
Deep Learning
Tutorial 1: Signals and Convolution

1

Q1: The curse of dimensionality

1a) For a one-dimensional space of real numbers between 0 and 1, 100 ob-
servations are required to adequately cover this space such that histograms
can be calculated and conclusions can be drawn. How many observations
would be required to adequately cover the space for the following number of
dimensions?

i) 10 dimensions

ii) 1000 dimensions

1b) Under what conditions is it still possible to perform Cluster analysis and
outlier detection in high-dimensional spaces?

1c) Why is the curse of dimensionality a serious hurdle in machine learning
problems?

1d) Why is using weight sharing common practice?

2

1 1 2 3 2 1 1
1 2 6 6 5 2 1
1 5 6 7 7 6 2
1 5 6 6 6 4 2
1 1 4 5 4 1 1
1 1 3 4 3 1 0
0 0 1 2 1 0 1

(a) Single channel im-
age

0 1 0
0 -2 1
0 1 0

(b) 3x3
Filter

Figure 1: Perform a convolution

Q2: Convolutions

2a) Suppose you have the following single-channel image shown in Figure 1a:

i) Compute the result of max pooling of size 3x3 with stride=2.

ii) Compute the result of convolution of the input image with the 3x3
filter shown in Figure 1b using stride=2, no zero padding.

2bi) How would the filter shown in Figure 1b need to changed to obtain the
correct definition of convolution rather than cross-correlation? Check your
answer to 2aii).

2bii) Why do we need to perform this change?

2c) Which of the following properties hold for convolution? (True/False)

i) Non-Commutativity: f ∗ g 6= g ∗ f
ii) Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h
iii) Non-Distributivity: f ∗ (g + h) 6= (f ∗ g) + (f ∗ h)

iv) Associativity with scalar multiplication: a(f ∗ g) = (af) ∗ g
v) Derivative: D(f ∗ g) = (Df) ∗ g = f ∗Dg

3

Q3: Backpropagation applied

A Siamese network is a type of neural network architecture that consists
of two or more identical subnetworks (called “twins”) that share the same
weights and architecture. Siamese networks are often used for tasks that
involve comparing or matching inputs, such as verification, identification,
and similarity learning. The outputs of the twin networks are usually joined
later on by more layers. Let’s assume we have a two layer Siamese neural
network, as defined below:

z1 = W1x
(i) + b1

a1 = ReLU(z1)

z2 = W1x
′(i) + b1

a2 = ReLU(z2)

a = a1 − a2
z3 = W2a+ b2

ŷ(i) = σ(z3)

L(i) = y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

J = − 1

m

m∑
i=1

L(i)

Note that (x(i), x′(i)) represents a pair of single input examples, and are each
of shape D × 1 . Further y(i) is a single output label and is a scalar. There
are m examples in our dataset. We use Da1 nodes in our first hidden layers;
i.e., z1’s and z2’s shape is Da1 × 1. Note that the first two layers share the
same weights.

1. What are the shapes of W1, b1,W2, b2? If we were vectorizing across
multiple examples, what would the shapes of X and Y be instead?

2. Derive ∂J
∂z3

formally and write δi1 = You can simplify the equation

in terms of ŷ(i).

3. Derive ∂z3
∂a

formally and write δi2 =

4. Derive ∂a
∂z2

formally and write δi3 =

4

