probability distributions and multi-class classification.
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The LogSoftmax function operates similarly to the Softmax function, but with a significant 
difference: it applies the natural logarithm to the values obtained from the Softmax
transformation. Just like Softmax, LogSoftmax also operates on an n-dimensional input tensor.
The fundamental purpose of LogSoftmax is to compute the logarithm of the normalized 
exponentials of the input tensor's elements. This logarithmic transformation can offer benefits in 
certain contexts, especially when dealing with probabilities and handling numerical stability.
LogSoftmax is particularly useful when constructing loss functions for neural networks. The 
logarithmic transformation provides a way to manipulate the Softmax probabilities to better 
align with the structure of certain loss functions. By utilizing LogSoftmax in a loss function, it's 
possible to simplify mathematical calculations and potentially improve the training process.
It's important to note that LogSoftmax isn't typically used as an activation function in the output 
layers of neural networks, as its output values are not directly interpretable as class 
probabilities. Instead, it often plays a role in loss functions, helping to define the optimization 
process.
The LogSoftmax activation function is an extension of the Softmax function that applies a 
logarithmic transformation to the normalized exponentials of input tensor elements. Its primary 
application lies in constructing loss functions, where the logarithmic properties can be 
advantageous for numerical stability and simplifying mathematical operations.
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SIREN (Sinusoidal Representation Network) activation. This type of activation function 
presents some unique characteristics and applications within deep learning, but also 
comes with certain challenges.
Periodic activations like SIREN have been developed to tackle specific problems and use 
cases. However, they can be more challenging to work with compared to traditional 
activation functions due to their specialized nature.
One of the primary applications of SIREN is in dealing with implicit representations. 
Implicit representations involve finding a continuous function that represents sparse 
input data, such as images. This can be particularly useful for tasks where conventional 
approaches might not be sufficient.
SIREN introduces a unique architectural approach by leveraging sinusoidal activation 
functions. These functions are specifically designed for representing complex natural 
signals and their derivatives. This is a departure from traditional network architectures 
that may struggle to capture fine details and spatial/temporal derivatives of signals 
defined implicitly.
A key insight is that SIREN activation functions are well-suited for representing a wide 
range of signals, including images, wavefields, videos, and sounds, along with their 
derivatives. The architecture enables the representation of intricate details that are 
essential for many physical signals defined as solutions to partial differential equations.
To improve the utilization of SIREN, the authors propose an analysis of activation 
statistics that leads to a principled initialization strategy. This enhances the training and 
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convergence properties of SIREN-based networks.
Furthermore, SIRENs can address challenging boundary value problems, such as Eikonal
equations, the Poisson equation, and the Helmholtz and wave equations. This highlights 
the versatility and potential of SIRENs in solving complex and diverse tasks.
SIREN activation functions are a specialized type of periodic activation that has found 
significant utility in handling implicit representations and solving complex problems 
involving signals and their derivatives. While they bring unique capabilities, they also 
require careful considerations due to their distinct convergence properties and 
architecture. For more detailed insights, you can refer to the provided link to the SIREN 
research paper.
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Now comes the critical question: which activation functions should we use in our neural 
networks? The answer, surprisingly, is not as straightforward as we might hope. It's not a 
one-size-fits-all scenario.

So, do we simply opt for ReLU in all cases, or perhaps sigmoid or tanh? The answer is 
both yes and no, depending on the specific context.
The choice of an activation function depends on the characteristics of the function 
you're aiming to approximate. If you have insights into the nature of the function, you 
can strategically select an activation function that aligns with those characteristics. This 
can significantly speed up the training process by allowing the network to approximate 
the desired function more efficiently.
For instance, let's take the sigmoid function. Its curve seems to possess properties ideal 
for a classifier. Choosing sigmoid as an activation function for a classifier can facilitate 
easier function approximation using combinations of sigmoid activations. Similarly, the 
choice of activation can impact the speed of convergence during training.
It's also worth noting that you're not limited to predefined activation functions. You can 
design and use custom activation functions tailored to your problem domain.
However, when you lack specific insights into the nature of the function you're trying to 
learn, starting with ReLU is often a practical approach. ReLU tends to work effectively as 
a general approximator and is widely used in many architectures.
In essence, the choice of activation function is a balancing act between the 
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characteristics of the target function and the efficiency of training. 
While there's no universal answer, understanding the properties of different activation 
functions and how they interact with your problem can guide your decision-making 
process. It's a dynamic aspect of designing neural networks that combines intuition, 
experimentation, and informed decision-making.
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What do we learn from this?

• Which function to use depends on the nature of the targeted 
problem.
• Most often you will be fine with ReLUs for classification problems. If 

the network does not converge, use leakyReLUs or PReLUs, etc. 
• Tanh is quite ok for regression and continuous reconstruction 

problems. 
• The representative power of you training set will usually outweigh the 

contribution of a smartly chosen activation function. 
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Let’s talk about loss functions. 
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As we delve deeper into the realm of deep learning, it's important to remember that the 
network's depth is just one aspect that can be manipulated for improved performance. 
Beyond network depth, there are two other pivotal areas that demand our attention.
The first aspect is how neurons within the network activate when presented with a set 
of inputs. This activation process influences the network's ability to capture and 
represent complex patterns within the data. Careful consideration of activation 
functions can impact not only convergence speed but also the network's capacity to 
model intricate relationships.
The second area of focus, and the one we'll be exploring in depth, revolves around the 
definition of the error or loss that's backpropagated during training. This loss function 
plays a pivotal role in guiding the network towards optimal weights and biases. It 
essentially quantifies the gap between the network's predictions and the ground truth.
Interestingly, while activation functions have garnered significant attention, recent years 
have seen a surge in research dedicated to refining and designing loss functions. The 
landscape of deep learning is constantly evolving, and this shift towards exploring and 
innovating loss functions is reflective of the community's commitment to pushing the 
boundaries of performance and capabilities.
In the early days, much emphasis was placed on activation functions, and their impact 
on training dynamics. However, the growing recognition of the significance of loss 
functions has spurred a resurgence of interest in this domain. While losses might have 
taken a backseat initially, their role in shaping network behavior and fine-tuning training 
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outcomes cannot be underestimated.
So, as we proceed through this exploration of loss functions, keep in mind that it's yet 
another key area where innovation and careful consideration can lead to improved neural 
network performance and remarkable results.
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Let's demystify the concept of a loss or error function. At its core, a loss function serves a 
fundamental purpose within the realm of deep learning. 
Imagine you have a trained system that produces certain outputs based on given inputs. Now, in 
the real world, you often have a desired or expected output for those same inputs. 
The role of a loss function is to quantitatively measure how different these produced outputs 
are from the desired ones.
Think of it as a mathematical tool that assesses the discrepancy between what your system 
predicts and what it should ideally predict. This discrepancy is distilled into a single numerical 
value, which encapsulates the extent of the difference. 
This numerical value essentially quantifies the error or loss incurred by the system's predictions.
In essence, a loss function provides a measure of how well your model is performing in relation 
to the ground truth. The lower the value of the loss function, the closer your system's 
predictions are to the desired outcomes.
This concept lies at the heart of training neural networks -- minimizing this loss function drives 
the network's learning process, guiding it to adjust its parameters and weights to make 
predictions that align more closely with the ground truth.
So, as we embark on our exploration of different types of loss functions, keep in mind that each 
function carries a unique way of assessing the performance of your model, and the choice of 
which to use depends on the specific task, data, and desired outcomes.
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The L2 norm is one of the most commonly used loss functions in deep learning -- the 
Mean Squared Error or MSE. 
This loss function is quite intuitive to grasp. When we talk about the mean squared 
error, we're referring to a measure of the discrepancy between the predicted output of 
our model and the actual ground truth for a given data sample.

Imagine you have a prediction made by your model, and you compare it to the 
corresponding actual value. 
You calculate the difference between these two, square it, and then take the average of 
these squared differences. 
This is often referred to as the Mean Squared Error, as it computes the average of the 
squared errors across the entire dataset or a mini-batch of data.

In the context of a mini-batch, you perform this squared difference calculation for each 
sample within the mini-batch. 
The resulting individual squared errors can then be combined into a list. 
This list of squared errors for each sample in the mini-batch can be represented as a 
vector, and this vector is what we denote as 𝓛 or 𝑙.

Mathematically, 𝓛 is defined as a vector of individual squared errors, where each 
element of the vector represents the squared difference between the predicted output 
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L2 Norm, mean squared error

ℓ 𝑥, 𝑦 = 𝓛 = 𝑙!, … , 𝑙" #, 𝑙$ = (𝑥$ − 𝑦$)%

Reduction to a single value can be either 𝑚𝑒𝑎𝑛(𝓛) or sum(𝓛).
pytorch: nn.MSELoss()
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(𝑥) and the ground truth (𝑦) for a specific data point. 
This vector of squared errors can then be either reduced to a single value by taking the 
mean or the sum of the squared errors across all samples in the mini-batch.

In PyTorch, you'll often encounter this loss function as nn.MSELoss(), which provides an 
efficient way to compute the mean squared error between predictions and ground truths.

So, the L2 norm, through the Mean Squared Error loss function, serves as a key tool in 
quantifying how well our model's predictions align with the actual data. 
It's a cornerstone in many regression tasks and plays a significant role in training neural 
networks.
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The L1 norm provides us with a different perspective on measuring the error between 
our model's predictions and the true ground truth.

Mathematically, the L1 norm is represented by a vector 𝓛, where each element of the 
vector corresponds to the absolute difference between the predicted output (𝑥) and the 
actual ground truth (𝑦) for a specific data sample. This can be denoted as 𝑙_𝑛 = |𝑥_𝑛 − 
𝑦_𝑛|.

Just like we discussed with the Mean Squared Error, this vector of absolute differences 
can be reduced to a single value by taking either the mean or the sum of the absolute 
differences across all samples in the dataset or a mini-batch.

The L1 loss is particularly interesting because it's useful for robust regression, especially 
when dealing with noisy data. In robust regression, you want to give significant weight to 
small errors, but not as much weight to large errors, making it less sensitive to outliers in 
your dataset.

However, there's a challenge with the L1 loss—it's not differentiable at exactly zero due 
to its pointy corners. This lack of differentiability can pose a problem during 
backpropagation in training neural networks. To address this, you can use a smoothed 
version of the L1 loss, such as the SmoothL1Loss in PyTorch, which provides a 
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continuous and differentiable approximation.

In PyTorch, you can conveniently use the nn.L1Loss() function to compute the L1 loss 
between predictions and ground truths.

So, the L1 norm plays a key role in training models that can handle noisy data and outliers 
effectively, making it a valuable tool in various scenarios.
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Now, let's delve into the Smooth L1 loss, a variant of the L1 loss that offers some 
interesting benefits in specific scenarios. This loss function is particularly designed to 
balance the advantages of both the L1 and L2 norms.

Mathematically, the Smooth L1 loss is calculated as the average of a set of smooth L1 
loss terms, each computed for every element 𝑧_𝑖 in the difference between the 
predicted output (𝑥_𝑖) and the ground truth (𝑦_𝑖) of a data sample. This smooth L1 
term, 𝑧_𝑖, is defined based on two conditions: If the absolute difference |𝑥_𝑖 − 𝑦_𝑖| is 
less than 1, then it's 0.5 times the squared difference; otherwise, it's the absolute 
difference minus 0.5.

In PyTorch, you can readily utilize the nn.SmoothL1Loss() function to compute this loss 
efficiently.

What makes the Smooth L1 loss intriguing is its behavior. For errors close to zero, it 
behaves like the L2 loss, which means it's quadratic in that region. As the error 
magnitude increases, it transitions to behaving like the L1 loss, which is linear for larger 
errors. This dual behavior allows the loss to strike a balance between the two norms, 
making it more robust to outliers while still accounting for smaller errors.

This robustness against outliers makes the Smooth L1 loss suitable for tasks where the 
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pytorch: nn.SmoothL1Loss() 
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dataset might contain noisy or outlier-ridden samples. By mitigating the extreme 
sensitivity of the L1 loss to outliers, the Smooth L1 loss helps prevent undue influence on 
the training process from those data points that deviate significantly from the norm.

However, there is a trade-off. The Smooth L1 loss introduces a scale factor, often set to 
0.5, which determines the point at which the transition from quadratic to linear behavior
occurs. Choosing an appropriate scale factor can be a challenge since it depends on the 
distribution of the errors in your dataset, which might not be known beforehand.

The Smooth L1 loss provides a middle ground between L1 and L2 norms, offering 
improved robustness and adaptability, making it a valuable choice when handling real-
world data that could have diverse characteristics.
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The Negative Log Likelihood (NLL) loss, is a loss function that's particularly relevant 
when dealing with classification tasks and probability-based outputs. This loss is built 
upon a simple assumption: that the network's output can be interpreted as log 
likelihoods, usually representing class probabilities.

Mathematically, the NLL loss is calculated for each data sample, with each term 
representing the negative logarithm of the network's output probability for the ground 
truth class. The weights 𝑤_𝑐 are used to assign different importance to different classes. 
It's designed to maximize the likelihood of the correct class while minimizing the 
likelihoods of other classes.

In PyTorch, the nn.NLLLoss() function can be used to compute this loss effectively. 
Importantly, its implementation extends beyond likelihood-based problems; you can 
apply it to various scenarios.

The equation itself involves a summation across the data samples, aiming to minimize 
the negative log likelihood for the correct class's score while considering the weights. If 
the reduction strategy chosen is "mean," it calculates the mean NLL over the batch; if it's 
"sum," it calculates the sum of the NLL values.

Although the name "Negative Log Likelihood" suggests its association with likelihood-
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pytorch: nn.NLLLoss()
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based scenarios, it's worth noting that the concept isn't limited to likelihoods. The key 
idea is to drive the network to favor the correct class while penalizing other classes, 
making it versatile for a range of classification problems.

One significant feature of the NLL loss is its flexibility to assign different weights to 
classes. This can be particularly valuable when your training data exhibits class 
imbalance, where some classes are much rarer than others. Assigning appropriate 
weights can help counterbalance this issue during training, ensuring that the network 
learns effectively even when faced with skewed class distributions.

An alternative approach to handling class imbalance is to increase the frequency of rare 
classes during training, but this may not always be practical. The NLL loss's ability to 
handle class weighting offers a more adaptable solution.

So, while the name "Negative Log Likelihood" may sound specific, its utility extends 
beyond likelihood-based scenarios, making it an essential tool for training classifiers in 
diverse contexts.
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The Cross Entropy (CE) Loss is one of the most widely used loss function that's especially 
relevant for classification tasks involving multiple classes.

Mathematically, the Cross Entropy Loss is a combination of two components: the 
LogSoftmax activation and the Negative Log Likelihood (NLL) loss. This makes it a 
powerful tool for training classification models.

In classification problems with 𝐶 classes, the CE loss functions by taking the LogSoftmax
of the input scores and then applying the NLL loss. It's designed to make the output of 
the LogSoftmax as large as possible for the correct class while minimizing the scores for 
other classes. This is achieved by taking the negative logarithm of the softmax
probability for the correct class.

Notably, you can also introduce class weights to the CE loss, allowing you to assign 
different levels of importance to different classes. This can be particularly useful when 
some classes are more significant or rare in your dataset.

In PyTorch, you can readily use the nn.CrossEntropyLoss() function to compute this loss 
efficiently. The loss values are typically averaged across observations within each 
minibatch.
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The cross entropy loss is particularly favored for classification tasks, as it elegantly 
combines the log softmax operation and the negative log likelihood loss. Conceptually, it 
takes the scores, passes them through a softmax function, takes the logarithm of those 
values, and then optimizes to maximize the correct class's output while minimizing those 
of other classes.

When you backpropagate through the LogSoftmax operation, it has the effect of making 
the scores of incorrect classes as small as possible, thereby focusing on improving the 
correct class's score. In simpler terms, it aims to minimize the negative score of the 
correct class and adds a log term to diminish the influence of scores from other classes.

The Cross Entropy Loss stands as a powerful tool for training classifiers, adeptly handling 
multiple classes and their associated probabilities. Its combination of LogSoftmax and 
Negative Log Likelihood makes it a cornerstone of classification-focused deep learning 
tasks.
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The Binary Cross Entropy (BCE) Loss is a specific variant of the Cross Entropy 
loss designed for tasks involving only two classes.

Mathematically, the BCE Loss is formulated as the negative weighted sum of 
two entropy terms. For each observation in the batch, the loss is calculated 
using the following equation:

ℓ(𝑥,𝑦) = 𝓛 = {𝑙₁, 〖…,𝑙〗_𝑁 }^𝑇, 𝑙_𝑛 = −𝑤_𝑛 [𝑦_𝑛∙log (𝑥_𝑛) + (1−𝑦_𝑛)∙log (1−𝑥_𝑛)]

Here, 𝑥_𝑛 represents the predicted probability for the positive class, 𝑦_𝑛 is 
the ground truth label (0 or 1) for that observation, and 𝑤_𝑛 is a weight 
associated with that sample.

Just like the Cross Entropy Loss, the BCE Loss can also be reduced to a single 
value using either the mean or sum operation.

In PyTorch, you can conveniently employ the nn.BCELoss() function to 
compute this loss. However, it's important to note that the input 
probabilities, 𝑥_𝑛, must lie in the [0, 1] range to ensure the loss's validity. If 
such guarantees can't be made about the input probabilities, it's advisable to 
use the nn.BCEWithLogitsLoss() function instead.

35

Binary Cross Entropy (BCE) Loss 

• CE loss for only two classes
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Reduction to a single value can be either 𝑚𝑒𝑎𝑛(𝓛) or sum(𝓛).
pytorch: nn.BCELoss() 
Requires [0,1] probabilities. If this cannot be guaranteed, use 
nn.BCEWithLogitsLoss()
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Notably, the BCE Loss does not incorporate the log softmax operation and 
instead directly models the entropy of a Bernoulli distribution. This makes it 
suitable for binary classification tasks where each observation belongs to one 
of two classes.

It's worth highlighting that the BCE Loss finds significant utility in 
reconstruction tasks, such as those involving auto-encoders, where the goal is 
to measure the error of a reconstruction compared to the original data.

In essence, the Binary Cross Entropy Loss provides an efficient and effective 
way to measure the difference between predicted probabilities and ground 
truth labels in binary classification scenarios.
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The Kullback-Leibler (KL) Divergence Loss is a loss function that helps 
measure the distance between probability distributions.

Mathematically, the KL Divergence Loss is defined as the element-wise 
product of the ground truth probabilities (𝑦_𝑛) and the logarithm of the ratio 
between the ground truth probabilities (𝑦_𝑛) and the predicted probabilities 
(𝑥_𝑛):

ℓ(𝑥,𝑦) = 𝓛 = {𝑙₁, 〖…,𝑙〗_𝑁 }^𝑇, 𝑙_𝑛 = 𝑦_𝑛∙(𝑙𝑜𝑔𝑦_𝑛−𝑥_𝑛 )

The nn.KLDivLoss() function in PyTorch facilitates the computation of this 
loss.

It's essential to note that the KL Divergence Loss is particularly suitable when 
your target distribution is represented as a one-hot distribution, where a 
single category is assigned a value of 1 and the others are 0. The loss 
assumes both predicted probabilities (𝑥_𝑛) and ground truth probabilities 
(𝑦_𝑛) are valid probabilities, meaning they must lie between 0 and 1.

However, this loss has a notable limitation—it lacks the incorporation of a 
softmax or log-softmax operation. As a result, it can sometimes suffer from 
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• Measures distance between distributions

ℓ 𝑥, 𝑦 = 𝓛 = 𝑙" , … , 𝑙2 3 ,

𝑙4 = 𝑦4 ) 𝑙𝑜𝑔𝑦4 − 𝑙𝑜𝑔𝑥4 = 𝑦4 𝑙𝑜𝑔 5#
(#

Pytroch: nn.KLDivLoss()
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numerical stability issues, especially when dealing with small probability 
values.

Despite this limitation, the KL Divergence Loss proves to be very useful in 
certain scenarios. For instance, it finds a strong application in variational 
autoencoders (VAEs), a type of generative model used in unsupervised 
learning. VAEs aim to learn the underlying distribution of data and use the KL 
Divergence Loss as a crucial component in their training process.

So the Kullback-Leibler Divergence Loss serves as a means to quantify the 
divergence between two probability distributions, and although it might 
exhibit numerical challenges, it remains a valuable tool for specific tasks like 
variational autoencoders.
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This class of loss functions has a unique purpose—instead of directly 
predicting labels or values, they focus on predicting relative distances 
between inputs.

Mathematically, the Margin Ranking Loss is defined as follows:
𝑙𝑜𝑠𝑠(𝑥,𝑦) = max(0, −𝑦∙(𝑥_1−𝑥_2 )+𝑚𝑎𝑟𝑔𝑖𝑛)

This loss function serves a crucial role in pushing classes away from each 
other as far as possible. It finds particular use in metric learning, a task 
where the objective is to learn a meaningful distance metric between data 
points.

To better understand its practical application, consider scenarios where you 
aim to identify if two inputs belong to the same class (similar) or different 
classes (dissimilar). Instead of predicting specific values or labels, you're 
concerned with how these inputs relate in terms of similarity.

In PyTorch, you'll find the nn.MarginRankingLoss() function ready for your 
use in implementing this loss.

Margin ranking losses offer a unique training methodology. You start by 
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Useful to push classes as far away 
as possible and for metric learning
Practical: take category that scores 
is closest or higher than correct one
change until difference is at least the margin
pytorch: nn.MarginRankingLoss()  
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extracting features from two inputs and obtaining embedded representations 
for them. Next, a metric function, like Euclidean distance, measures the 
similarity between these representations. The goal is to train the feature 
extractors to produce similar representations for similar inputs and distinct 
representations for dissimilar inputs. This powerful strategy generates potent 
representations applicable to various tasks.

In essence, Margin Ranking Losses operate around the concept of pushing 
one input's score above another's by a defined margin. If the difference in 
scores satisfies this condition, the cost is zero. However, if the difference falls 
below the margin, the cost increases linearly. This loss is particularly handy in 
cases like classification, where you compare the scores of the correct answer 
(x_1) with the highest-scoring incorrect answer (x_2) in the mini-batch.

Keep in mind, though, that Margin Ranking Losses aren't confined to 
classification tasks alone. They also shine in energy-based models, where they 
exert downward pressure on the correct answer's score and push the 
incorrect answer's score upward.

So, as we explore the diverse landscape of loss functions, remember that 
Margin Ranking Losses offer a powerful way to train models that capture the 
essence of relative distances and similarities in your data without defining the 
distance metric heuristically. 
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Mathematically, the Triplet Margin Loss is expressed as:
ℓ(𝑥,𝑦) = max(0, m + |f(𝑥_𝑎 )−𝑓(𝑥_𝑝 )|−|f(𝑥_𝑎 )−𝑓(𝑥_𝑛 )|

At its core, this loss function is all about making samples from the same classes 
come close to each other, while simultaneously pushing samples from different 
classes farther apart. The objective is to ensure that the distance between a 
"good pair" (similar samples) is smaller than the distance between a "bad pair" 
(dissimilar samples).

The key to understanding this loss lies in the comparison of distances. The actual 
distances themselves don't need to be small, but rather the relative difference 
matters more. In essence, we aim to reduce the distance between the "good" pair 
while simultaneously increasing the distance between the "bad" pair by at least a 
certain margin, denoted as 'm'.

The Triplet Margin Loss is widely used in metric learning, a field that focuses on 
training models to generate meaningful representations that capture the relative 
similarities or differences between data points. One common scenario is in 
Siamese networks, where two inputs pass through a shared neural network, and 
their resulting vectors are compared.
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Objective: Distance for the good pair has to be smaller than distance to 
the bad pair. Actual distance does not need to be small, just smaller.  
Used for metric learning and Siamese networks
pytorch: nn.TripletMarginLoss() 
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Consider a scenario where we feed two images of the same category into a CNN, 
yielding two vectors. In this case, we want the distance between these vectors to 
be minimized. Conversely, for two images of different categories, we want the 
distance between their vectors to be maximized.

This loss function effectively steers the model toward the desired outcome by 
nudging the distances accordingly. The important part is to ensure that the 
distance between the "good pair" is smaller than the distance between the "bad 
pair," with a margin of 'm' in between.

It's noteworthy that the concept of the Triplet Margin Loss found practical 
application in training an image search system for Google. This system encoded 
user queries into vectors and compared them to indexed image vectors. The 
system then retrieved images that closely matched the query vector, a concept 
fundamental to understanding this loss.

In PyTorch, implementing the Triplet Margin Loss is as simple as using the 
nn.TripletMarginLoss() function, making it a powerful asset in training models to 
comprehend and leverage the relative distances within data points.
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In the original paper they had a nice figure illustrating this behaviour. Positive examples 
are pulled closer and negative examples pushed further away. 
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Triplet Margin Loss
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http://www.bmva.org/bmvc/2016/papers/paper119/index.html



Cosine Embedding Loss is a type of loss function used for comparing the 
similarity or dissimilarity between two input vectors x1 and x2.

The function takes a label y as an input, where y=1 indicates that the vectors 
should be similar, and y=−1 indicates that they should be dissimilar.

Contrary to common belief, this is not just a normalized Euclidean distance. It 
specifically utilizes the cosine of the angle between vectors, which is a 
measure of orientation, not magnitude.

In PyTorch, this loss function is available as nn.CosineEmbeddingLoss().

For pairs labeled as similar (y=1), the loss tries to minimize the angle 
between the vectors, effectively making their cosine similarity close to 1.

For pairs labeled as dissimilar (y=−1), the loss aims to ensure that the cosine 
similarity is smaller than a specified margin. The margin is a hyperparameter 
and is usually a small positive value.

Why use cosine similarity over Euclidean distance? The key benefit lies in its 
focus on the direction of vectors, not their magnitude.
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Cosine Embedding Loss

𝑙𝑜𝑠𝑠(𝑥, 𝑦) = 9
1 − cos 𝑥" , 𝑥* , 𝑖𝑓 𝑦 = 1

max 0, cos 𝑥" , 𝑥* − 𝑚𝑎𝑟𝑔𝑖𝑛 , 𝑖𝑓 𝑦 = −1

Measure weather two inputs are similar or dissimilar
Basically a normalised Euclidian distance
pytroch: nn.CosineEmbeddingLoss() 
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You can think of your data points as vectors on a high-dimensional sphere. 
After normalization, the data points reside on the surface of the sphere.

In such a high-dimensional space, the equator of the sphere has a large 
surface area, providing ample room to separate dissimilar vectors.

The goal, then, is to make similar vectors point in the same direction, while 
dissimilar vectors should be separated but not necessarily be antipodal. This 
is why we often set the margin to a small positive value, maximizing the use of 
the "equatorial space" for dissimilar vectors.

The Cosine Embedding Loss is especially useful for learning nonlinear 
embeddings and for semi-supervised learning tasks, where the objective is to 
understand the semantic relationships between data points.
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The choice of a loss function is crucial because it directly influences the type of output 
your model will produce.
For example, you'll likely use a different loss function for classification tasks than you 
would for regression tasks.
Loss functions are an active area of research in the machine learning community.
This means that new functions and techniques are being developed frequently, so it's 
worth staying updated on the latest advancements.
The loss function you choose fundamentally guides the behavior of your model during 
the training process.
In essence, it sets the "rules of the game" for how the model should optimize its 
predictions.
While the mathematical formulations of loss functions may initially appear daunting, 
don't be intimidated.
Once you unpack them, the core ideas behind most loss functions are usually 
straightforward and intuitive.
The loss function is not just a formula you have to minimize; it's a crucial part of your 
model's learning process.
Selecting the right one can make the difference between a well-performing model and 
one that fails to capture the nuances of your data.
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What do we learn from this

• The choice of loss depends on the desired output (e.g., classification 
vs. regression)  
• Loss functions are a hot topic of research. 
• It informs how the overall system behaves during training
• Don’t get scared by the equations. If you look closely the underlying 

ideas are very simple. 

Deep Learning – Bernhard Kainz


